Advanced Quantum Mechanics (WS18/19)
Lecturer
Prof. Dr. Stefan Dittmaier
Dates
- Lecture: 4 hours, Wed 10-12, Fri 10-12, HS I, start: 17.10.2018
- Exercise classes: 2 hours, start: 22./23./24.10.2018. The online registration for the exercise classes is closed.
- Presentation of the solutions (not mandatory for course achievement): Fri 14-16, HS II.
-
Exam: Sat, 02.02.2019, 13:00-16:00, HS I.
Presentation of the solutions: Fr, 08.02.2019, 14:15, HS II.
Post-exam review: Fr 08.02.2019 in HH0815, subsequent to the presentation of the solutions. - Resit exam: Sat, 13.04.2019, 10-13, HS I.
Post-exam review: Do 18.04.2019, 14:15, in HH0815. - Allowed aids in the exams:
- A book of mathematical formulas,
- a hand-written A4 sheet, both sides.
Content
- Recapitulation of basic qm. principles
- Mathematical background
- Qm. states, observables, and measurements
- Correspondence principle and time evolution
- Mathematical background
- Symmetries in quantum mechanics
- Symmetry transformations and Wigner's theorem
- Elements of group theory
(representations, irreducibility, Schur's lemma, finite groups, Lie groups, Lie algebras) - Space translations
(continuous and discrete translations, Bloch's theorem) - Rotations
(SO(3) and SU(2), irreducible representations, Wigner's D functions, orbital angular momentum and spin, addition of angular momenta, irreducible tensors, Wigner-Eckart theorem)
- Approximation methods
- WKB method
- Time-independent perturbation theory
- Variational method
- Time-dependent perturbation theory
- Scattering theory
- Potential scattering
(Green's functions, wave packets, Lippmann-Schwinger equation, perturbation theory, partial-wave analysis, optical theorem, resonances, complex potentials) - Basics of general scattering theory
(T matrix, S matrix, cross sections, decay widths, general optical theorem)
- Potential scattering
- Quantization of the electromagnetic field
- Free electromagnetic fields
- (Classical fields, quantization in the Coulomb gauge)
- Interacting electromagnetic fields
(Classical fields, quantization in the Coulomb gauge, 1-electron atoms in quantized radiation field)
- Relativistic quantum mechanics
Prerequisites
Mechanics, Electrodynamics, Quantum Mechanics
Literature
- Bransden/Joachain: "Physics of atoms and molecules"
- Cohen-Tannoudji: "Quantenmechanik, Band 1+2"
- Landau/Lifschitz: "Quantenmechanik, Lehrbuch der Theoretischen Physik, Band 3"
- Messiah: "Quantenmechanik, Band 1+2"
- Nolting:
- "Grundkurs Theoretische Physik 5/1: Quantenmechanik - Grundlagen"
- "Grundkurs Theoretische Physik 5/2: Quantenmechanik - Methoden und Anwendungen"
- Sakurai: "Modern Quantum Mechanics" and "Advanced Quantum Mechanics"
- Scheck: "Theoretische Physik 2: Nichtrelativistische Quantentheorie Vom Wasserstoffatom zu den Vielteilchensystemen"
- Straumann: "Quantenmechanik: Ein Grundkurs über nichtrelativistische Quantentheorie"
- Weinberg: "Lectures on Quantum Mechanics"
Specific literature on group theory applied to QM:
- Hamermesh: "Group Theory and Its Application to Physical Problems"
- Tung: "Group Theory in Physics"
- Ramond: "Group Theory: A Physicist's Survey"
Requirements for Course Achievement / Academic Record
-
Active and regular participation in the tutorials, including solutions to 60% of the homework problems.
-
Final written exam.
Problem sheets