Advanced Quantum Mechanics (WS14/15)
Lecturer
Prof. Dr. Stefan Dittmaier
Dates:
-
Lecture: 4 hours, Wed 10-12, Fr 10-12, HS I, start: 22.10.2014
-
Exam: Sat, 07.02.2015, 10-13, HS I
-
Retake exam: Sat, 18.04.2015, 10-13, HS I
- Question hour: Tue, 14.04.2015, 10.15, SR I, II, or III
Exercise courses:
- Contact person: Dr. Heidi Rzehak Registration via Campus Management (-> Belegwunsch/Stornierung) from 20.10.2014, noon, with Uni-Account.
- Dates: 2 hours, start: 29./30.10.2014
- Group 1: Wed, 14-16 (SR III)
- Group 2: Thu, 10-12 (SR I)
- Group 3: Thu, 12-14 (SR GMH)
- Group 4: Thu, 14-16 (SR I)
-
Presentation of solutions: Fr, 14-16 (SR WB UG)
Content:
- Recapitulation of basic qm. principles
- Mathematical background
- Qm. states, observables, and measurements
- Correspondence principle and time evolution
- Mathematical background
- Symmetries in quantum mechanics
- Symmetry transformations and Wigner's theorem
- Elements of group theory
(representations, irreducibility, Schur's lemma, finite groups, Lie groups, Lie algebras) - Space translations
(continuous and discrete translations, Bloch's theorem) - Rotations
(SO(3) and SU(2), irreducible representations, Wigner's D functions, orbital angular momentum and spin, addition of angular momenta, irreducible tensors, Wigner-Eckart theorem)
- Approximation methods
- WKB method
- Time-independent perturbation theory
- Variational method
- Time-dependent perturbation theory
- Scattering theory
- Potential scattering
(Green's functions, wave packets, Lippmann-Schwinger equation, perturbation theory, partial-wave analysis, optical theorem, resonances, complex potentials) - Basics of general scattering theory
(T matrix, S matrix, cross sections, decay widths, general optical theorem)
- Potential scattering
- Quantization of the electromagnetic field -> download
- Free electromagnetic fields
(Classical fields, quantization in the Coulomb gauge) - Interacting electromagnetic fields
(Classical fields, quantization in the Coulomb gauge, 1-electron atoms in quantized radiation field)
- Free electromagnetic fields
- Relativistic quantum mechanics
Prerequisites
Mechanics, Electrodynamics, Quantum Mechanics
Textbooks:
- Bransden/Joachain: "Physics of atoms and molecules"
- Cohen-Tannoudji: "Quantenmechanik, Band 1+2"
- Landau/Lifschitz: "Quantenmechanik, Lehrbuch der Theoretischen Physik, Band 3"
- Messiah: "Quantenmechanik, Band 1+2"
- Nolting:
- "Grundkurs Theoretische Physik 5/1: Quantenmechanik - Grundlagen"
- "Grundkurs Theoretische Physik 5/2: Quantenmechanik - Methoden und Anwendungen"
- Sakurai: "Modern Quantum Mechanics" and "Advanced Quantum Mechanics"
- Scheck: "Theoretische Physik 2: Nichtrelativistische Quantentheorie Vom Wasserstoffatom zu den Vielteilchensystemen"
- Straumann: "Quantenmechanik: Ein Grundkurs über nichtrelativistische Quantentheorie"
- Weinberg: "Lectures on Quantum Mechanics"
Specific literature on group theory applied to QM:
- Hamermesh: "Group Theory and Its Application to Physical Problems"
- Tung: "Group Theory in Physics"
Requirements for Course Achievement / Academic Record
- Course Achievement ("Studienleistung"):
Active and regular participation in the tutorials, including solutions to 50% of the homework problems + final written exam
- Academic Record ( "Prüfungsleistung"):
Further details will be given in the lecture/tutorials.
Problem sheets: