Sie sind hier: Startseite Vorlesungen Archiv Introduction to Relativistic Quantum Field Theory (SS12)

Introduction to Relativistic Quantum Field Theory (SS12)


Prof. Dr. Stefan Dittmaier, Dr. Christian Schwinn


  • Lecture: 4 hours, Tue, Wed 14-16, HSII,  start:  24.04.2012
  • Tutorial: 2 hours, Mon 10-12, SR I, start:  07.05.2012

For Bachelor-Students

 The lecture is suitable as supplementary or elective course  (Wahlpflicht- bzw. Wahlbereich).  It is equivalent to the  lecture "Theoretische Teilchenphysik"  in the course description.


  • Quantization of scalar fields (Klein Gordon equation, classical field theory, canonical quantization, scattering theory and Feynman diagrams)
  • Vector-boson fields (classical field equations, electromagnetic interactions and the gauge principle, quantization of the electromagnetic field, scalar QED and perturbative evaluation) 
  • Dirac fermions (basics of Lie Groups, Lorentz group and its representations, Dirac and Weyl equations, Poincare group and its representations, quantization of free Dirac fields, QED and perturbative evaluation, applications)
  • Quantization with functional integrals


Quantum Mechanics, Electrodynamics and Special Relativity


  • Bjorken/Drell: "Relativistic Quantum Mechanics"
  • Bjorken/Drell: "Relativistic Quantum Fields"
  • Itzykson/Zuber: "Quantum Field Theory"
  • Maggiore: "A Modern Introduction to Quantum Field Theory"
  • Peskin/Schroeder: "An Introduction to Quantum Field Theory"
  • Ramond: "Field Theory: a Modern Primer"
  • Tung: "Group Theory in Physics"
  • Weinberg: "The Quantum Theory of Fields, Vol.1: Foundations"

  More advanced Textbooks

  • Böhm/Denner/Joos: "Gauge Theories of the Strong and Electroweak Interaction"
  • Weinberg: "The Quantum Theory of Fields, Vol.2: Modern Applications"

Lecture notes

Lecture notes for section 1-5 (pdf)

Requirements for Academic Record

  • active and regular participation in the tutorials, including solutions to  50% of the homework problems.
  • in case an exam ( "Prüfungsleistung")  is required, an oral exam will be offered. Prerequisite is the successful participation in the tutorials.

Further details will be given in the lecture/tutorials.

  1. Problem set (pdf)
  2. Problem set (pdf)
  3. Problem set (pdf)
  4. Problem set (pdf)
  5. Problem set (pdf)
  6. Problem set (pdf)
  7. Problem set (pdf)
  8. Problem set (pdf)
  9. Problem set (pdf)
  10. Problem set (pdf)
  11. Problem set (pdf)
  12. Problem set (pdf)
Benutzerspezifische Werkzeuge