Exercises to Relativistic Quantum Field Theory — Sheet 12

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 12.1 "Massive photon" in the Abelian Higgs model (1.5 points)

Consider a model with a complex scalar field $\phi(x)$ whose dynamics is governed by the Lagrangian

$$\mathcal{L}_{\phi}(\phi, \partial \phi) = (\partial_{\mu} \phi)^* (\partial^{\mu} \phi) - V(\phi^* \phi),$$

where V represents a general potential for the scalar self-interactions. Moreover, the quanta of ϕ carry the electric charge q, so that the full Lagrangian for ϕ including its electromagnetic interaction reads

$$\mathcal{L} = \mathcal{L}_{\phi}(\phi, D\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

with the covariant derivative $D_{\mu} = \partial_{\mu} + iqA_{\mu}$ and the field-strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ of the electromagnetic field $A^{\mu}(x)$.

a) The potential $V(\phi^*\phi)$ is assumed to have a minimum for $|\phi(x)| = v/\sqrt{2}$, so that this condition characterises the ground state of the system (= field configuration of lowest energy). This suggests the following parametrisation of ϕ :

$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + h(x) \right) \exp\left(\frac{i\chi(x)}{v} \right),$$

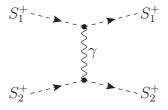
where h(x) and $\chi(x)$ are real fields. Express \mathcal{L} in terms of h(x), $\chi(x)$, and $A^{\mu}(x)$.

- b) Show that the model respects the gauge symmetry $\phi(x) \to \phi'(x) = e^{-iq\omega(x)}\phi(x)$, $A_{\mu}(x) \to A'_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}\omega(x)$ and argue that $\chi(x)$ is an unphysical field, i.e. that it can be consistently set to zero.
- c) From \mathcal{L} with $\chi = 0$, read off the part $\mathcal{L}_{AA,0}$ that is responsible for the free motion of A. Derive the Euler-Lagrange equation from $\mathcal{L}_{AA,0}$ for the free motion of A and identify the mass M_A of the quanta of A by comparing the equation of motion with Proca's equation.

Exercise 12.2 Electromagnetic scattering of two charged scalars (2 points)

Consider the reaction $S_1^+(p_1) + S_2^+(p_2) \to S_1^+(k_1) + S_2^+(k_2)$ in scalar quantum electrodynamics, i.e. the particles S_a^{\pm} (a=1,2) are scalar particles with electric charges $\mp Q_a e$ and masses M_a . The corresponding Feynman rules are given below. In Born approximation only the following diagram is relevant.

Please turn over!



In the centre-of-mass frame the particle momenta read

$$(p_{1,2}^{\mu}) = (E_{1,2}, 0, 0, \pm p), \qquad (k_{1,2}^{\mu}) = (E_{1,2}, \pm p \sin \theta \cos \varphi, \pm p \sin \theta \sin \varphi, \pm p \cos \theta),$$

where $E_{1,2}$ are the energies of the incoming particles, and $p = \sqrt{E_a^2 - M_a^2}$ is the absolute value of their three-momenta.

- a) Calculate the squared transition matrix element $|\mathcal{M}|^2$ as a function of the Mandelstam variables $s = (p_1 + p_2)^2$, $t = (p_1 k_1)^2$, and $u = (p_1 k_2)^2$.
- b) Calculate the differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2.$$

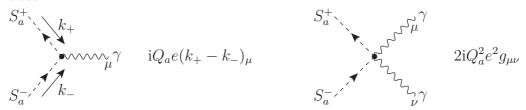
Compare the non-relativistic limit $(M_1, M_2 \gg p)$ of the result with the classical Rutherford cross section

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Rutherford}} = \frac{\alpha^2 Q_1^2 Q_2^2}{4M^2 v^4 \sin^4(\frac{\theta}{2})},$$

where, in this limit, v = p/M and $M = M_1M_2/(M_1+M_2)$ denote the relative velocity and the reduced mass of the two-body system, respectively, and $\alpha = e^2/(4\pi)$ is the fine-structure constant.

Feynman rules for the charged spin-0 particles S_a^{\pm}

• Vertices:



• Propagators and external lines:

$$\begin{array}{ccc}
 & \frac{S_a}{k} & \frac{\mathrm{i}}{k^2 - M_a^2} & & & \\
 & \frac{\gamma}{\nu} & \frac{-\mathrm{i}}{k} \left(g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2} (1 - \xi) \right) & & \\
 & \frac{-\mathrm{i}}{k} & \frac{1}{k^2} \left(g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2} (1 - \xi) \right) & & \\
 & \frac{-\mathrm{i}}{k} & \frac{1}{k^2} & \frac{1$$

The fields S_a^{\pm} are defined to be incoming at the vertices. Outgoing fields S_a^{\pm} correspond to incoming fields S_a^{\mp} with reversed momenta.