Exercises to Relativistic Quantum Field Theory - Sheet 11

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 11.1 Pair production of scalars in the Yukawa model (2 points)
Consider the pair production of two identical, neutral scalar particles S that are produced via fermion-antifermion annihilation,

$$
f\left(p_{1}\right)+\bar{f}\left(p_{2}\right) \rightarrow S\left(k_{1}\right)+S\left(k_{2}\right)
$$

where the momentum assignment of the respective particles is indicated in brackets. For simplicity, the fermions are considered massless. In the centre-of-mass system the momenta are given by

$$
\left(p_{1,2}^{\mu}\right)=E(1,0,0, \pm 1), \quad\left(k_{1,2}^{\mu}\right)=E\left(1, \pm \beta_{S} \sin \theta \cos \varphi, \pm \beta_{S} \sin \theta \sin \varphi, \pm \beta_{S} \cos \theta\right)
$$

where E is the beam energy and $\beta_{S}=\sqrt{1-m_{S}^{2} / E^{2}}$ is the velocity of the scalars of mass m_{S}. The Dirac fermion f (field ψ) and the scalar S (field ϕ) interact via a pure Yukawa interaction described by the Lagrangian

$$
\mathcal{L}_{I}=-y \bar{\psi} \psi \phi,
$$

with y denoting a (dimensionless) coupling constant.
a) Draw all relevant Feynman diagrams for the transition matrix element \mathcal{M} in lowest perturbative order and write down the explicit expression for \mathcal{M}. How does \mathcal{M} behave under the interchange $k_{1} \leftrightarrow k_{2}$ and why?
b) Calculate the spin-averaged squared transition matrix element $\overline{|\mathcal{M}|^{2}}=\frac{1}{4} \sum_{\mathrm{pol}}|\mathcal{M}|^{2}$ and show that

$$
\overline{|\mathcal{M}|^{2}}=\frac{y^{4}}{2}\left(\frac{1}{t}-\frac{1}{u}\right)^{2}\left(u t-m_{S}^{4}\right) .
$$

c) Derive both the differential cross section $\mathrm{d} \sigma / \mathrm{d} \cos \theta$ and the total cross section σ.
d) Draw all Feynman graphs for \mathcal{M} of order y^{4}, i.e. in 1-loop approximation, which contribute to this process.

Exercise 11.2 Free photon field in radiation gauge (1 point)
The field operator of the free photon field in radiation gauge $\left(A^{0}=0, \nabla \vec{A}=0\right)$ is given by

$$
A^{\mu}(x)=\left.\int \mathrm{d} \tilde{k} \sum_{\lambda= \pm}\left(\mathrm{e}^{-\mathrm{i} k x} \varepsilon_{\lambda}^{\mu}(k) a_{\lambda}(\vec{k})+\mathrm{e}^{\mathrm{+} \mathrm{i} k x} \varepsilon_{\lambda}^{\mu}(k)^{*} a_{\lambda}^{\dagger}(\vec{k})\right)\right|_{k_{0}=|\vec{k}|}
$$

with the creation and annihilation operators $a_{\lambda}^{\dagger}(\vec{k})$ and $a_{\lambda}(\vec{k})$, which are normalised as in the lecture. The polarisation vectors $\varepsilon_{ \pm}^{\mu}(k)$ are defined as

$$
\left(\varepsilon_{ \pm}^{\mu}(\hat{k})\right)=\frac{1}{\sqrt{2}}(0,1, \pm \mathrm{i}, 0) \quad \text { for } \quad\left(\hat{k}^{\mu}\right)=\hat{k}_{0}(1,0,0,1)
$$

and analogously for other directions.
a) Verify the polarisation sum

$$
\sum_{\lambda= \pm} \varepsilon_{\lambda}^{m}(k) \varepsilon_{\lambda}^{n}(k)^{*}=\delta^{m n}-\frac{k^{m} k^{n}}{\vec{k}^{2}} \quad \text { for } \quad m, n=1,2,3
$$

b) The field variable that is canonical conjugate to A^{m} is $\Pi^{m}=F^{m 0}$. Calculate the canonical equal-time commutators, i.e. $\left[A^{m}(t, \vec{x}), A^{n}(t, \vec{y})\right],\left[A^{m}(t, \vec{x}), \Pi^{n}(t, \vec{y})\right]$, $\left[\Pi^{m}(t, \vec{x}), \Pi^{n}(t, \vec{y})\right]$. Make use of the "transverse δ-function" when appropriate,

$$
\delta_{\operatorname{tr}}^{m n}(\vec{x})=\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3}}\left(\delta^{m n}-\frac{k^{m} k^{n}}{\vec{k}^{2}}\right) \mathrm{e}^{-\mathrm{i} \vec{k} \vec{x}}, \quad m, n=1,2,3
$$

Exercise 11.3 Massive gauge-boson propagator in covariant gauge (1 point)
The propagator $D_{\xi}^{\mu \nu}(x)$ of a massive vector boson of mass M in covariant gauge is defined by

$$
\left(g_{\mu \nu}\left(\square+M^{2}\right)+\left(\frac{1}{\xi}-1\right) \partial_{\mu} \partial_{\nu}\right) D_{\xi}^{\nu \rho}(x)=\delta_{\mu}^{\rho} \delta^{(4)}(x)
$$

Calculate the Fourier transform $\tilde{D}_{\xi}^{\mu \nu}(q)$ of the propagator upon inserting

$$
D_{\xi}^{\mu \nu}(x)=\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \mathrm{e}^{-\mathrm{i} q x} \tilde{D}_{\xi}^{\mu \nu}(q)
$$

Here it is useful to employ the decomposition of $\tilde{D}_{\xi}^{\mu \nu}(q)$ into its transverse part $\tilde{D}_{T, \xi}(q)$ and its longitudinal part $\tilde{D}_{L, \xi}(q)$, so that

$$
\tilde{D}_{\xi}^{\mu \nu}(q)=\tilde{D}_{T, \xi}(q)\left(g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\tilde{D}_{L, \xi}(q) \frac{q^{\mu} q^{\nu}}{q^{2}}
$$

Determine the limit $\xi \rightarrow \infty$ of $\tilde{D}_{\xi}^{\mu \nu}(q)$.

