## Exercises to Relativistic Quantum Field Theory - Sheet 9

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 9.1 Relation between the Lorentz group and SL(2, C (1 point)
The group $\operatorname{SL}(2, \mathbb{C})$ consists of all complex $2 \times 2$ matrices $A$ with $\operatorname{det}(A)=1$. Assign to each four-vector $x^{\mu}$ a $2 \times 2$ matrix $X=x_{\mu} \sigma^{\mu}$ and $\bar{X}=x_{\mu} \bar{\sigma}^{\mu}$ where $\sigma^{\mu}=\left(\mathbb{1}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbb{1},-\sigma^{1},-\sigma^{2},-\sigma^{3}\right)$. The matrices $\sigma^{\mu}$ and $\bar{\sigma}^{\mu}$ satisfy the relation $\operatorname{Tr}\left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)=2 g^{\mu \nu}$.
a) Show that the inverse of the above assignment is given by

$$
x^{\mu}=\frac{1}{2} \operatorname{Tr}\left(X \bar{\sigma}^{\mu}\right)=\frac{1}{2} \operatorname{Tr}\left(\bar{X} \sigma^{\mu}\right) .
$$

b) What is the meaning of $\operatorname{det}(X)$ and $\operatorname{det}(\bar{X})$ ?
c) For two arbitrary matrices $A, B$ of $\mathrm{SL}(2, \mathbb{C})$, show that the mappings $X \rightarrow X^{\prime}=$ $A X A^{\dagger}$ and $\bar{X} \rightarrow \bar{X}^{\prime}=B \bar{X} B^{\dagger}$ define Lorentz transformations $x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$.
Hint: Consider the determinants.
d) How are the matrices $A, B$ of c) and the matrices $\Lambda_{\mathrm{L}}$ and $\Lambda_{\mathrm{R}}$ of the fundamental representations of Exercise 8.2 related?
Hint: $\Lambda_{\mathrm{R}}^{\dagger} \sigma^{\mu} \Lambda_{\mathrm{R}}=\Lambda^{\mu}{ }_{\nu} \sigma^{\nu}, \Lambda_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \Lambda_{\mathrm{L}}=\Lambda^{\mu}{ }_{\nu} \bar{\sigma}^{\nu}$.

## Exercise 9.2 Relations for Dirac matrices (1.5 points)

The Dirac matrices $\gamma_{\mu}$ and $\gamma_{5}$ are defined by

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{1}, \quad \gamma_{0} \gamma^{\mu} \gamma_{0}=\left(\gamma^{\mu}\right)^{\dagger}, \quad \gamma_{5}=\gamma^{5}=-\frac{\mathrm{i}}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

The matrix $\gamma_{5}$ satisfies the relations $\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$ and $\left(\gamma_{5}\right)^{\dagger}=\gamma_{5}$. In the chiral basis, $\gamma_{5}$ has the representation

$$
\gamma_{5}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) .
$$

a) Calculate the following traces:

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right), \quad \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)
$$

b) Prove the following trace relations:

$$
\begin{gathered}
\operatorname{Tr}\left(\gamma_{5}\right)=\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right)=0, \quad \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{5}\right)=-4 \mathrm{i} \epsilon^{\mu \nu \rho \sigma}, \\
\operatorname{Tr}\left(\gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}}\right)=\operatorname{Tr}\left(\gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}} \gamma_{5}\right)=0, \quad n=0,1, \ldots .
\end{gathered}
$$

c) Reduce the number of Dirac matrices in the following contractions:

$$
\gamma^{\alpha} \gamma_{\alpha}, \quad \gamma^{\alpha} \gamma^{\mu} \gamma_{\alpha}, \quad \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}
$$

Please turn over!

## Exercise 9.3 Lorentz covariants from Dirac spinors (1 point)

a) Prove the following relations:

$$
S(\Lambda)^{-1} \gamma^{\mu} S(\Lambda)=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}, \quad S(\Lambda)^{\dagger} \gamma_{0}=\gamma_{0} S(\Lambda)^{-1}
$$

Use this to show that the quantities

$$
\begin{aligned}
s(x) & =\bar{\psi}(x) \psi(x)=\text { scalar } \\
p(x) & =\bar{\psi}(x) \gamma_{5} \psi(x)=\text { pseudo-scalar } \\
j^{\mu}(x) & =\bar{\psi}(x) \gamma^{\mu} \psi(x)=\text { vector } \\
j_{5}^{\mu}(x) & =\bar{\psi}(x) \gamma^{\mu} \gamma_{5} \psi(x)=\text { pseudo-vector }
\end{aligned}
$$

transform under proper, orthochronous Lorentz transformations $x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$ as indicated, if the Dirac spinor $\psi(x)$ transforms according to $\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$.
b) Determine the transformation properties of the quantities defined in a) under the parity operation $P$, where

$$
\left(x^{\prime \mu}\right)=\left(x^{0},-\vec{x}\right)=\left(\Lambda_{P}\right)^{\mu}{ }_{\nu} x^{\nu}, \quad S\left(\Lambda_{P}\right)=\gamma_{0}=\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)
$$

in the chiral representation of the Dirac matrices.

