Exercises to Relativistic Quantum Field Theory - Sheet 8

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 8.1 S-operator for two interacting scalar fields (cont'd) (1 point)

Consider again the field theory of a complex scalar field ϕ (particle ϕ and antiparticle $\bar{\phi}$) and a real scalar field Φ (particle Φ) from Exercise 7.2 with the Lagrangian density

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)\left(\partial^{\mu} \Phi\right)-\frac{1}{2} M^{2} \Phi^{2}+\left(\partial_{\mu} \phi^{\dagger}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi+\mathcal{L}_{\mathrm{int}}
$$

where $\mathcal{L}_{\text {int }}=\lambda \phi^{\dagger} \phi \Phi$, and make use of the perturbative expansion worked out there.
a) Calculate the S-matrix element $S_{f i}=\langle f| S|i\rangle$ in lowest non-vanishing order between the initial state $|i\rangle=a_{\Phi}^{\dagger}(k)|0\rangle$ and the final state $|f\rangle=a_{\phi}^{\dagger}\left(p_{1}\right) b_{\phi}^{\dagger}\left(p_{2}\right)|0\rangle$, where $a_{\Phi}^{\dagger}(q)$, $a_{\phi}^{\dagger}(q), b_{\phi}^{\dagger}(q)$ are the creation operators of the particles Φ, ϕ, and $\bar{\phi}$, respectively.
b) Assuming $M>2 m$, calculate the lowest-order decay width

$$
\Gamma_{\Phi \rightarrow \phi \bar{\phi}}=\frac{1}{2 M} \int \mathrm{~d} \Phi_{2}\left|\mathcal{M}_{f i}\right|^{2}
$$

for the decay $\Phi \rightarrow \phi \bar{\phi}$, where Φ_{2} is the 2-particle phase space of the final state (see Exercise 5.2) and the transition matrix element $\mathcal{M}_{f i}$ is related to $S_{f i}$ by

$$
S_{f i}=(2 \pi)^{4} \delta^{(4)}\left(k-p_{1}-p_{2}\right) \mathrm{i} \mathcal{M}_{f i}
$$

Exercise 8.2 Fundamental representations of the Lorentz group (2 points)

The general form of Lorentz transformations in the two fundamental representations of the Lorentz group is given by

$$
\Lambda_{\mathrm{R}}=\exp \left(-\frac{\mathrm{i}}{2}(\vec{\phi}+\mathrm{i} \vec{\nu}) \cdot \vec{\sigma}\right), \quad \Lambda_{\mathrm{L}}=\exp \left(-\frac{\mathrm{i}}{2}(\vec{\phi}-\mathrm{i} \vec{\nu}) \cdot \vec{\sigma}\right)
$$

with the real group parameters $\vec{\phi}=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)^{\mathrm{T}}, \vec{\nu}=\left(\nu_{1}, \nu_{2}, \nu_{3}\right)^{\mathrm{T}}$ and the Pauli matrices $\vec{\sigma}=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)^{\mathrm{T}}$.
a) Show that $\Lambda_{\mathrm{R}}^{\dagger}=\Lambda_{\mathrm{L}}^{-1}$ and $\Lambda_{\mathrm{L}}^{\dagger}=\Lambda_{\mathrm{R}}^{-1}$.
b) Show that $\operatorname{det}\left(\Lambda_{\mathrm{R}}\right)=\operatorname{det}\left(\Lambda_{\mathrm{L}}\right)=1$ using $\operatorname{det}(\exp (A))=\exp (\operatorname{Tr}(A))$ for a matrix A.
c) Which transformations are characterised by $\Lambda_{\mathrm{R} / \mathrm{L}}^{\dagger}=\Lambda_{\mathrm{R} / \mathrm{L}}$, which by $\Lambda_{\mathrm{R} / \mathrm{L}}^{\dagger}=\Lambda_{\mathrm{R} / \mathrm{L}}^{-1}$?
d) Calculate Λ_{R} and Λ_{L} for a pure boost in the direction $\vec{e},|\vec{e}|=1$, i.e. with $\vec{\nu}=\nu \vec{e}$, $\vec{\phi}=0$, and for a pure rotation around the axis \vec{e}, i.e. with $\vec{\phi}=\phi \vec{e}, \vec{\nu}=0$.

Exercise 8.3 Connection between $\Lambda_{\mathrm{R}}, \Lambda_{\mathrm{L}}$, and $\Lambda^{\mu}{ }_{\nu} \quad$ (1 point)
The general matrix representing a Lorentz transformation of a four-vector is given by

$$
\Lambda^{\mu}{ }_{\nu}=\exp \left(-\frac{\mathrm{i}}{2} \omega_{\alpha \beta} M^{\alpha \beta}\right)^{\mu} \quad \text { with } \quad\left(M^{\alpha \beta}\right)^{\mu}{ }_{\nu}=\mathrm{i}\left(g^{\alpha \mu} g^{\beta}{ }_{\nu}-g^{\beta \mu} g^{\alpha}{ }_{\nu}\right)
$$

and the antisymmetric parameters $\omega_{j k}=\epsilon_{j k l} \phi_{l}$ and $\omega_{0 j}=-\omega_{j 0}=\nu_{j}$. The connection between $\Lambda_{\mathrm{R}}, \Lambda_{\mathrm{L}}$ (see Exercise 8.2) and $\Lambda^{\mu}{ }_{\nu}$ is

$$
\Lambda_{\mathrm{R}}^{\dagger} \sigma^{\mu} \Lambda_{\mathrm{R}}=\Lambda_{\nu}^{\mu} \sigma^{\nu}, \quad \Lambda_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \Lambda_{\mathrm{L}}=\Lambda_{\nu}^{\mu} \bar{\sigma}^{\nu}
$$

where $\sigma^{\mu}=\left(\mathbb{1}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbb{1},-\sigma^{1},-\sigma^{2},-\sigma^{3}\right)$. Verify these relations for infinitesimal transformations with the parameters $\delta \phi_{k}, \delta \nu_{k}$.

