Exercises to Relativistic Quantum Field Theory - Sheet 6

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 6.1 Momentum of the quantised free scalar field (cont'd) (1.5 points)
a) How does the energy-momentum operator P^{μ} act on a state $a^{\dagger}\left(\vec{p}_{1}\right) \ldots a^{\dagger}\left(\vec{p}_{n}\right)|0\rangle$?
b) The action of an operator A on a wave function $\varphi(t, \vec{x})=\langle 0| \phi(t, \vec{x})|\varphi\rangle$ corresponding to a state $|\varphi\rangle$ is defined by $A \varphi(t, \vec{x})=\langle 0| \phi(t, \vec{x}) A|\varphi\rangle$. Determine how P^{μ} acts on a one-particle wave function $\varphi_{\vec{p}}(t, \vec{x})=\langle 0| \phi(t, \vec{x})|\vec{p}\rangle$ with $|\vec{p}\rangle=a^{\dagger}(\vec{p})|0\rangle$ in two different ways and use the results to calculate $\varphi_{\vec{p}}(t, \vec{x})$. Do not use the representation of the field operator $\phi(t, \vec{x})$ in terms of creation and annihilation operators here.
c) Express the one-particle wave function $\varphi_{f}(t, \vec{x})$ corresponding to the state

$$
|f\rangle=\int \mathrm{d} \tilde{p} f(\vec{p})|\vec{p}\rangle
$$

in terms of $\varphi_{\vec{p}}(t, \vec{x})$. Here $f(\vec{p})$ denotes a square-integrable "spectral function". Show that $\varphi_{f}(t, \vec{x})$ satisfies the Klein-Gordon equation.

Exercise 6.2 Identities of the scalar field operator (1 point)
Consider the field operator $\phi(x)$ of the free, real Klein-Gordon field.
a) Show that

$$
[\phi(x), \phi(y)]=\int \mathrm{d} \tilde{k}\left(\mathrm{e}^{-\mathrm{i} k(x-y)}-\mathrm{e}^{+\mathrm{i} k(x-y)}\right)
$$

and argue why $[\phi(x), \phi(y)]=0$ for $(x-y)^{2}<0$, as demanded by causality.
b) Prove the relation between time ordering and normal ordering:

$$
\begin{aligned}
T\{\phi(x) \phi(y)\} & \equiv \theta\left(x^{0}-y^{0}\right) \phi(x) \phi(y)+\theta\left(y^{0}-x^{0}\right) \phi(y) \phi(x) \\
& =: \phi(x) \phi(y):+\langle 0| T\{\phi(x) \phi(y)\}|0\rangle .
\end{aligned}
$$

Exercise 6.3 Normalisation of multi-particle states (1 point)

Show that the n-particle states in (bosonic) Fock space,

$$
\left|\vec{p}_{1}, \ldots \vec{p}_{n}\right\rangle=a^{\dagger}\left(\vec{p}_{1}\right) a^{\dagger}\left(\vec{p}_{2}\right) \ldots a^{\dagger}\left(\vec{p}_{n}\right)|0\rangle
$$

are normalised according to

$$
\left\langle\vec{p}_{1}, \ldots \vec{p}_{n} \mid \vec{k}_{1}, \ldots, \vec{k}_{m}\right\rangle=\delta_{m n}(2 \pi)^{3 n} \sum_{\pi \in S_{n}} \prod_{i=1}^{n}\left(2 p_{i}^{0}\right) \delta^{(3)}\left(\vec{p}_{i}-\vec{k}_{\pi(i)}\right),
$$

where the sum runs over all permutations S_{n} of the indices $\{1, \ldots, n\}$.

