Exercises to Relativistic Quantum Field Theory - Sheet 5

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 5.1 Momentum of the quantised free scalar field (1 point)
The energy P^{0} and momentum \vec{P} of a free real scalar field $\phi(x)$ are defined via the stress-energy tensor $T^{\mu \nu}$ as $P^{\mu}=\int \mathrm{d}^{3} x T^{\mu 0}$ and explicitly given by

$$
P^{0}=\int \mathrm{d}^{3} y \frac{1}{2}\left(\pi(y)^{2}+(\nabla \phi(y))^{2}+m^{2} \phi(y)^{2}\right), \quad \vec{P}=-\int \mathrm{d}^{3} y \pi(y)(\nabla \phi(y))
$$

where $\pi(x)=\dot{\phi}(x)$ is the canonical conjugate operator to the field operator $\phi(x)$.
a) Using the canonical commutator relations, show that

$$
\left[\phi(x), P^{\mu}\right]=\mathrm{i}\left(\partial^{\mu} \phi(x)\right)
$$

b) Derive the following identity for a translation by a constant four-vector a^{μ} :

$$
\exp \left(\mathrm{i} a_{\mu} P^{\mu}\right) \phi(x) \exp \left(-\mathrm{i} a_{\nu} P^{\nu}\right)=\phi(x+a)
$$

Exercise 5.2 2-particle phase space (1 point)
We consider two particles with masses $m_{1,2}$ and four-momenta $p_{1,2}\left(p_{1,2}^{2}=m_{1,2}^{2}\right)$. The total momentum is, thus, given by $k=p_{1}+p_{2}$. The integral over the 2-particle phase space is defined as

$$
\int \mathrm{d} \Phi_{2}=\left.\int \frac{\mathrm{d}^{3} p_{1}}{(2 \pi)^{3} 2 p_{1}^{0}} \int \frac{\mathrm{~d}^{3} p_{2}}{(2 \pi)^{3} 2 p_{2}^{0}}(2 \pi)^{4} \delta^{(4)}\left(k-p_{1}-p_{2}\right)\right|_{p_{1,2}^{0}=\sqrt{m_{1,2}^{2}+\vec{p}_{1,2}^{2}}}
$$

a) Consider the decay of a particle of mass M and momentum $k\left(k^{2}=M^{2}\right)$ into two particles with momenta $p_{1,2}$. Show that the phase-space integral can be evaluated in the centre-of-mass frame as

$$
\int \mathrm{d} \Phi_{2}=\frac{1}{(2 \pi)^{2}} \frac{\sqrt{\lambda\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{8 M^{2}} \theta\left(M-m_{1}-m_{2}\right) \int \mathrm{d} \Omega_{1}
$$

where Ω_{1} is the solid angle of particle 1 , and $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z$.
b) What is the phase-space integral of a $2 \rightarrow 2$ particle scattering reaction with incoming momenta $k_{1,2}$. What is the counterpart of M in this reaction?

Exercise 5.3 Charge operator of the free complex scalar field (1 point)

Consider the field operator $\phi(x)$ of the free complex Klein-Gordon field describing a spin- 0 boson of mass m and electric charge q. The plane-wave expansion of $\phi(x)$ is given by

$$
\phi(x)=\int \mathrm{d} \tilde{p}\left(a(\vec{p}) \mathrm{e}^{-\mathrm{i} p x}+b^{\dagger}(\vec{p}) \mathrm{e}^{\mathrm{i} p x}\right)
$$

where $a(\vec{p}), a^{\dagger}(\vec{p})$ are the annihilation and creation operators for the particle, respectively, and likewise $b(\vec{p}), b^{\dagger}(\vec{p})$ for the corresponding antiparticle. Express the charge operator

$$
Q=\int \mathrm{d}^{3} x \mathrm{i} q:\left(\phi^{\dagger}\left(\partial_{0} \phi\right)-\left(\partial_{0} \phi\right)^{\dagger} \phi\right):
$$

in terms of the annihilation and creation operators of the momentum eigenstates. The normal ordered form : \mathcal{O} : of an operator \mathcal{O} is defined in such a way that all annihilation operators a_{i} are to the right of all creation operators a_{j}^{\dagger} (e.g. : $a_{i} a_{j}^{\dagger}:=: a_{j}^{\dagger} a_{i}:=a_{j}^{\dagger} a_{i}$).

