Exercises to Relativistic Quantum Field Theory - Sheet 1

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 1.1 Some properties of Lorentz transformations (2.5 points)
In the defining representation, Lorentz transformations comprise all 4×4 matrices Λ, transforming a four-vector $\left(a^{\mu}\right)=\left(a^{0}, \vec{a}\right)$ to $a^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} a^{\nu}$, that leave the metric tensor $\left(g^{\mu \nu}\right)=\operatorname{diag}(+1,-1,-1,-1)$ invariant, i.e. $g^{\mu \nu}=\Lambda^{\mu}{ }_{\alpha} \Lambda^{\nu}{ }_{\beta} g^{\alpha \beta}$. In the following we consider the "proper orthochronous Lorentz group" L_{+}^{\uparrow} that comprises all such Λ with the two constraints that $\operatorname{det} \Lambda=+1$ and $\Lambda^{0}{ }_{0}>0$. The group L_{+}^{\uparrow} consists of all rotations in space and all "boosts" which relate two frames of reference with a non-vanishing relative velocity.
a) A boost with relative velocity $\vec{\beta}$, is described by the matrix

$$
\left(\Lambda(\vec{\beta})^{\mu}{ }_{\nu}\right)=\left(\begin{array}{cc}
\gamma & -\gamma \vec{\beta}^{\mathrm{T}} \\
-\gamma \vec{\beta} & \mathbb{1}+(\gamma-1) \vec{e} \vec{e}^{\mathrm{T}}
\end{array}\right)
$$

where \vec{e} is defined by $\vec{\beta}=|\vec{\beta}| \vec{e},|\vec{e}|=1$, and $\gamma=\left(1-\vec{\beta}^{2}\right)^{-\frac{1}{2}}$. Calculate the boosted components $x^{\prime \mu}$ for the four-vectors $\left(x_{\|}^{\mu}\right)=\left(x^{0}, r \vec{e}\right)$ and $\left(x_{\perp}^{\mu}\right)=\left(x^{0}, r \vec{e}_{\perp}\right)$ whose directions in space are parallel and perpendicular to the direction of $\vec{\beta}$, respectively, i.e. $\vec{e}_{\perp} \cdot \vec{e}=0,\left|\vec{e}_{\perp}\right|=1$.
b) Show that the sign of the time-like component a^{0} of any non-space-like four-vector a^{μ} (i.e. $a^{2} \geq 0$) is invariant under all Lorentz transformations $\Lambda \in L_{+}^{\uparrow}$.
c) Calculate $W=\Lambda\left(-\vec{\beta}_{2}\right) \Lambda\left(-\vec{\beta}_{1}\right) \Lambda\left(\vec{\beta}_{2}\right) \Lambda\left(\vec{\beta}_{1}\right)$ for small velocities $\vec{\beta}_{1}=\beta_{1} \vec{e}_{1}, \vec{\beta}_{2}=\beta_{2} \vec{e}_{2}$ and keep terms up to quadratic order in $\beta_{i}, i=1,2$. Here, \vec{e}_{i} are the cartesian basis vectors in x^{i} direction. What kind of transformation is described by W ?
d) Show that the totally antisymmetric tensor

$$
\epsilon^{\mu \nu \rho \sigma}=\left\{\begin{aligned}
+1 & \text { if }(\mu \nu \rho \sigma)=\text { even permutation of }(0123), \\
-1 & \text { if }(\mu \nu \rho \sigma)=\text { odd permutation of }(0123), \\
0 & \text { otherwise }
\end{aligned}\right.
$$

is an invariant tensor under all $\Lambda \in L_{+}^{\uparrow}$, i.e. $\epsilon^{\prime \mu \nu \rho \sigma}=\Lambda^{\mu}{ }_{\alpha} \Lambda^{\nu}{ }_{\beta} \Lambda^{\rho}{ }_{\gamma} \Lambda^{\sigma}{ }_{\delta} \epsilon^{\alpha \beta \gamma \delta}=\epsilon^{\mu \nu \rho \sigma}$.
e) Show that $d^{\mu}=\epsilon^{\mu \nu \rho \sigma} a_{\nu} b_{\rho} c_{\sigma}$ transforms like a four-vector under $\Lambda \in L_{+}^{\uparrow}$ if a^{μ}, b^{μ} and c^{μ} are four-vectors.

Exercise 1.2 Kinematics of a $1 \rightarrow 2$ particle decay (2 points)
A particle of mass M and four-momentum k^{μ} decays into two particles of masses m_{i} and four-momenta $p_{i}^{\mu}(i=1,2)$. The momenta obey their mass-shell conditions $k^{2}=M^{2}$ and $p_{i}^{2}=m_{i}^{2}$ and, in the centre-of-mass frame Σ, are given by

$$
\left(k^{\mu}\right)=\binom{M}{\overrightarrow{0}}, \quad\left(p_{i}^{\mu}\right)=\binom{E_{i}}{\vec{p}_{i}} \quad \text { with } \quad \vec{p}_{i}=\left|\vec{p}_{i}\right|\left(\begin{array}{c}
\sin \theta_{i} \cos \phi_{i} \\
\sin \theta_{i} \sin \phi_{i} \\
\cos \theta_{i}
\end{array}\right) .
$$

a) What are the consequences of four-momentum conservation $k=p_{1}+p_{2}$ for the energies E_{i}, for the absolute values $\left|\vec{p}_{i}\right|$ of the three-momenta and for the angles θ_{i} and ϕ_{i} ?
b) Calculate E_{i} and $\left|\vec{p}_{i}\right|$ as functions of the masses M and m_{i}.
c) The decaying particle is now considered in a frame Σ^{\prime} in which the particle has the velocity β along the x^{3} axis. What is the relation between energies and angles in Σ^{\prime} with the respective quantities in Σ ?
d) For the special case $m_{1}=m_{2}=0$ (e.g. decay into two photons), determine the angle θ^{\prime} between the directions of flight of the decay products in Σ^{\prime} (i.e. the angle between \vec{p}_{1}^{\prime} and \vec{p}_{2}^{\prime}) in terms of the parameters in Σ. What are the extremal values of θ^{\prime} ? In particular, discuss the cases $\beta=0$ and $\beta \rightarrow 1$.

