Exercises to Relativistic Quantum Field Theory — Sheet 1 Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 1.1 Some properties of Lorentz transformations (2.5 points)

In the defining representation, Lorentz transformations comprise all 4×4 matrices Λ , transforming a four-vector $(a^{\mu}) = (a^0, \vec{a})$ to $a'^{\mu} = \Lambda^{\mu}{}_{\nu}a^{\nu}$, that leave the metric tensor $(g^{\mu\nu}) = \text{diag}(+1, -1, -1, -1)$ invariant, i.e. $g^{\mu\nu} = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}g^{\alpha\beta}$. In the following we consider the "proper orthochronous Lorentz group" L^{\uparrow}_{+} that comprises all such Λ with the two constraints that det $\Lambda = +1$ and $\Lambda^{0}{}_{0} > 0$. The group L^{\uparrow}_{+} consists of all rotations in space and all "boosts" which relate two frames of reference with a non-vanishing relative velocity.

a) A boost with relative velocity $\vec{\beta}$, is described by the matrix

$$(\Lambda(\vec{\beta})^{\mu}{}_{\nu}) = \begin{pmatrix} \gamma & -\gamma \vec{\beta}^{\mathrm{T}} \\ -\gamma \vec{\beta} & \mathbb{1} + (\gamma - 1)\vec{e} \vec{e}^{\mathrm{T}} \end{pmatrix},$$

where \vec{e} is defined by $\vec{\beta} = |\vec{\beta}|\vec{e}, |\vec{e}| = 1$, and $\gamma = (1 - \vec{\beta}^2)^{-\frac{1}{2}}$. Calculate the boosted components x'^{μ} for the four-vectors $(x^{\mu}_{\parallel}) = (x^0, r\vec{e})$ and $(x^{\mu}_{\perp}) = (x^0, r\vec{e}_{\perp})$ whose directions in space are parallel and perpendicular to the direction of $\vec{\beta}$, respectively, i.e. $\vec{e}_{\perp} \cdot \vec{e} = 0, |\vec{e}_{\perp}| = 1$.

- b) Show that the sign of the time-like component a^0 of any non-space-like four-vector a^{μ} (i.e. $a^2 \ge 0$) is invariant under all Lorentz transformations $\Lambda \in L^{\uparrow}_{+}$.
- c) Calculate $W = \Lambda(-\vec{\beta}_2)\Lambda(-\vec{\beta}_1)\Lambda(\vec{\beta}_2)\Lambda(\vec{\beta}_1)$ for small velocities $\vec{\beta}_1 = \beta_1\vec{e}_1, \vec{\beta}_2 = \beta_2\vec{e}_2$ and keep terms up to quadratic order in $\beta_i, i = 1, 2$. Here, \vec{e}_i are the cartesian basis vectors in x^i direction. What kind of transformation is described by W?
- d) Show that the totally antisymmetric tensor

$$\epsilon^{\mu\nu\rho\sigma} = \begin{cases} +1 & \text{if } (\mu\nu\rho\sigma) = \text{even permutation of (0123)} \\ -1 & \text{if } (\mu\nu\rho\sigma) = \text{odd permutation of (0123)}, \\ 0 & \text{otherwise} \end{cases}$$

is an invariant tensor under all $\Lambda \in L^{\uparrow}_{+}$, i.e. $\epsilon^{\mu\nu\rho\sigma} = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\Lambda^{\rho}{}_{\gamma}\Lambda^{\sigma}{}_{\delta}\epsilon^{\alpha\beta\gamma\delta} = \epsilon^{\mu\nu\rho\sigma}$.

e) Show that $d^{\mu} = \epsilon^{\mu\nu\rho\sigma} a_{\nu} b_{\rho} c_{\sigma}$ transforms like a four-vector under $\Lambda \in L^{\uparrow}_{+}$ if a^{μ} , b^{μ} and c^{μ} are four-vectors.

Please turn over!

Exercise 1.2 Kinematics of a $1 \rightarrow 2$ particle decay (2 points)

A particle of mass M and four-momentum k^{μ} decays into two particles of masses m_i and four-momenta p_i^{μ} (i = 1, 2). The momenta obey their mass-shell conditions $k^2 = M^2$ and $p_i^2 = m_i^2$ and, in the centre-of-mass frame Σ , are given by

$$(k^{\mu}) = \begin{pmatrix} M \\ \vec{0} \end{pmatrix}, \qquad (p_i^{\mu}) = \begin{pmatrix} E_i \\ \vec{p_i} \end{pmatrix} \quad \text{with} \quad \vec{p_i} = |\vec{p_i}| \begin{pmatrix} \sin \theta_i \cos \phi_i \\ \sin \theta_i \sin \phi_i \\ \cos \theta_i \end{pmatrix}.$$

- a) What are the consequences of four-momentum conservation $k = p_1 + p_2$ for the energies E_i , for the absolute values $|\vec{p_i}|$ of the three-momenta and for the angles θ_i and ϕ_i ?
- b) Calculate E_i and $|\vec{p_i}|$ as functions of the masses M and m_i .
- c) The decaying particle is now considered in a frame Σ' in which the particle has the velocity β along the x^3 axis. What is the relation between energies and angles in Σ' with the respective quantities in Σ ?
- d) For the special case $m_1 = m_2 = 0$ (e.g. decay into two photons), determine the angle θ' between the directions of flight of the decay products in Σ' (i.e. the angle between \vec{p}'_1 and \vec{p}'_2) in terms of the parameters in Σ . What are the extremal values of θ' ? In particular, discuss the cases $\beta = 0$ and $\beta \to 1$.