Exercise 11.1 Pair production of scalars in the Yukawa model (2 points)

Consider the pair production of two identical, neutral scalar particles S that are produced via fermion–antifermion annihilation

$$f(p_1) + \bar{f}(p_2) \rightarrow S(k_1) + S(k_2),$$

where the momentum assignment of the respective particles are indicated in brackets. In the centre-of-mass system the momenta are given by

$$p_{1,2}^{\mu} = E(1,0,0,\pm\beta_f), \qquad k_{1,2}^{\mu} = E(1,\pm\beta_S\sin\theta\cos\varphi,\pm\beta_S\sin\theta\sin\varphi,\pm\beta_S\cos\theta),$$

where E is the beam energy and $\beta_f = \sqrt{1 - m_f^2/E^2}$, $\beta_S = \sqrt{1 - m_S^2/E^2}$ are the velocities of the respective particles of masses m_f and m_s . The Dirac fermion f (field ψ) and the scalar S (field ϕ) interact via a pure Yukawa interaction described by the Lagrangian

$$\mathcal{L}_I = -y\bar{\psi}\psi\phi,$$

with y denoting a (dimensionless) coupling constant.

- a) Draw all relevant Feynman diagrams for the transition matrix element \mathcal{M} in lowest perturbative order and write down the explicit expression for \mathcal{M} . How does \mathcal{M} behave under the interchange $k_1 \leftrightarrow k_2$ and why?
- b) Calculate the spin-averaged squared transition matrix element $\overline{|\mathcal{M}|^2} = \frac{1}{4} \sum_{\text{Pol.}} |\mathcal{M}|^2$ and show that

$$\overline{|\mathcal{M}|^2} = \frac{y^4}{2} \left[\frac{1}{t - m_f^2} - \frac{1}{u - m_f^2} \right]^2 \left[ut + m_f^2 s - (m_f^2 + m_S^2)^2 \right].$$

- c) Derive both the differential cross section $d\sigma/d\cos\theta$ and the total cross section σ .
- d) Draw all Feynman graphs for \mathcal{M} of order y^4 , i.e. in 1-loop approximation, which contribute to this process.

Please turn over!

Exercise 11.2 Free photon field in radiation gauge (1 point)

The field operator of the free photon field in radiation gauge $(A^0 = 0, \nabla \vec{A} = 0)$ is given by

$$A^{\mu}(x) = \int \mathrm{d}\tilde{k} \sum_{\lambda=\pm} \left[\mathrm{e}^{-ikx} \varepsilon^{\mu}_{\lambda}(k) a_{\lambda}(\vec{k}) + \mathrm{e}^{+ikx} \varepsilon^{\mu}_{\lambda}(k)^* a^{\dagger}_{\lambda}(\vec{k}) \right] \Big|_{k_0 = |\vec{k}|}$$

with the creation and annihilation operators $a_{\lambda}^{\dagger}(\vec{k})$ and $a_{\lambda}(\vec{k})$, which are normalised as in the lecture. The polarisation vectors $\varepsilon_{\pm}^{\mu}(k)$ are defined as

$$\varepsilon_{\pm}^{\mu}(\hat{k}) = \frac{1}{\sqrt{2}}(0, 1, \pm i, 0) \quad \text{for} \quad \hat{k}^{\mu} = \hat{k}_0(1, 0, 0, 1)$$

and analogously for other directions.

a) Verify the polarisation sum

$$\sum_{\lambda=\pm} \varepsilon_{\lambda}^{m}(k)\varepsilon_{\lambda}^{n}(k)^{*} = \delta^{mn} - \frac{k^{m}k^{n}}{\vec{k}^{2}} \quad \text{for} \quad m, n = 1, 2, 3.$$

b) The field variable that is canonical conjugate to A^m is $\Pi^m = F^{m0}$. Calculate the canonical equal-time commutators, i.e. $[A^m(t, \vec{x}), A^n(t, \vec{y})], [A^m(t, \vec{x}), \Pi^n(t, \vec{y})],$ $[\Pi^m(t, \vec{x}), \Pi^n(t, \vec{y})]$. Make use of the "transverse δ -function" when appropriate,

$$\delta_{\rm tr}^{mn}(\vec{x}) = \int \frac{{\rm d}^3 \vec{k}}{(2\pi)^3} \left(\delta^{mn} - \frac{k^m k^n}{\vec{k}^2} \right) \,{\rm e}^{-i\vec{k}\vec{x}}, \quad m, n = 1, 2, 3$$

Exercise 11.3 Massive gauge-boson propagator in covariant gauge (1 point)

The propagator $D_{\xi}^{\mu\nu}(x)$ of a massive vector boson of mass M in covariant gauge is defined by

$$\left[g_{\mu\nu}(\Box+M^2) + \left(\frac{1}{\xi}-1\right)\partial_{\mu}\partial_{\nu}\right]D_{\xi}^{\nu\rho}(x) = \delta_{\mu}^{\rho}\,\delta(x).$$

Calculate the Fourier transform $\tilde{D}^{\mu\nu}_{\xi}(q)$ of the propagator upon inserting

$$D_{\xi}^{\mu\nu}(x) = \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \, \exp(-iqx) \, \tilde{D}_{\xi}^{\mu\nu}(q).$$

Here it is useful to employ the decomposition of $\tilde{D}_{\xi}^{\mu\nu}(q)$ into its transverse part $\tilde{D}_{T,\xi}(q)$ and its longitudinal part $\tilde{D}_{L,\xi}(q)$, so that

$$\tilde{D}_{\xi}^{\mu\nu}(q) = \tilde{D}_{T,\xi}(q) \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \right) + \tilde{D}_{L,\xi}(q) \frac{q^{\mu}q^{\nu}}{q^2}.$$

Determine the limit $\xi \to \infty$ of $\tilde{D}_{\xi}^{\mu\nu}(q)$.