Group Theory for Physicists

Prof. Dr. Stefan Dittmaier and Dr. Philipp Maierhöfer
Albert-Ludwigs-Universität Freiburg, Physikalisches Institut
D-79104 Freiburg, Germany

Summer Term 2019
Draft: July 29, 2019
"The universe is an enormous direct product of representations of symmetry groups."

Contents

1 Basic concepts and group theory in QM 5
1.1 Symmetry transformations in quantum mechanics 5
1.2 Group-theoretical definitions 7
1.3 Substructures of groups 9
1.4 Group representations 12
1.5 Implications for quantum-mechanical systems 16
1.6 Schur's lemmas 19
1.7 Real, pseudoreal, and complex representations 22
2 Finite groups 25
2.1 Multiplication tables 25
2.2 Unitarity theorem 26
2.3 Orthogonality relations 27
3 SO(3) and $\mathrm{SU}(2)$ 35
3.1 The rotation group $\mathrm{SO}(3)$ 35
3.2 The group $\mathrm{SU}(2)$ 38
3.3 Irreducible representations of $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ 40
3.4 Product representations and Clebsch-Gordan decomposition 44
3.5 Irreducible tensors, Wigner-Eckart theorem 49
3.6 Tensors of $\mathrm{SO}(\mathrm{N})$ 54
3.7 Tensors of $\mathrm{SU}(\mathrm{N})$ 57
4 SU(3) 61
4.1 The $\operatorname{su}(3)$ algebra, roots, and weights 61
4.2 Irreducible representations 64
4.3 Clebsch-Gordan decomposition 67
4.4 Isospin and hypercharge 70
5 Lie groups and Lie algebras 77
5.1 Lie groups 77
5.2 One-parameter subgroups, exponentiation, and BCH formula 84
5.3 Invariant group integration 87
5.4 Lie algebras 90
6 Semisimple Lie algebras 95
6.1 Cartan subalgebra, root vectors, and Cartan-Weyl basis 95
6.2 Geometry of the root system 100
6.3 Simple roots, Cartan matrix, and Chevalley basis 104
6.4 Classification of complex (semi)simple Lie algebras - Dynkin diagrams 112
6.5 Finite-dimensional representations of complex simple Lie algebras 121
Bibliography 129

Chapter 1

Basic concepts and group theory in quantum mechanics

1.1 Symmetry transformations in quantum mechanics

Classification of symmetry transformations:

- "Space-time symmetries":

Changes of position or orientation of the observer by translations, reflections, rotations, changing the state of motion, leaving the laws of physics invariant.

- "Internal symmetries":

Other changes in the qm. states (e.g. interchanging states or particles), leading to physically equivalent systems.

Actions on states and observables

by symmetry operator U on states in Hilbert space \mathcal{H} :

$$
\text { states }|\psi\rangle \in \mathcal{H} \quad \xrightarrow{U} \quad\left|\psi^{\prime}\right\rangle=U|\psi\rangle \in \mathcal{H},
$$

expectation value $\langle A\rangle_{\psi}=\langle\psi| A|\psi\rangle \xrightarrow{U}\left\langle A^{\prime}\right\rangle_{\psi^{\prime}}=\langle\psi| U^{\dagger} A^{\prime} U|\psi\rangle \stackrel{!}{=}\langle A\rangle_{\psi}, \quad \forall|\psi\rangle \in \mathcal{H}$, observable (=operator) $A \xrightarrow{U} A^{\prime}=\left(U^{\dagger}\right)^{-1} A U^{-1}$, i.e. $A^{\prime}=U A U^{\dagger}$ if $U=$ unitary,

$$
p_{\phi \psi}=|\langle\phi \mid \psi\rangle|^{2} \quad \xrightarrow{U} p_{\phi^{\prime} \psi^{\prime}}^{\prime}=\left|\left\langle\phi^{\prime} \mid \psi^{\prime}\right\rangle\right|^{2} \stackrel{!}{=} p_{\phi \psi} .
$$

$=$ probability to find $|\phi\rangle$ in $|\psi\rangle$ in
a measurement $(\|\psi\|=\|\phi\|=1)$
$\Rightarrow U$ obeys

$$
\begin{equation*}
\left.\left.|\langle\phi \mid \psi\rangle|=\left|\langle\phi| U^{\dagger} U\right| \psi\right\rangle|\quad \forall| \phi\right\rangle,|\psi\rangle \in \mathcal{H}, \quad\|\psi\|=\|\phi\|=1 . \tag{1.1}
\end{equation*}
$$

Wigner's theorem (non-trivial!)
A symmetry operator U is unitary or antiunitary,
i.e. $U^{\dagger} U=\mathbb{1}$ and $U=$ linear or antilinear.

Examples:

- $U=$ unitary: \quad spatial translation T, rotation R, time evolution $U\left(t_{1}, t_{0}\right)$, space inversion \mathcal{P}, etc.
- $U=$ antiunitary: time reversal \mathcal{T}.

Properties of unitary symmetries:

- Symmetry trafos U form a math. "group" G.
\hookrightarrow Groups are "discrete" (\mathcal{P}, etc.) or "continuous" ("Lie groups", e.g. T, R, etc.).
- Operator trafo: $A \rightarrow A^{\prime}=U A U^{\dagger}=$ similiarity trafo, leaving eigenvalues of A invariant.

Symmetry: $\quad A^{\prime}=U A U^{\dagger} \stackrel{!}{=} A, \quad U^{-1}=U^{\dagger}$, i.e. $U A=A U,[A, U]=0$.
\Rightarrow If $|a\rangle=$ eigenstate of A with eigenvalue $a: \quad A|a\rangle=a|a\rangle$, then all $U|a\rangle$ with $U \in G$ as well:

$$
\begin{equation*}
A(U|a\rangle)=U A|a\rangle=a(U|a\rangle) \tag{1.2}
\end{equation*}
$$

\Rightarrow Action of sym. ops. characterise eigenvalue spectra of observables, in particular degeneracies.

- Lie group G : $\quad U=U\left(\theta_{1}, \ldots, \theta_{n}\right)=$ differentiable function of $n \equiv \operatorname{dim} G$ real "group parameters" θ_{a}.
Infinitesimal parameters: $\quad(U(0, \ldots, 0)=\mathbb{1}$ by convention $)$

$$
\begin{align*}
& U\left(\delta \theta_{1}, \ldots, \delta \theta_{n}\right)=\mathbb{1}-\mathrm{i} \delta \theta_{a} X^{a}+\mathcal{O}\left(\delta \theta_{a}^{2}\right) \tag{1.3}\\
& U\left(\delta \theta_{1}, \ldots, \delta \theta_{n}\right)^{\dagger}=\mathbb{1}+\mathrm{i} \delta \theta_{a}\left(X^{a}\right)^{\dagger}+\ldots, \tag{1.4}\\
& \stackrel{!}{=} U\left(\delta \theta_{1}, \ldots, \delta \theta_{n}\right)^{-1}=\mathbb{1}+\mathrm{i} \delta \theta_{a} X^{a}+\ldots, \quad \text { unitarity! } \tag{1.5}\\
& \Rightarrow X^{a}=\left(X^{a}\right)^{\dagger}, \quad a=1, \ldots, n \tag{1.6}
\end{align*}
$$

$\hookrightarrow n$ hermitian operators, i.e. observables characterising the symmetry!
Summation convention: $\quad \delta \theta_{a} X^{a} \equiv \sum_{a} \delta \theta_{a} X^{a}$, i.e. summation over repeatedly appearing indices in products is implicitly assumed.

1.2 Group-theoretical definitions

Definition:

A "group" G is defined by a set of elements $\left\{g_{1}, \ldots, g_{n}\right\}$ with a mapping ०: $G \times G \mapsto G$ ("group multiplication") obeying:
(i) $g_{1} \circ\left(g_{2} \circ g_{3}\right)=\left(g_{1} \circ g_{2}\right) \circ g_{3} \quad$ (associativity),
(ii) $\exists e \in G$ with $g \circ e=g \quad \forall g \in G \quad$ (unit element),
(iii) $\forall g \in G \quad \exists g^{-1} \in G$ with $g \circ g^{-1}=e \quad$ (inverse element).

Consequences:

- $g_{1} \circ g=g_{2} \circ g \quad \Rightarrow \quad g_{1}=g_{2} \quad$ (cancellation law),
- $g \in G: \quad e \circ g=g, \quad g^{-1} \circ g=e, \quad\left(g^{-1}\right)^{-1}=g$.

Further notions:

- G is "abelian" if $g_{1} \circ g_{2}=g_{2} \circ g_{1} \forall g_{1}, g_{2} \in G$.
- A "group homomorphism" is a mapping $f: G \mapsto G^{\prime}$ from a group G to a group G^{\prime} that respects the group multiplication law, i.e.

$$
\begin{equation*}
f(\underbrace{g_{1} \circ g_{2}}_{\in G})=\underbrace{f\left(g_{1}\right)}_{\in G^{\prime}} \circ \underbrace{f\left(g_{2}\right)}_{\in G^{\prime}} \quad \forall g_{1}, g_{2} \in G \text {. } \tag{1.7}
\end{equation*}
$$

The set $\operatorname{ker}(f)=\left\{g \in G \mid f(g)=e^{\prime}=\right.$ unit element of $\left.G^{\prime}\right\}$ is called "kernel" of f.

- A bijective (injective and surjective) group homomorphism is called "isomorphism". Two groups G, G^{\prime} connected by an isomorphism are called "isomorphic" ($G \simeq G^{\prime}$).
- The "direct product group" $G \times G^{\prime}$ of two group G, G^{\prime} is the set of all $\left(g, g^{\prime}\right), g \in G$, $g^{\prime} \in G^{\prime}$ with the multiplication

$$
\begin{equation*}
\left(g_{1}, g_{1}^{\prime}\right) \circ\left(g_{2}, g_{2}^{\prime}\right)=\left(g_{1} \circ g_{2}, g_{1}^{\prime} \circ g_{2}^{\prime}\right) \tag{1.8}
\end{equation*}
$$

- A group is called "discrete" if its (\#elements) $\equiv|G| \equiv \operatorname{ord}(G) \equiv$ "order of G " is finite or countably infinite.
\hookrightarrow Elements can be enumerated: $g_{1} \equiv e, g_{2}, g_{3}, \ldots$
- In a "Lie group" G all elements $U\left(\theta_{1}, \ldots, \theta_{n}\right)$ are differentiable functions of n real "group parameters" $\theta_{a}, n=\operatorname{dim} G=\operatorname{dimension}$ of G.

Examples:

- "Symmetric groups" S_{n} of all permutations of $(12 \cdots n)$
$=$ group of order n ! which is non-abelian if $n>2$.
Elements $P \in S_{n}: \quad P \equiv\left(\begin{array}{ccc}12 & \cdots & n \\ \pi_{1} \pi_{2} & \cdots & \pi_{n}\end{array}\right)$ maps $(12 \cdots n) \rightarrow\left(\pi_{1} \pi_{2} \cdots \pi_{n}\right)$.
\hookrightarrow All P's can be written as products of "transpositions" $P_{i j}$ where $\pi_{i}=j, \pi_{j}=i$ and $\pi_{k}=k$ for $k \neq i, j$.
$\operatorname{sgn}(P) \equiv(-1)^{p}=$ "signature of $P "=+1$ ("even") or -1 ("odd"). $\hookrightarrow p=$ (\# transpositions) mod 2 needed to achieve P
"Cayley's theorem": Every finite group is isomorphic to a subgroup of S_{n}.
- "Alternating group" $A_{n}=$ subgroup of S_{n} (order $n!/ 2$) of all even permutations.
- "Cyclic group" $C_{n}=$ abelian group of order n generated by one element g :
$C_{n}=\left\{e \equiv g^{0} \equiv g^{n}, g^{1}, g^{2}, \ldots, g^{n-1}\right\}$.
C_{n} realised, e.g., by rotations with angles $k \cdot \frac{2 \pi}{n}, k=0,1, \ldots, n-1$, about a fixed axis.
C_{∞} realised by translations with vectors $n \cdot \vec{a}, n \in \mathbb{Z}$, with $\vec{a}=$ fixed.
- $\mathrm{GL}(N, \mathbb{K})=$ "general linear group" over $\mathbb{K}=\mathbb{R}, \mathbb{C}$
$=$ group of invertible $N \times N$ matrices $\in \mathbb{K}^{2}$.
\hookrightarrow Non-abelian Lie group of dimension $N^{2}(\mathbb{R})$ or $2 N^{2}(\mathbb{C})$ for $N>1$.

1.3 Substructures of groups

1.3.1 Classes

Definition:

Two elements $a, b \in G$ of a group G are called "equivalent" $(a \sim b)$ if $\exists g \in G$ with $b=g a g^{-1}$. The sets $\mathrm{Cl}(a)=\left\{b \in G \mid b=g a g^{-1}\right\}$ are called "(equivalence) classes" for the "(representative) element" $a \in G$.

Some properties:

- "Equivalence" of group elements as in any set of elements:
- "reflexivity": $\quad a \sim a$,
- "symmetry": $a \sim b \Rightarrow b \sim a$,
- "transitivity": $a \sim b \wedge b \sim c \Rightarrow a \sim c$.
- $\mathrm{Cl}(a)=\mathrm{Cl}(b) \quad \Leftrightarrow \quad a \sim b$.
- The classes \mathcal{C}_{i} form a "partitioning" of $G: \quad G=\bigcup_{i} \mathcal{C}_{i}, \quad \mathcal{C}_{i} \cap \mathcal{C}_{j}=\emptyset$ for $i \neq j$.

Convention: $\quad \mathcal{C}_{1}=\{e\}=$ class formed by unit element alone.

- In an abelian group each element defines its own class.
- Interpretation: Two elements are equivalent if they have essentially the same multiplication properties.
Example: Group of linear, invertible mappings in \mathbb{R}^{3}.
Two matrices A, A^{\prime} are equivalent if they correspond to the same mapping \mathcal{A} described w.r.t. to two different bases $\left\{\vec{e}_{i}\right\}$, $\left\{\overrightarrow{\mathrm{e}}_{i}^{\prime}\right\}$ with $\overrightarrow{\mathrm{e}}_{j}=\overrightarrow{\mathrm{e}}_{i}^{\prime} S_{i j}$:

$$
\begin{array}{rll}
\vec{x} & =\overrightarrow{\mathrm{e}}_{i} x_{i}=\overrightarrow{\mathrm{e}}_{j}^{\prime} x_{j}^{\prime}, & \text { i.e. } \\
\mathcal{A} \vec{x} & =\overrightarrow{\mathrm{e}}_{i}(\mathcal{A} \vec{x})_{i}=S_{i j} x_{j} \tag{1.9}\\
\overrightarrow{\mathrm{e}}_{i} A_{i j} x_{j}=\overrightarrow{\mathrm{e}}_{i}^{\prime}\left(S A S^{-1}\right)_{i j} x_{j}^{\prime}=\overrightarrow{\mathrm{e}}_{i}^{\prime} A_{i j}^{\prime} x_{j}^{\prime} & \text { i.e. } & A^{\prime}=S A S^{-1} .
\end{array}
$$

In particular, rotations about the same angle, but any rotation axis are equivalent.

Example:

Group $D_{4}=$ symmetry group of a square (edges A, B, C, D), generated by
$\rho=$ rotation about $90^{\circ}: \quad A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$,
$\sigma=$ reflection about a symmetry axis: $\quad A \leftrightarrow B, \quad C \leftrightarrow D$.
$\Rightarrow 8$ elements $\left\{e, \rho, \rho^{2}, \rho^{3}, \sigma, \rho \sigma, \rho^{2} \sigma, \rho^{3} \sigma\right\}$ with relations $\rho^{4}=\sigma^{2}=(\rho \sigma)^{2}=e$.
$\Rightarrow 5$ classes: $\quad \mathcal{C}_{1}=\{e\}, \quad \mathcal{C}_{2}=\left\{\rho, \rho^{3}\right\}, \quad \mathcal{C}_{3}=\left\{\rho^{2}\right\}, \quad \mathcal{C}_{4}=\left\{\sigma, \rho^{2} \sigma\right\}, \quad \mathcal{C}_{5}=\left\{\rho \sigma, \rho^{3} \sigma\right\}$.
Note: D_{4} (order 8) is a subgroup (conserving neighbouring objects) of S_{4} (order 24):
$e=(A B C D), \rho=(B C D A), \sigma=(B A D C), \rho^{2}=(C D A B), \ldots$

1.3.2 Subgroups, cosets and Lagrange's theorem

Definition:

A subset $H \subseteq G$ of a group G is a "subgroup" if H is a group with the same product o as G. The sets $g H=\left\{g^{\prime} \mid g^{\prime}=g h, h \in H\right\}, g \in G$, are called "(left) cosets" of H.
"Right cosets" Hg are defined analogously.

Some properties:

- $g_{1} H=g_{2} H \quad \Leftrightarrow \quad g_{1}^{-1} g_{2} \in H$.

$$
\begin{aligned}
\text { Proof: } & " \Rightarrow ": \exists h_{1}, h_{2} \in H: g_{1} h_{1}=g_{2} h_{2} \Rightarrow g_{1}^{-1} g_{2}=h_{1} h_{2}^{-1} \in H \\
& " \Leftarrow ": g_{1}^{-1} g_{2} \in H \quad \Rightarrow \quad g_{1}^{-1} g_{2} H=H \quad \Rightarrow \quad g_{1} H=g_{2} H .
\end{aligned}
$$

- Only the coset $h H=H, h \in H$, is a subgroup, since $e \notin g H$ if $g \notin H$. (If $e \in g H$, then g is the inverse of some $h \in H$ and hence $g \in H$.)
- All cosets have the same number of elements: $|g H|=|H|$.

Proof: $\forall g_{1}, g_{2} \in H$ we have $g g_{1}=g g_{2} \quad \Leftrightarrow \quad g_{1}=g_{2}$.
\Rightarrow The mapping $g \circ: H \mapsto g H$ is injective. \#

- Two left (right) cosets are either equal or disjoint.
- Corollary: "Lagrange's theorem"

The order of any subgroup H of a finite group G divides the order of G.
The natural number $[G: H]=|G|:|H|$ is called the "index of H in G ".

1.3.3 Invariant subgroups and factor group

Definition:

A subgroup N of a group G is called "invariant" (or "normal") if $N=g N g^{-1} \forall g \in G$, written as $N \triangleleft G$.

Comments:

- Equivalent definition: A subgroup is normal if the set of its left cosets equals the set of its right cosets.
Proof: If $a N=N b$ for some $b \in G$, then $a \in N b$.
Since $a \in N a, N b \cap N a \neq \emptyset \Rightarrow N a=N b \Rightarrow a N=N a$.
Other direction: $a N=N a \Rightarrow$ the sets of left and right cosets are equal. \#
- A subgroup N is normal if it contains all $g \in G$ being equivalent to some $h \in N$.

Definition:

Given a normal subgroup N of a group G, then the group of all $g N$ is called the "factor group" G / N.

Note: $\quad g N=N g$ is essential that all $g N$ form a group:

$$
\begin{equation*}
\left(g_{1} N\right)\left(g_{2} N\right)=g_{1} N g_{2} N=g_{1} g_{2} N N=\left(g_{1} g_{2}\right) N \tag{1.10}
\end{equation*}
$$

Some properties:

- For a finite group G the order of a factor group G / N is equal to the index of the normal subgroup N :

$$
\begin{equation*}
\operatorname{ord}(G)=\operatorname{ord}(N) \times[G: N]=\operatorname{ord}(N) \times \operatorname{ord}(G / N) \tag{1.11}
\end{equation*}
$$

- The mapping $f: G \mapsto G / N$ defined by $f(g)=g N$ is a group homomorphism with $N=\operatorname{ker}(f)$.
- "First isomorphism theorem":

The kernel $\operatorname{ker}(f)$ of a group homomorphism $f: G \mapsto G^{\prime}$ is a normal subgroup, and $f(G) \simeq G / \operatorname{ker}(f)$.

Proof:
a) $H=\operatorname{ker}(f)$ is normal subgroup, since $\forall h \in H$ and $\forall g \in G$ we get

$$
f\left(g h g^{-1}\right)=f(g) \underbrace{f(h)}_{=e^{\prime}} f\left(g^{-1}\right)=f(g) f\left(g^{-1}\right)=f\left(g g^{-1}\right)=f(e)=e^{\prime} .
$$

$\Rightarrow g H^{-1} \subseteq H$.
$g H g^{-1}=H$ follows, since $\psi_{g}: H \mapsto g H g^{-1}$ with $\psi_{g}(h)=g h g^{-1}$ is injective:

$$
g h_{1} g^{-1}=g h_{2} g^{-1} \quad \Leftrightarrow \quad h_{1}=h_{2} .
$$

b) To show $f(G) \simeq G / H$, define mapping $F: G / H \mapsto f(G)$ via $F(g H)=f(g)$.

Such an F exists, because if $g_{1} H=g_{2} H, \exists h_{1}, h_{2} \in H$ with
$g_{1} h_{1}=g_{2} h_{2}, g_{2}=g_{1} \underbrace{h_{1} h_{2}^{-1}}_{\in H} \Rightarrow f\left(g_{2}\right)=f\left(g_{1} h_{1} h_{2}^{-1}\right)=f\left(g_{1}\right) \underbrace{f\left(h_{1} h_{2}^{-1}\right)}_{e^{\prime}}=f\left(g_{1}\right)$.
Show that F is an isomorphism:
Surjectivity: For each $g^{\prime} \in f(G) \exists g \in G$ with $g^{\prime}=f(g)=F(g H)$,
i.e. also some $g H \in G / H$ with $F(g H)=g^{\prime}$.

Injectivity: If $g_{1}^{\prime}=g_{2}^{\prime}$ for $g_{1}^{\prime}=F\left(g_{1} H\right), g_{2}^{\prime}=F\left(g_{2} H\right)$, we have

$$
\begin{aligned}
e^{\prime} & =\left(g_{1}^{\prime}\right)^{-1} g_{2}^{\prime}=F\left(g_{1} H\right)^{-1} F\left(g_{2} H\right)=f\left(g_{1}\right)^{-1} f\left(g_{2}\right) \\
& =f\left(g_{1}^{-1}\right) f\left(g_{2}\right)=f\left(g_{1}^{-1} g_{2}\right), \quad \text { i.e. } \quad g_{1}^{-1} g_{2} \in H=\operatorname{ker}(f) . \\
& \Rightarrow g_{1} H=g_{2} H .
\end{aligned}
$$

1.4 Group representations

Motivation:
Abstract symmetry trafo $g \in G \xrightarrow{\text { represented as }}$ operator $U(g)$ acting on states $|\psi\rangle \in \mathcal{H}$.
\Rightarrow Issues:

- Which states $|\psi\rangle$ are symmetry connected, i.e. how are the subspaces $U_{\psi}=\{U(g)|\psi\rangle, g \in G\}$ characterised?
- Which types of U_{ψ} do exist for given G ?
- What are appropriate basis states $\left|\phi_{k}\right\rangle$ making the action of $U(g)$ transparent?
\hookrightarrow Answered by "representation theory of groups"!

Definition:

A "representation D of a group G on a vector space V " is a homomorphism $D: G \mapsto \mathrm{GL}(V)$, where $\mathrm{GL}(V)=$ "general linear group on V " = group of invertible linear mappings on V, with

$$
\begin{equation*}
D\left(g_{1} \circ g_{2}\right)=D\left(g_{1}\right) D\left(g_{2}\right) \quad \forall g_{1}, g_{2} \in D, \tag{1.12}
\end{equation*}
$$

\Rightarrow In particular: $\quad D(e)=\mathbb{1}=$ unit operator and $D\left(g^{-1}\right)=D(g)^{-1}$.
Types of representations:

- $\operatorname{dim} D \equiv \operatorname{dim} V<\infty: \quad D(g)=$ matrices with the usual matrix multiplication.
- $\operatorname{dim} D=\infty$, but countable: $D(g)=$ infinitely large matrices,

$$
D=\left(\begin{array}{ccc}
D_{11} & D_{12} & \cdots \tag{1.13}\\
D_{21} & D_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

- $\operatorname{dim} D=\infty$, not countable:
typical of "extended Hilbert spaces \mathcal{H} " with improper states.
Example: functions $\psi(x)$ of $x \in \mathbb{R}, T(a)=$ translation by a constant a,

$$
\begin{equation*}
T(a) \psi(x)=\psi(x-a)=\underbrace{\sum_{n=0}^{\infty} \frac{1}{n!}\left(-a \frac{\partial}{\partial x}\right)^{n}} \psi(x) . \tag{1.14}
\end{equation*}
$$

\hookrightarrow trafo represented by a differential operator

Further notions:

- D is called "unitary" if $D(g)=$ unitary $\forall g \in G$ and V is a unitary vector space.
- D is called "faithful" if $g_{1} \neq g_{2}$ implies $D\left(g_{1}\right) \neq D\left(g_{2}\right)$.
$\hookrightarrow D$ carries the full information of G.
Note: If $D \neq$ faithful, $D(g)=\mathbb{1}$ for some $g \neq e$.
Extreme case: $D(g)=\mathbb{1} \forall g \in G$, "trivial representation".
- D_{1} and D_{2} are "equivalent" $\left(D_{1} \simeq D_{2}\right)$ if \exists linear mapping S with

$$
\begin{equation*}
S D_{1}(g) S^{-1}=D_{2}(g) \quad \forall g \in G \quad \text { (common similiarity trafo for all } g!\text {) } \tag{1.15}
\end{equation*}
$$

- "Direct sum representation" $D_{1} \oplus D_{2}$ on $V_{1} \oplus V_{2}$ for two representations D_{i} on V_{i} :

$$
\begin{align*}
D_{1} \oplus D_{2}(g)\left(\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right) & =\left(D_{1}(g)\left|\psi_{1}\right\rangle, D_{2}(g)\left|\psi_{2}\right\rangle\right), \quad\left|\psi_{i}\right\rangle \in V_{i}, \\
\left(\begin{array}{cc}
D_{1}(g) & 0 \\
0 & D_{2}(g)
\end{array}\right)\binom{\left|\psi_{1}\right\rangle}{\left|\psi_{2}\right\rangle} & =\binom{D_{1}(g)\left|\psi_{1}\right\rangle}{ D_{2}(g)\left|\psi_{2}\right\rangle}, \tag{1.16}
\end{align*}
$$

i.e. actions of D_{1}, D_{2} "blockwise independent".

- D is called "reducible" if \exists non-trivial invariant subspace $V_{1} \subset V\left(V_{1} \neq V\right)$, i.e.

$$
\begin{equation*}
D(g) v_{1} \in V_{1} \quad \forall g \in G, \quad v_{1} \in V_{1} \tag{1.17}
\end{equation*}
$$

Otherwise D is called "irreducible".
In detail:

- $D=$ reducible $\quad \Leftrightarrow \quad \exists$ linear mapping S with

$$
D(g)=S\left(\begin{array}{cc}
D_{1}(g) & X(g) \\
0 & Y(g)
\end{array}\right) S^{-1} \quad \forall g \in G
$$

S can be determined by a basis change in V so that
$\{\underbrace{\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{n_{1}}\right\rangle}_{\text {basis of } V_{1}},\left|\phi_{n_{1}+1}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\}=$ basis of V.

- $D=$ irreducible $\quad \Leftrightarrow \quad V_{\psi}=[D(g)|\psi\rangle, g \in G]=V \quad \forall|\psi\rangle \in V$ with $|\psi\rangle \neq 0$. The symmetry-connected vectors $D(g)|\psi\rangle$ of any $|\psi\rangle \neq 0$ span the full representation space V, i.e. symmetry trafos transform all basis vectors $\left|\phi_{k}\right\rangle$ of V non-trivially into each other.
Basis of $V=\left\{\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}=$ "symmetry multiplet".
- Finite-dimensional unitary representations are "fully reducible", i.e. $\exists S$ with

$$
D(g)=S\left(\begin{array}{cccc}
D^{(1)}(g) & 0 & \cdots & \tag{1.18}\\
0 & D^{(2)}(g) & \cdots & \\
\vdots & & \ddots & \\
& & & D^{(I)}(g)
\end{array}\right) S^{-1} \quad \forall g \in G, \quad D^{(i)}=\text { irreducible. }
$$

Proof:
a) If $D=$ irreducible, there is nothing to prove.
b) $D=$ reducible. $\quad \Rightarrow \exists$ invariant subspace $V_{1} \subset V\left(V_{1} \neq V\right)$.
$D=$ unitary, i.e. \exists scalar product in V.
\hookrightarrow Decompose $V=V_{1} \oplus V_{1}^{\perp}$,

$$
|\psi\rangle=\underbrace{\left|\psi_{1}\right\rangle}_{\in V_{1}}+\underbrace{\left|\psi_{1}^{\perp}\right\rangle}_{\in V_{1}^{\perp}}, \quad\left\langle\psi_{1} \mid \psi_{1}^{\perp}\right\rangle=0 .
$$

c) Show that $V_{1}^{\perp}=$ invariant subspace:

$$
\begin{aligned}
& \left\langle\psi_{1}\right| D(g)\left|\psi_{1}^{\perp}\right\rangle=\langle\underbrace{D(g)^{\dagger} \psi_{1}}_{\in V_{1}} \mid \underbrace{\psi_{1}^{\perp}}_{\in V_{1}^{\perp}}\rangle=0 \quad \forall\left|\psi_{1}\right\rangle \in V_{1},\left|\psi_{1}^{\perp}\right\rangle \in V_{1}^{\perp} . \\
& \Rightarrow D(g)\left|\psi_{1}^{\perp}\right\rangle \in V_{1}^{\perp} . \\
& \Rightarrow D(g)=\left(\begin{array}{cc}
D_{1}(g) & 0 \\
0 & D_{2}(g)
\end{array}\right) \text { in basis }\{\underbrace{\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{n_{1}}\right\rangle}_{\text {basis of } V_{1}}, \underbrace{\left|\phi_{n_{1}+1}\right\rangle,, \ldots,\left|\phi_{n}\right\rangle}_{\text {basis of } V_{1}^{\perp}}\} .
\end{aligned}
$$

d) Repeat procedure for D_{1} and D_{2} if D_{1} or D_{2} is reducible.

- "Product representation" $D_{1} \otimes D_{2}$ on $V_{1} \otimes V_{2}$ for two representations D_{i} on V_{i} :

$$
\begin{equation*}
D_{1} \otimes D_{2}(g)(\underbrace{\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle}_{\in V_{1} \otimes V_{2}, \operatorname{dim} V_{1} \otimes V_{2}=\operatorname{dim} V_{1} \cdot \operatorname{dim} V_{2}})=D_{1}(g)\left|\psi_{1}\right\rangle \otimes D_{2}(g)\left|\psi_{2}\right\rangle, \quad\left|\psi_{i}\right\rangle \in V_{i} . \tag{1.19}
\end{equation*}
$$

Note: $\quad D_{1} \otimes D_{2}$ in general is reducible even if D_{i} are irreducible.
But: $\quad D_{1} \otimes D_{2}$ is fully reducible if D_{1}, D_{2} are unitary!
$\Rightarrow \exists$ "Clebsch-Gordan decomposition"

$$
\begin{equation*}
D_{1} \otimes D_{2}=D^{(1)} \oplus D^{(2)} \oplus \cdots \oplus D^{(I)} \tag{1.20}
\end{equation*}
$$

by decomposing the matrices $D_{1} \otimes D_{2}(g)$ into irreducible building blocks $D^{(i)}(g)$ by an appropriate similiarity trafo:

$$
D_{1} \otimes D_{2}(g)=S\left(\begin{array}{ccc}
D^{(1)}(g) & 0 & \cdots \tag{1.21}\\
0 & D^{(2)}(g) & \cdots \\
\vdots & & \ddots
\end{array}\right) S^{-1}
$$

Definition: "Group characters"
The "character" $\chi_{D}(g)$ of a representation matrix $D(g)$ of a representation of an element g of a group G is defined by the trace of $D(g)$:

$$
\begin{equation*}
\chi_{D}(g)=\operatorname{tr}\{D(g)\}=\sum_{i=1}^{\operatorname{dim} D} D_{i i}(g) . \tag{1.22}
\end{equation*}
$$

Some properties:

- Characters depend on the group G and on the representation $D(G)$.
- Characters are functions of classes, i.e. if $g_{1}, g_{2} \in \mathcal{C}_{k}$ then $\chi_{D}\left(g_{1}\right)=\chi_{D}\left(g_{2}\right) \equiv \chi_{D}\left(\mathcal{C}_{k}\right)$.

Proof: $\quad \exists g \in G$ with $g_{1}=g g_{2} g^{-1}$.

$$
\begin{aligned}
\Rightarrow \quad \chi_{D}\left(g_{1}\right) & =\operatorname{tr}\left\{D\left(g_{1}\right)\right\}=\operatorname{tr}\left\{D\left(g g_{2} g^{-1}\right)\right\}=\operatorname{tr}\left\{D(g) D\left(g_{2}\right) D\left(g^{-1}\right)\right\} \\
& =\operatorname{tr}\left\{D\left(g^{-1}\right) D(g) D\left(g_{2}\right)\right\}=\operatorname{tr}\left\{D(g)^{-1} D(g) D\left(g_{2}\right)\right\}=\operatorname{tr}\left\{D\left(g_{2}\right)\right\} \\
& =\chi_{D}\left(g_{2}\right)
\end{aligned}
$$

\#

- Special case unit element: $\quad \chi_{D}\left(\mathcal{C}_{1}\right)=\operatorname{tr}\{D(e)\}=\operatorname{tr}\{\mathbb{1}\}=\operatorname{dim} D$.
- Note: Characters in general do not form representations, since in general $\operatorname{tr}\{A B\} \neq \operatorname{tr}\{A\} \cdot \operatorname{tr}\{B\}$.
But: Determinants of $D(g)$ form another (one-dimensional) representation:

$$
\begin{equation*}
\operatorname{det}\left\{D\left(g_{1}\right) D\left(g_{2}\right)\right\}=\operatorname{det}\left\{D\left(g_{1}\right)\right\} \cdot \operatorname{det}\left\{D\left(g_{2}\right)\right\} \tag{1.23}
\end{equation*}
$$

- Characters of outer product matrices are products of characters of individual factors:

$$
\begin{align*}
\chi_{D_{1} \otimes D_{2}}(g) & =\operatorname{tr}\left\{\left(D_{1} \otimes D_{2}\right)(g)\right\}=\sum_{a=1}^{\operatorname{dim} D_{1} \otimes D_{2}}\left(D_{1} \otimes D_{2}\right)_{a a}(g) \\
& =\sum_{i=1}^{\operatorname{dim} D_{1}} \sum_{j=1}^{\operatorname{dim} D_{2}} D_{1, i i}(g) D_{2, j j}(g)=\left(\sum_{i=1}^{\operatorname{dim} D_{1}} D_{1, i i}(g)\right)\left(\sum_{j=1}^{\operatorname{dim} D_{2}} D_{2, j j}(g)\right) \\
& =\chi_{D_{1}}(g) \cdot \chi_{D_{2}}(g) . \tag{1.24}
\end{align*}
$$

1.5 Implications for quantum-mechanical systems

Consider qm. system with Hamiltonian \hat{H} with the symmetry group G :

$$
\begin{equation*}
[\hat{H}, U(g)]=0, \quad g \in G, \quad U(g)=\text { symmetry operator on } \mathcal{H}, \tag{1.25}
\end{equation*}
$$

$=$ unitary (antiunitarity only for time reversal).
$\Rightarrow U=\{U(g) \mid g \in G\}$ forms a unitary representation of G on \mathcal{H}.
$\Rightarrow U$ is fully reducible, i.e. can be brought to block-diagonal form by an appropriate choice of basis in \mathcal{H} :

$$
U(g)=\left(\begin{array}{ccc}
U^{(1)}(g) & 0 & \cdots \\
0 & U^{(2)}(g) & \cdots \\
\vdots & & \ddots
\end{array}\right), \quad U^{(r)}=\quad \begin{aligned}
& \text { irreducible representation of } G \quad \quad \text { (which can be the same for various } r \text { values) },
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{dim} U^{(r)}=n_{r} . \tag{1.27}
\end{equation*}
$$

Consider an arbitray energy eigenstate $|E, a\rangle, a=1, \ldots, n_{E}$,
$n_{E}=$ degree of degeneracy of E.
\Rightarrow All $U(g)|E, a\rangle$ are energy eigenstates to energy E :

$$
\begin{equation*}
\hat{H}(U(g)|E, a\rangle)=U(g) \hat{H}|E, a\rangle=E(U(g)|E, a\rangle), \quad a=1, \ldots, n_{E} . \tag{1.28}
\end{equation*}
$$

$\Rightarrow U(g)|E, a\rangle$ is linear combination of $|E, b\rangle, b=1, \ldots, n_{E}$:

$$
\begin{equation*}
U(g)|E, a\rangle=\sum_{b=1}^{n_{E}}|E, b\rangle D_{b a}(g), \quad \text { normalisation: }\langle E, a \mid E, b\rangle=\delta_{a b} \tag{1.29}
\end{equation*}
$$

$\Rightarrow D=\{D(g) \mid g \in G\}=n_{E}$-dim. unitary representation of G on the "degeneracy space" spanned by $\{|E, a\rangle\}_{a=1}^{n_{E}}$.
$\Rightarrow 2$ possible cases:
a) D is one of the irreducible representations $U^{(r)}$ of U.
\Rightarrow Degeneracy of states $|E, a\rangle$ is a consequence of the sym. group G of the system.
b) D is some direct-sum representation $U^{\left(r_{1}\right)} \oplus U^{\left(r_{2}\right)} \oplus \cdots \oplus U^{\left(r_{E}\right)}$ with dimension $n_{E}=n_{r_{1}}+n_{r_{2}}+\cdots+n_{r_{E}}$.
\Rightarrow Degeneracy between basis states (multiplets) of different $U^{\left(r_{i}\right)}$ blocks is "accidental", i.e. not implied by group G.
Note: Most likely G does not exhaust the full symmetry of the system.
\hookrightarrow Find larger symmetry group until no accidental symmetries remain.
\Rightarrow Block form of \hat{H} :

$$
\hat{H}=\left(\begin{array}{ccc}
E_{1} \cdot \mathbb{1}_{n_{1}} & 0 & \cdots \tag{1.30}\\
0 & E_{2} \cdot \mathbb{1}_{n_{2}} & \cdots \\
\vdots & & \ddots
\end{array}\right)
$$

with $E_{r}=E_{r^{\prime}}\left(r \neq r^{\prime}\right)$ only for accidental symmetries.

Reduction of symmetries

Typical case:

$$
\underbrace{\hat{H}^{\prime}}_{\text {new Hamiltonian }}=\underbrace{\hat{H}}_{\text {as above }}+\underbrace{\delta \hat{H}}_{\begin{array}{c}
\text { new contribution, } \\
\text { e.g., by switching on elmg. fields }
\end{array}}
$$

Suppose $\delta \hat{H}$ does not respect the full symmetry group G.
$\hookrightarrow \hat{H}^{\prime}$ has symmetry group $G^{\prime} \subset G\left(G^{\prime} \neq G\right)$.
\Rightarrow Relation between irreducible representations of G^{\prime} and G ?

- Representations of G automatically deliver representations of G^{\prime} :
$U(G) \rightarrow U\left(G^{\prime}\right)$ by subset of trafos.
- But: $U\left(G^{\prime}\right)$ in general is reducible, even if $U(G)$ is irreducible.

Multiplet of U :
$\left.\begin{array}{ll}\begin{array}{l}g^{\prime} \in G^{\prime} \text { only mix } \\ \text { subsets of }\left|\psi_{k}\right\rangle \\ \text { in a non-trivial } \\ \text { way. }\end{array} & \left.\left(\left(\begin{array}{c}\left|\psi_{1}\right\rangle \\ \vdots \\ \left|\psi_{n^{\prime}}\right\rangle\end{array}\right)\right)\right) \\ \left.\left\lvert\, \begin{array}{c}\left|\psi_{n^{\prime}+1}\right\rangle \\ \vdots \\ \left|\psi_{n^{\prime}}\right\rangle\end{array}\right.\right)\end{array}\right) \begin{aligned} & g \in G \text { mix all } \\ & \begin{array}{l}\left|\psi_{k}\right\rangle \text { in a non- } \\ \text { trivial way. }\end{array}\end{aligned}$
Less states $\left|\psi_{k}\right\rangle$ are symmetry connected, i.e. degrees of degeneracy between energy eigenstates can be reduced.

Example: 2-dim. qm. harmonic oscillator
Hamiltonian for particle of mass m :

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+\frac{m}{2}\left(\omega_{1}^{2} \hat{x}^{2}+\omega_{2}^{2} \hat{y}^{2}\right)=\sum_{k=1,2} \hbar \omega_{k}\left(a_{k}^{\dagger} a_{k}+\frac{1}{2}\right) . \tag{1.31}
\end{equation*}
$$

Energy eigensystem:

$$
\begin{align*}
\left|n_{1}, n_{2}\right\rangle & =\left|n_{1}\right\rangle\left|n_{2}\right\rangle, \quad\left|n_{k}\right\rangle=\left(a_{k}^{\dagger}\right)^{n_{k}}|0\rangle, \quad n_{1}, n_{2} \in \mathbb{N}_{0}, \tag{1.32}\\
\hat{H}\left|n_{1}, n_{2}\right\rangle & =E_{n_{1}, n_{2}}\left|n_{1}, n_{2}\right\rangle, \quad E_{n_{1}, n_{2}}=\hbar \omega_{1}\left(n_{1}+\frac{1}{2}\right)+\hbar \omega_{2}\left(n_{2}+\frac{1}{2}\right) . \tag{1.33}
\end{align*}
$$

Symmetry and degeneracy:

- Symmetric case, $\omega_{1}=\omega_{2} \equiv \omega$:
$E_{n_{1}, n_{2}}=E_{n}=\hbar \omega(n+1)$ with $n=n_{1}+n_{2}$ is $(n+1)$-fold degenerate due to symmetry:

$$
\begin{align*}
\hat{U}: & \binom{a_{1}}{a_{2}} \rightarrow U\binom{a_{1}}{a_{2}}, \quad[\hat{H}, \hat{U}]=0, \tag{1.34}\\
& U\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right)=\mathrm{e}^{-\mathrm{i} \phi_{0}} \exp \left\{-\mathrm{i} \phi_{k} \sigma_{k}\right\}=\text { unitary } 2 \times 2 \text { matrix, } \quad \phi_{k} \in[0,2 \pi) .
\end{align*}
$$

\hat{U} comprises:

- rotations about $\overrightarrow{\mathrm{e}}_{z}$ axis: $\exp \left\{-\mathrm{i} \phi_{2} \sigma_{2}\right\}$,
- reflections $x \rightarrow-x, y \rightarrow-y$,
- phase transformations of $a_{k}: \quad a_{k} \rightarrow \mathrm{e}^{\mathrm{i}\left(\phi_{3} \pm \phi_{0}\right)} a_{k}$,
- complex transformations mixing coordinates and momenta.

Classification of states $\left|n_{1}, n_{2}\right\rangle$ by a maximal set of commuting symmetry operators: E.g. take rotations about $\overrightarrow{\mathrm{e}}_{z}$ axis.
\hookrightarrow Basis change $\left\{\left|n_{1}, n_{2}\right\rangle\right\} \rightarrow\left\{|n ; m\rangle^{\prime}\right\}$ to eigenstates of \hat{H} and \hat{L}_{3} :

$$
\begin{equation*}
\hat{H}|n ; m\rangle^{\prime}=E_{n}|n ; m\rangle^{\prime}, \quad \hat{L}_{3}|n ; m\rangle^{\prime}=\hbar m|n ; m\rangle^{\prime} . \tag{1.35}
\end{equation*}
$$

- Unsymmetric case, $\omega_{1} \neq \omega_{2}$:

Symmetry reduced to two independent (commuting) phase transformations:

$$
\begin{equation*}
a_{k} \rightarrow \mathrm{e}^{-\mathrm{i} \phi_{k}} a_{k}, \quad \phi_{k} \in[0,2 \pi) . \tag{1.36}
\end{equation*}
$$

\hookrightarrow Only "accidental" degeneracy for $\frac{\omega_{1}}{\omega_{2}}=$ rational.

1.6 Schur's lemmas

\hookrightarrow Mathematical statements on irreducible representations $D(G)$ on V :
(i) If there is a linear mapping $S: V \mapsto V$ with $D(g) S=S D(g)$, i.e. $[D(g), S]=0$, $\forall g \in G$, and if D is irreducible, then $S=\lambda \cdot \mathbb{1}$.
(ii) If there is a linear mapping $S: V_{1} \mapsto V_{2}$ with $D_{1}(g) S=S D_{2}(g) \forall g \in G$ and if D_{1}, D_{2} are irreducible, then either $S=0$ or $S=$ invertible (i.e. $D_{1} \simeq D_{2}$).

Note: Schur's lemmas hold for vector spaces with $\operatorname{dim}<\infty$, and also for $\operatorname{dim}=\infty$ if the representations are unitary.
Proof:
(i) \exists eigenvalue $\lambda \in \mathbb{C}$ with eigenvector $|\psi\rangle \neq 0: \quad S|\psi\rangle=\lambda|\psi\rangle$.
(This step requires the unitarity of D for $\operatorname{dim} V=\infty$.)
$\Rightarrow(S-\lambda \cdot \mathbb{1}) D(g)|\psi\rangle=D(g) \underbrace{(S-\lambda \cdot \mathbb{1})|\psi\rangle}_{=0}=0 \quad \forall g \in G$.
$\Rightarrow D(g)|\psi\rangle$ are all eigenstates of S with eigenvalue λ.
But the eigenspace of $\lambda \equiv V_{\lambda} \stackrel{!}{=} V$, since $D=$ irreducible.
$\Rightarrow S=\lambda \cdot \mathbb{1}$.
(ii) $\left.K_{1} \equiv\left\{|\phi\rangle \in V_{1}|S| \phi\right\rangle=0\right\}=$ kernel of S
is invariant under $D_{1}: \forall|\phi\rangle \in K_{1}: S D_{1}(g)|\phi\rangle=D_{2}(g) S|\phi\rangle=0 \Rightarrow D_{1}(g)|\phi\rangle \in K_{1}$. $\left.W_{2} \equiv\left\{|\psi\rangle \in V_{2}| | \psi\right\rangle=S|\phi\rangle,|\phi\rangle \in V_{1}\right\}=$ range of S
is invariant under $D_{2}: \quad \forall|\psi\rangle \in W_{2}: \quad D_{2}(g)|\psi\rangle=D_{2}(g) S|\phi\rangle=S D_{1}(g)|\phi\rangle \in W_{2}$.
$D_{1}, D_{2}=$ irreducible. $\Rightarrow K_{1}=V_{1}$ or $\{0\}, \quad W_{2}=V_{2}$ or $\{0\}$.
a) $K_{1}=V_{1} . \quad \Rightarrow W_{2}=0$, i.e. $S=0$.
b) $K_{1}=\{0\} . \quad \Rightarrow S=$ invertible, i.e. $W_{2} \neq\{0\} . \quad \Rightarrow W_{2}=V_{2}$, i.e. $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}, \quad S D_{1}(g) S^{-1}=D_{2}(g) \forall g \in G$.

"Inverse statement" to (i):

Let $D(G)$ be a unitary representation of the group G. If $[D(g), S]=0 \forall g \in G$ implies that $S=\lambda \cdot \mathbb{1}$, then D is irreducible.

Proof: (indirect!)
If $D=$ reducible, then $D=$ fully reducible (since unitary) and \exists basis of V so that

$$
\begin{aligned}
D(g) & =\left(\begin{array}{cccc}
D^{(1)}(g) & 0 & \cdots & \cdots \\
0 & D^{(2)}(g) & \cdots & \cdots \\
\vdots & \vdots & \ddots & \\
\vdots & \vdots & & D^{(I)}(g)
\end{array}\right) \quad \forall g \in G . \\
& \Rightarrow S=\left(\begin{array}{ccc}
\lambda_{1} \cdot \mathbb{1}_{n_{1}} & 0 & \cdots \\
0 & \lambda_{2} \cdot \mathbb{1}_{n_{2}} & \\
\vdots & & \ddots
\end{array}\right), \quad \lambda_{1} \neq \lambda_{2}, \quad \text { obeys }[D(g), S]=0 .
\end{aligned}
$$

Consequences for abelian groups:

All irreducible representations of abelians groups are 1-dimensional.
Proof:
$\left[D(g), D\left(g^{\prime}\right)\right]=0 \quad \forall g, g^{\prime} \in G(=$ abelian $)$.
\Rightarrow All $D(g)=\underbrace{d(g)}_{\in \mathbb{C}} \cdot \mathbb{1}$ if $D=$ irreducible (Schur's lemma).
But $D(g)=\left(\begin{array}{ccc}d(g) & 0 & \cdots \\ 0 & d(g) & \cdots \\ \vdots & \vdots & \ddots\end{array}\right)=$ irreducible only if $\operatorname{dim} D=1$.

Example: 3 -dim. representation of S_{3} (=non-abelian group of lowest order)
6 permutations of 3 objects $\mathrm{ABC}: \quad g_{123}=e, g_{231}, g_{312}, g_{132}, g_{321}, g_{213}$.
Unitary representation via permutation matrices:

$$
D(e)=\mathbb{1}_{3}, \quad D\left(g_{231}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \tag{1.37}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad \text { etc. }
$$

Obviously an invariant subspace $\left[\vec{n}_{1}\right]$ is spanned by $\vec{n}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ \text { i.e. } D \text { is reducible. }\end{array}\right.$,
\hookrightarrow Choose new basis of $V=\mathbb{R}^{3}: \quad \vec{n}_{1}, \quad \vec{n}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), \quad \vec{n}_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$.

$$
S D(g) S^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{1.38}\\
0 & D^{\prime}(g) \\
0 &
\end{array}\right), \quad S=\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right)=\text { unitary }
$$

This defines a new 2-dim. representation D^{\prime} :

$$
\begin{align*}
D^{\prime}(e) & =\mathbb{1}_{2}, & D^{\prime}\left(g_{231} / g_{312}\right) & =\left(\begin{array}{cc}
-\frac{1}{2} & \mp \frac{\sqrt{3}}{2} \\
\pm \frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \\
D^{\prime}\left(g_{132} / g_{321}\right) & =\left(\begin{array}{cc}
+\frac{1}{2} & \pm \frac{\sqrt{3}}{2} \\
\pm \frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), & D^{\prime}\left(g_{213}\right) & =\left(\begin{array}{cc}
-1 & 0 \\
0 & +1
\end{array}\right) . \tag{1.39}
\end{align*}
$$

Check (ir)reducibility of D^{\prime} via inverse of Schur's lemma:
Ansatz: $\quad T=\left(\begin{array}{ll}t_{11} & t_{12} \\ t_{21} & t_{22}\end{array}\right)$.

$$
\left.\begin{array}{ll}
{\left[T, D^{\prime}\left(g_{213}\right)\right] \stackrel{!}{=} 0} & \Rightarrow t_{12}=t_{21}=0 \tag{1.40}\\
{\left[T, D^{\prime}\left(g_{231}\right)\right] \stackrel{!}{=} 0} & \Rightarrow t_{11}=t_{22}
\end{array}\right\} \Rightarrow T \propto \mathbb{1}_{2}
$$

$\Rightarrow D^{\prime}=$ irreducible.

1.7 Real, pseudoreal, and complex representations

Let $D(G)$ be a representation of some group G.
\Rightarrow The set $D(G)^{*}$ of complex conjugate matrices forms another representation.
\hookrightarrow Question: Is $D(G)^{*}$ equivalent to $D(G)$ or not?

Definition:

Let $D(G)$ be a unitary, irreducible representation of the group G.
(i) $D(G)$ is "complex" if $D(G)$ and $D(G)^{*}$ are not equivalent.
(ii) $D(G)$ is "real" or "pseudoreal" if $D(G)$ and $D(G)^{*}$ are equivalent:

$$
\begin{equation*}
\exists S \text { with } D(g)^{*}=S D(g) S^{-1} \quad \forall g \in G . \tag{1.41}
\end{equation*}
$$

$D(G)$ is real/pseudoreal if $S^{\mathrm{T}}= \pm S$.

Some important properties:

a) $D(G)$ is complex. $\Leftrightarrow \quad$ Not all characters are real.
\hookrightarrow This obviously identifies complex representations, and $\chi_{D^{*}}(g)=\chi_{D}^{*}(g)$.
b) If (1.41) holds, then $S^{\mathrm{T}}= \pm S$.

Proof:
Use unitarity of $D(g)$, so that $D(g)^{*}=D\left(g^{-1}\right)^{\mathrm{T}}$:

$$
\begin{aligned}
D(g) & =D\left(g^{-1}\right)^{\dagger}=\left(D\left(g^{-1}\right)^{*}\right)^{\mathrm{T}}=\left(S D\left(g^{-1}\right) S^{-1}\right)^{\mathrm{T}}, \quad \text { (1.41) for } g^{-1} \\
& =\left(S^{-1}\right)^{\mathrm{T}} D\left(g^{-1}\right)^{\mathrm{T}} S^{\mathrm{T}}=\left(S^{-1}\right)^{\mathrm{T}} D(g)^{*} S^{\mathrm{T}}, \quad \text { unitarity of } D(g) \\
& =\left(S^{-1}\right)^{\mathrm{T}} S D(g) S^{-1} S^{\mathrm{T}} \\
& =\left(S^{-1} S^{\mathrm{T}}\right)^{-1} D(g) S^{-1} S^{\mathrm{T}}=M^{-1} D(g) M, \quad M \equiv S^{-1} S^{\mathrm{T}} .
\end{aligned}
$$

$\Rightarrow[M, D(g)]=0 \quad \forall g \in G$ and thus $M=\lambda \cdot \mathbb{1}$ according to Schur's lemma.

$$
\Rightarrow S^{\mathrm{T}}=\lambda S=\lambda^{2} S^{\mathrm{T}}, \quad \lambda^{2}=1, \quad \lambda= \pm 1
$$

c) If $D(G)$ is real/pseudoreal, S can be chosen unitary.

Proof:
Again based on unitarity of $D(g)$:

$$
\begin{aligned}
S & =D\left(g^{-1}\right)^{*} S D(g), \quad S^{\dagger}=D(g)^{\dagger} S^{\dagger} D\left(g^{-1}\right)^{\mathrm{T}} \\
\Rightarrow \quad D(g) S^{\dagger} S & =\underbrace{D(g) D(g)^{\dagger}}_{=\mathbb{1}} S^{\dagger} \underbrace{D\left(g^{-1}\right)^{\mathrm{T}} D\left(g^{-1}\right)^{*}}_{=\mathbb{1}} S D(g)=S^{\dagger} S D(g) .
\end{aligned}
$$

$\Rightarrow\left[S^{\dagger} S, D(g)\right]=0 \forall g \in G$ and thus $S^{\dagger} S=\sigma \cdot \mathbb{1}$ according to Schur's lemma.
\hookrightarrow Redefine $S \rightarrow S / \sqrt{\sigma}$, so that $S^{\dagger} S=\mathbb{1}$ and $S^{-1} \rightarrow S^{-1} / \sqrt{\sigma}$, i.e. (1.41) stays intact.
d) If the representation $D(G)$ is real, then all $D(g)$ can be chosen real.

Sketch of proof:
According to b) and c), (1.41) holds with some symmetric and unitary S.
$\hookrightarrow \exists$ symmetric and unitary matrix T with $S=T^{2}$ (proof \rightarrow linear algebra).
Define new representation $D^{\prime}(g)=T D(g) T^{-1}$, so that $\left(T=T^{\mathrm{T}}, T^{\dagger}=T^{*}\right)$

$$
\begin{aligned}
D^{\prime}(g)^{*} & =\left(T D(g) T^{-1}\right)^{*}=T^{*} D(g)^{*} T=T^{*} S D(g) S^{-1} T \\
& =\underbrace{T^{*} T}_{=\mathbb{1}} \underbrace{T D(g) T^{*}}_{=D^{\prime}(g)} \underbrace{T^{*} T}_{=\mathbb{1}}=D^{\prime}(g),
\end{aligned}
$$

i.e. $D^{\prime}(g)=$ real $\forall g \in G$.
e) For real/pseudoreal $D(G)$, there is a bilinear invariant product (.,.):

$$
\begin{align*}
& (x, y) \equiv x^{\mathrm{T}} S y, \quad x, y \in V \tag{1.42}\\
& (x, y)=(D(g) x, D(g) y) \quad \forall g \in G \tag{1.43}
\end{align*}
$$

Proof:
Use unitarity of $D(g)$, so that $D(g)^{\mathrm{T}}=D\left(g^{-1}\right)^{*}$:

$$
\begin{aligned}
(D(g) x, D(g) y) & =x^{\mathrm{T}} D(g)^{\mathrm{T}} S D(g) y=x^{\mathrm{T}} \underbrace{\mathrm{~T}\left(g^{-1}\right)^{*}} S D(g) y \\
& =x^{\mathrm{T}} S D(g)^{-1} D(g) y=x^{\mathrm{T}} S y=(x, y) .
\end{aligned}
$$

\#

Chapter 2

Finite groups

2.1 Multiplication tables

Recall the cancellation law: If $a, b, p \in G$ and $p a=p b$ (or $a p=b p$), the $a=b$. Proof: multiply by p^{-1} from the left (from the right). This implies the "rearrangement lemma":

- If $\left\{g_{1}, g_{2}, \ldots, g_{n_{G}}\right\}$ are the elements of a finite group G of order n_{G}, then $\forall p \in G$, $\left\{p g_{1}, p g_{2}, \ldots, p g_{n_{G}}\right\}=\left\{g_{\sigma_{p}(1)}, g_{\sigma_{p}(2)}, \ldots, g_{\sigma_{p}\left(n_{G}\right)}\right\}$ is a permutation σ_{p} of the elements.
- If $a \neq e, \sigma_{a}(k) \neq k \forall k$.
\Rightarrow the permutation leaves no element invariant.
All possible products of two elements can be written as an $n_{G} \times n_{G}$ table:

	$g_{1}=e$	\cdots	g_{j}	\cdots	$g_{n_{G}}$
$g_{1}=e$	e	\cdots	g_{j}	\cdots	$g_{n_{G}}$
\vdots	\vdots	\ddots			\vdots
g_{i}	g_{i}		$g_{i} g_{j}$		$g_{i} g_{n_{G}}$
\vdots	\vdots			\ddots	\vdots
$g_{n_{G}}$	$g_{n_{G}}$	\cdots	$g_{n_{G}} g_{j}$	\cdots	$g_{n_{G}} g_{n_{G}}$

- The multiplication table characterises the group completely.
- In each row and in each column, every group element appears exactly once, i.e. each row and each column is a permutation of the elements of the group (rearrangement lemma).
\Rightarrow Cayley's theorem: every finite group of n_{G} elements is isomorphic to a subgroup of the permutation group $S_{n_{G}}$.

Examples:

In the case of groups with 2 rsp . 3 elements, the multiplication tables are unique (we leave out the redundant first row and column):

$$
C_{2} \simeq S_{2}: \begin{array}{|cc|}
\hline e & A \\
A & e
\end{array} \quad \text { rsp. } \quad C_{3}: \begin{array}{|ccc|}
\hline e & A & B \\
A & B & e \\
B & e & A
\end{array}
$$

In the case of 4 elements, there are two possibilities:

$$
\left.C_{2} \otimes C_{2}: \begin{array}{|cccc}
e & A & B & C \\
A & e & C & B \\
B & C & e & A \\
C & B & A & e
\end{array}\right] \quad \text { and } \quad C_{4}: \begin{array}{|cccc|}
\hline e & A & B & C \\
A & B & C & e \\
B & C & e & A \\
C & e & A & B \\
\hline
\end{array}
$$

Choosing $A A=B$ fixes the table immediately. The case $A A=C$ is redundant, because relabelling B and C shows that this is the same case as $A A=B$. Choosing $A A=e$ still leaves the options $B B=e$ and $B B=A$. But $B B=A$ is equivalent to the case $A A=B$ upon relabelling A and B.

A compact way to characterise a finite group is to define its generating elements, i.e. the elements from which all other elements can be constructed by multiplication.
Examples:

- C_{4} : All elements are generated by a single element $A:\left\langle A \mid A^{4}=e\right\rangle$,
- $C_{2} \otimes C_{2}:\left\langle A, B \mid A^{2}=B^{2}=e, A B=B A\right\rangle$.

This is called a presentation. General form: 〈generating elements|relations〉.

2.2 Unitarity theorem

Theorem: All representations of finite groups are equivalent to unitary representations. Let $D(g)$ be a representation on a vector space V and define $H \equiv \sum_{g} D^{\dagger}(g) D(g)$. Properties:

- $D^{\dagger}\left(g^{\prime}\right) H D\left(g^{\prime}\right)=\sum_{g} D^{\dagger}\left(g^{\prime}\right) D^{\dagger}(g) D(g) D\left(g^{\prime}\right)=\sum_{g} D^{\dagger}\left(g g^{\prime}\right) D\left(g g^{\prime}\right)=H$
(rearrangement lemma),
- H is hermitian, $H=H^{\dagger}$,
- \forall eigenvectors $\left|h_{i}\right\rangle,\left\langle h_{i} \mid h_{i}\right\rangle=1$, with eigenvalue $h_{i}, i=1, \ldots$:

$$
\begin{equation*}
h_{i}=\left\langle h_{i}\right| H\left|h_{i}\right\rangle=\sum_{g}\left\langle h_{i}\right| D^{\dagger}(g) D(g)\left|h_{i}\right\rangle=\sum_{g} \| D(g)\left|h_{i}\right\rangle \|^{2}>0 . \tag{2.1}
\end{equation*}
$$

\Rightarrow All eigenvalues h_{i} of H are positive.

- \exists unitary P such that $H=P^{\dagger} \operatorname{diag}\left(h_{1}, \ldots\right) P$
$\Rightarrow H=S^{\dagger} S$ with $S=\operatorname{diag}\left(\sqrt{h_{1}}, \ldots\right) P$.

The representation $U(g)=S D(g) S^{-1}$ is unitary and $U \simeq D$:

$$
\begin{align*}
\langle x| U^{\dagger}(g) U(g)|y\rangle & =\langle x|\left(S^{-1}\right)^{\dagger} D^{\dagger}(g) \underbrace{S^{\dagger} S}_{H} D(g) S^{-1}|y\rangle \\
& =\langle x|\left(S^{-1}\right)^{\dagger} H S^{-1}|y\rangle \\
& =\langle x| \underbrace{\left(S^{-1}\right)^{\dagger} S^{\dagger}}_{=\left(S S^{-1}\right)^{\dagger}=\mathbb{1}} S S^{-1}|y\rangle=\langle x \mid y\rangle \quad \forall|x\rangle,|y\rangle \in V . \tag{2.2}
\end{align*}
$$

Note that this theorem is not limited to irreducible representations.

2.3 Orthogonality relations

2.3.1 Orthogonality of irreducible representations

Theorem: Given two irreducible representations $D^{\mu}(g)$ and $D^{\nu}(g)$ of dimensions d_{μ} and d_{ν}, the representation matrices fulfil the relation

$$
\begin{equation*}
\sum_{g} D_{\mu}^{\dagger}(g)^{i}{ }_{j} D^{\nu}(g)^{k}{ }_{l}=\frac{n_{G}}{d_{\mu}} \delta_{\mu}^{\nu} \delta_{l}^{i} \delta_{j}^{k} \quad\left(D_{\mu}^{\dagger} \equiv\left(D_{\mu}\right)^{\dagger}\right) \tag{2.3}
\end{equation*}
$$

Proof: For an arbitrary $d_{\mu} \times d_{\nu}$ matrix X, define

$$
\begin{equation*}
A=\sum_{g} D_{\mu}^{\dagger}(g) X D^{\nu}(g) \tag{2.4}
\end{equation*}
$$

Then (\rightarrow rearrangement lemma),

$$
\begin{equation*}
D_{\mu}^{\dagger}(g) A D^{\nu}(g)=D_{\mu}^{\dagger}(g)\left(\sum_{g^{\prime}} D_{\mu}^{\dagger}\left(g^{\prime}\right) X D^{\nu}\left(g^{\prime}\right)\right) D^{\nu}(g)=\sum_{g^{\prime}} D_{\mu}^{\dagger}\left(g^{\prime} g\right) X D^{\nu}\left(g^{\prime} g\right)=A \tag{2.5}
\end{equation*}
$$

Since G is a finite group, the representation matrices can be chosen unitary, $D_{\mu}^{\dagger}(g)=$ $\left(D_{\mu}\right)^{-1}(g)$. According to Schur's lemma, we need to distinguish two cases,

- $\mu=\nu$ (i.e. if the representations are equivalent): $A=\lambda \mathbb{1}, \lambda \in \mathbb{C}$, or
- $\mu \neq \nu: A=0$.

Choose the matrix X as $\left(X_{j}^{k}\right)^{m}{ }_{n}=\delta_{j}^{m} \delta_{n}^{k}$ for fixed $j=1, \ldots, d_{\mu}$ and $k=1, \ldots, d_{\nu}$,

$$
\begin{equation*}
\left(A_{j}^{k}\right)^{i}{ }_{l}=\sum_{g} D_{\mu}^{\dagger}(g)^{i}{ }_{m}\left(X_{j}^{k}\right)^{m}{ }_{n} D^{\nu}(g)^{n}{ }_{l}=\sum_{g} D_{\mu}^{\dagger}(g)^{i} D^{\nu}(g)^{k}{ }_{l} . \tag{2.6}
\end{equation*}
$$

Since $\left(A_{j}^{k}\right)_{l}^{i}=0$ in the case $\mu \neq \nu$, this proves (2.3) for $\mu \neq \nu$. If $\mu=\nu$, taking the trace of

$$
\left(A_{j}^{k}\right)^{i}{ }_{l}=\lambda_{j}^{k} \delta_{l}^{i}=\sum_{g} D_{\mu}^{\dagger}(g)^{i}{ }_{j} D^{\mu}(g)^{k}{ }_{l} .
$$

gives

$$
\begin{equation*}
\lambda_{j}^{k} d_{\mu}=\sum_{g}\left(D^{\mu}(g) D_{\mu}^{\dagger}(g)\right)_{j}^{k}=\sum_{g} \delta_{j}^{k}=n_{G} \delta_{j}^{k} \quad \Rightarrow \quad\left(A_{j}^{k}\right)_{l}^{i}=\frac{n_{G}}{d_{\mu}} \delta_{j}^{k} \delta_{l}^{i}, \tag{2.7}
\end{equation*}
$$

which proves (2.3) for $\mu=\nu$. $\quad \#$
$\left\{D^{\mu}\left(g_{1}\right)^{i}{ }_{j}, \ldots, D^{\mu}\left(g_{n_{G}}\right)^{i}{ }_{j}\right\}$ can be regarded as a vector with n_{G} components. For each irreducible representation μ there are d_{μ}^{2} such vectors labelled by $i, j=1, \ldots, d_{\mu}$. In total, summing over all irreducible representations, there are $\sum_{\mu} d_{\mu}^{2}$ vectors. According to (2.3), these vectors are orthogonal and, hence,

$$
\begin{equation*}
\sum_{\mu} d_{\mu}^{2} \leq n_{G} \tag{2.8}
\end{equation*}
$$

because there can be no more than n_{G} orthogonal vectors with n_{G} components. In Section 2.3.3 we will show that this is actually an equality.

2.3.2 Orthogonality of characters

Representations are only unique up to similarity transformations ($\widehat{=}$ basis choice).
\Rightarrow Take traces of the representation matrices to obtain relations for characters which are basis independent.

Set $i=j, k=l$ in (2.3) and sum over i, k :

$$
\begin{align*}
& \sum_{g} D_{\mu}^{\dagger}(g)_{i}^{i} D^{\nu}(g)^{k}{ }_{k}=\frac{n_{G}}{d_{\mu}} \delta_{\mu}^{\nu} \delta_{k}^{i} \delta_{i}^{k} \\
& \sum_{i, k} \Rightarrow \sum_{g} \chi_{\mu}^{*}(g) \chi^{\nu}(g)=n_{G} \delta_{\mu}^{\nu} \\
& \Leftrightarrow \quad \sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{\mu}^{*}(\mathcal{C}) \chi^{\nu}(\mathcal{C})=n_{G} \delta_{\mu}^{\nu}, \tag{2.9}
\end{align*}
$$

where $n_{\mathcal{C}}$ is the number of group elements in the class \mathcal{C}.
Application: Calculate to which irreducible representations a given (reducible) representation reduces.
The characters $\chi(\mathcal{C})$ of a reducible representaion are given by

$$
\begin{equation*}
\chi(\mathcal{C})=\sum_{\mu} n_{\mu} \chi^{\mu}(\mathcal{C}) \tag{2.10}
\end{equation*}
$$

where n_{μ} is the number of times the irreducible representation μ appears in the reducible representation.
Calculate n_{μ} for a given representation:

$$
\begin{equation*}
\sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{\mu}^{*}(\mathcal{C}) \chi(\mathcal{C})=\sum_{\mathcal{C}} n_{\mathcal{C}} \sum_{\nu} n_{\nu} \chi_{\mu}^{*}(\mathcal{C}) \chi^{\nu}(\mathcal{C})=\sum_{\nu} n_{\nu} n_{G} \delta_{\mu}^{\nu}=n_{G} n_{\mu} \tag{2.11}
\end{equation*}
$$

\Rightarrow Check whether a representation is reducible:

$$
\begin{equation*}
\sum_{\mathcal{C}} n_{\mathcal{C}} \chi^{*}(\mathcal{C}) \chi(\mathcal{C})=\sum_{\mathcal{C}} n_{\mathcal{C}} \sum_{\mu, \nu} n_{\mu} n_{\nu} \chi_{\mu}^{*}(\mathcal{C}) \chi^{\nu}(\mathcal{C})=\sum_{\mu, \nu} n_{\mu} n_{\nu} n_{G} \delta_{\mu}^{\nu}=n_{G} \sum_{\mu} n_{\mu}^{2} \tag{2.12}
\end{equation*}
$$

If this evaluates to n_{G}, the representation is irreducible, because $\sum_{\mu} n_{\mu}^{2}=1$ if all irrededucible representations except one do not appear and one appears once.

2.3.3 Regular representation

The group multiplication can be written as

$$
\begin{equation*}
a g_{i}=g_{a_{i}}=g_{m} \delta_{a_{i}}^{m}, \quad a, g_{i}, g_{a_{i}} \in G \tag{2.13}
\end{equation*}
$$

$g_{m} \delta_{a_{i}}^{m}$ is an element of the group ring $\mathbb{C}[G]$.
$\mathbb{C}[G]$ is the set of all complex linear combinations of group elements $\sum_{g} z_{g} g, z_{g} \in \mathbb{C}$, $g \in G$. (new structure beyond the group structure!) with product structure derived from the group multiplication (multiplication is distributive wrt. addition).
For $a b=c, a, b, c \in G$:

$$
\begin{equation*}
a b g_{i}=c g_{i} \quad \Leftrightarrow \quad g_{k} \delta_{a_{m}}^{k} \delta_{b_{i}}^{m}=g_{k} \delta_{c_{i}}^{k} \quad \Rightarrow \quad \delta_{a_{m}}^{k} \delta_{b_{i}}^{m}=\delta_{c_{i}}^{k} \tag{2.14}
\end{equation*}
$$

which means that the matrices

$$
\begin{equation*}
D^{\mathrm{reg}}(g)^{i}{ }_{j}=\delta_{g_{j}}^{i} \tag{2.15}
\end{equation*}
$$

form a representation of G, namely the regular representation.

- For $g \neq e, D^{\mathrm{reg}}(g)$ permutes the group elements in a way that leaves no element invariant (rearrangement lemma),
- $D^{\mathrm{reg}}(g)$ is an element of the defining representation of the symmetric group $S_{n_{G}}$.
- Characters of the regular representation: $\chi^{\mathrm{reg}}(e)=n_{G}, \chi^{\mathrm{reg}}(g \neq e)=0$.
- $\sum_{\mu} n_{\mu}^{2}=n_{G}$. Proof:

$$
\begin{equation*}
\sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{\mathrm{reg}}^{*}(\mathcal{C}) \chi^{\mathrm{reg}}(\mathcal{C})=\left(\chi^{\mathrm{reg}}(e)\right)^{2}=n_{G}^{2} \tag{2.16}
\end{equation*}
$$

On the other hand, (2.12) gives

$$
\begin{equation*}
\sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{\mathrm{reg}}^{*}(\mathcal{C}) \chi^{\mathrm{reg}}(\mathcal{C})=n_{G} \sum_{\mu} n_{\mu}^{2} \quad \Rightarrow \quad \sum_{\mu} n_{\mu}^{2}=n_{G} \tag{2.17}
\end{equation*}
$$

- Each irreducible representation μ appears $n_{\mu}=d_{\mu}$ times in the regular representation. Proof:

$$
\begin{equation*}
\sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{\mu}^{*}(\mathcal{C}) \chi^{\mathrm{reg}}(\mathcal{C})=\chi_{\mu}^{*}(e) \chi^{\mathrm{reg}}(e)=d_{\mu} n_{G} \tag{2.18}
\end{equation*}
$$

On the other hand, (2.11) gives

$$
\begin{equation*}
\sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{\mu}^{*}(\mathcal{C}) \chi^{\mathrm{reg}}(\mathcal{C})=n_{G} n_{\mu} \quad \Rightarrow \quad n_{\mu}=d_{\mu} . \quad \# \tag{2.19}
\end{equation*}
$$

This also proofs the equality $\sum_{\mu} d_{\mu}^{2}=n_{G}$ (cf. Eq. (2.8)), i.e. according to (2.3) there are n_{G} orthogonal non-vanishing vectors $\left\{D^{\mu}\left(g_{1}\right)^{i}{ }_{j}, \ldots, D^{\mu}\left(g_{n_{G}}\right)^{i}{ }_{j}\right\}$ with n_{G} elements. This is only possible if the set of vectors is complete, hence,

$$
\begin{equation*}
\sum_{\mu} \sum_{i, j=1}^{d_{\mu}} d_{\mu} D^{\mu}(g)^{i}{ }_{j} D_{\mu}^{\dagger}\left(g^{\prime}\right)^{j}{ }_{i}=n_{G} \delta_{g, g^{\prime}} \tag{2.20}
\end{equation*}
$$

The sum of all representation matrices in a class ("class sum") is proportional to $\mathbb{1}$:

$$
\begin{equation*}
\mathcal{D}^{\mu}(\mathcal{C})=\frac{n_{\mathcal{C}}}{d_{\mu}} \chi^{\mu}(\mathcal{C}) \mathbb{1}, \quad \text { where } \quad \mathcal{D}^{\mu}(\mathcal{C})=\sum_{h \in \mathcal{C}} D^{\mu}(h) \tag{2.21}
\end{equation*}
$$

Proof:

$$
\begin{equation*}
D^{\mu}(g) \mathcal{D}^{\mu}(\mathcal{C}) D^{\mu}(g)^{-1}=\sum_{h \in \mathcal{C}} D^{\mu}(\underbrace{g h g^{-1}}_{h^{\prime} \in \mathcal{C}})=\sum_{h^{\prime} \in \mathcal{C}} D^{\mu}\left(h^{\prime}\right)=\mathcal{D}^{\mu}(\mathcal{C}) \quad \forall g \in G . \tag{2.22}
\end{equation*}
$$

According to Schur's lemma, $\mathcal{D}^{\mu}(\mathcal{C})=\lambda^{\mu} \mathbb{1}$. Take the trace to determine λ^{μ} :

$$
\begin{equation*}
\operatorname{Tr}\left\{\mathcal{D}^{\mu}(\mathcal{C})\right\}=\lambda^{\mu} \operatorname{Tr}\{\mathbb{1}\} \quad \Leftrightarrow \quad n_{\mathcal{C}} \chi^{\mu}(\mathcal{C})=\lambda^{\mu} d_{\mu} \tag{2.23}
\end{equation*}
$$

which proofs (2.21). \#
Summing (2.20) over group elements $g \in \mathcal{C}$ and $g^{\prime} \in \mathcal{C}^{\prime}$ of classes $\mathcal{C}, \mathcal{C}^{\prime}$ proves the completeness of characters:

$$
\begin{align*}
& \sum_{g \in \mathcal{C}} \sum_{g^{\prime} \in \mathcal{C}^{\prime}} \sum_{\mu} \sum_{i, j=1}^{d_{\mu}} d_{\mu} D^{\mu}(g)^{i}{ }_{j} D_{\mu}^{\dagger}\left(g^{\prime}\right)^{j}{ }_{i}=\sum_{g \in \mathcal{C}} \sum_{g^{\prime} \in \mathcal{C}^{\prime}} n_{G} \delta_{g, g^{\prime}} \\
\Leftrightarrow & \sum_{\mu} \sum_{i, j=1}^{d_{\mu}} d_{\mu} \mathcal{D}^{\mu}(\mathcal{C}) \mathcal{D}_{\mu}^{\dagger}\left(\mathcal{C}^{\prime}\right)=n_{G} n_{\mathcal{C}} \delta_{\mathcal{C}, \mathcal{C}^{\prime}} \\
\Leftrightarrow & \sum_{\mu} \sum_{i, j=1}^{d_{\mu}} d_{\mu} \frac{n_{\mathcal{C}}}{d_{\mu}} \chi^{\mu}(\mathcal{C}) \delta_{j}^{i} \frac{n_{\mathcal{C}^{\prime}}}{d_{\mu}} \chi_{\mu}^{*}\left(\mathcal{C}^{\prime}\right) \delta_{i}^{j}=n_{G} n_{\mathcal{C}} \delta_{\mathcal{C}, \mathcal{C}^{\prime}} \\
\Leftrightarrow & n_{\mathcal{C}} \sum_{\mu} \chi^{\mu}(\mathcal{C}) \chi_{\mu}^{*}\left(\mathcal{C}^{\prime}\right)=n_{G} \delta_{\mathcal{C}, \mathcal{C}^{\prime}} . \quad \# \tag{2.24}
\end{align*}
$$

2.3.4 Character table

The character table lists the characters of all classes $\mathcal{C}_{i}, i=1, \ldots, N_{c}$ ($N_{c}=$ number of classes) for all irreducible representations $\mu_{r}, r=1, \ldots, N_{R}\left(N_{R}=\right.$ number of irreducible representations) of a group G.

G	$\mathcal{C}_{1}=\{e\}$	\mathcal{C}_{2}	\ldots	$\mathcal{C}_{N_{c}}$
μ_{1}	$\chi^{\mu_{1}}\left(\mathcal{C}_{1}\right)$	$\chi^{\mu_{1}}\left(\mathcal{C}_{2}\right)$	\ldots	$\chi^{\mu_{1}}\left(\mathcal{C}_{N_{c}}\right)$
μ_{2}	$\chi^{\mu_{2}}\left(\mathcal{C}_{1}\right)$	$\chi^{\mu_{2}}\left(\mathcal{C}_{2}\right)$	\ldots	$\chi^{\mu_{2}}\left(\mathcal{C}_{N_{c}}\right)$
\vdots	\vdots	\vdots	\ddots	\vdots
$\mu_{N_{R}}$	$\chi^{\mu_{N_{R}}}\left(\mathcal{C}_{1}\right)$	$\chi^{\mu_{N_{R}}}\left(\mathcal{C}_{2}\right)$	\ldots	$\chi^{\mu_{N_{R}}}\left(\mathcal{C}_{N_{c}}\right)$

Regard all classes as a vector of N_{c} elements:
The N_{R} vectors of N_{c} elements $\left\{\tilde{\chi}^{\mu}\left(\mathcal{C}_{1}\right), \ldots, \tilde{\chi}^{\mu}\left(\mathcal{C}_{N_{c}}\right)\right\}$ of the normalised characters $\tilde{\chi}^{\mu}(\mathcal{C})=\sqrt{\frac{n_{c}}{n_{G}}} \chi^{\mu}(\mathcal{C})$ are orthogonal (2.9) and complete (2.24)

$$
\begin{equation*}
\Rightarrow \quad N_{R}=N_{c}, \tag{2.25}
\end{equation*}
$$

i.e. the character table is square. In other words, there are always as many inequivalent irreducible representations as there are classes.
Further properties of characters:

- If $\chi^{\mu}(e) \equiv d_{\mu}=1$, then $\left|\chi^{\mu}(\mathcal{C})\right|=1$ for all classes \mathcal{C}.

Proof: $\chi^{\mu}(e)=1$ means that the corresponding representation $D^{\mu}(g)$ is 1-dimensional $\Rightarrow\left(D^{\mu}(g)\right)^{*} D^{\mu}(g)=1 \quad \Rightarrow \quad\left|\chi^{\mu}(g)\right|=\left|D^{\mu}(g)\right|=1 . \quad \#$

- $\chi^{\mu}\left(g^{-1}\right)=\left(\chi^{\mu}(g)\right)^{*}$. In particular, if $g, g^{-1} \in G, \chi^{\mu}(g)$ is real.

Proof: $D^{\mu}(g)$ is unitary $\Rightarrow \forall$ eigenvalues $\lambda_{k}, k=1, \ldots, d_{\mu}$, of $D^{\mu}(g):\left|\lambda_{k}\right|=1$.
$\chi^{\mu}(g)=\operatorname{Tr}\left\{D^{\mu}(g)\right\}=\sum_{k} \lambda_{k}$,
$\chi^{\mu}\left(g^{-1}\right)=\operatorname{Tr}\left\{D_{\mu}^{-1}(g)\right\}=\sum_{k} 1 / \lambda_{k}=\sum_{k} \lambda_{k}^{*}=\left(\chi^{\mu}(g)\right)^{*} . \quad \#$
Example: Character table of the quaternionic group Q
The quaternionic group Q is defined by the presentation

$$
\begin{equation*}
Q=\left\langle i, j \mid i^{4}=e, i^{2}=j^{2}, j i j^{-1}=i^{-1}\right\rangle \tag{2.26}
\end{equation*}
$$

It consists of the 8 elements

$$
\{e, \bar{e}, i, \bar{i} \equiv k j, j, \bar{j} \equiv i k, k, \bar{k} \equiv j i\}
$$

that satisfy $i^{2}=j^{2}=k^{2}=i j k=\bar{e}$, and \bar{e} commutes with all elements (derive this from the presentation!).
The regular representation decomposes as

$$
\begin{equation*}
n_{G}=8=\sum_{\mu} d_{\mu}^{2}=1+1+1+1+4 \tag{2.27}
\end{equation*}
$$

into four 1-dimensional and one 2-dimensional irreducible representation. The decomposition $8=1+1+1+1+1+1+1+1$ is not possible, because Q is not abelian: $i j k=\bar{e} \Rightarrow i j=k \neq \bar{k}=j i$.
$\Rightarrow e$ and \bar{e} are the only elements that commute with all others and $\bar{e}^{2}=e$.
$\Rightarrow \mathcal{C}_{1}=\{e\}, \mathcal{C}_{2}=\{\bar{e}\}$, and $\mathcal{C}_{3}, \mathcal{C}_{4}, \mathcal{C}_{5}$ must have 2 elements each.
$\bar{k} i k=j i i k=\bar{e} i=i^{-1}=\bar{i} \Rightarrow \mathcal{C}_{3}=\{i, \bar{i}\}$, analogously $\mathcal{C}_{4}=\{j, \bar{j}\}, \mathcal{C}_{5}=\{k, \bar{k}\}$.
So far we can tell that the character table has the form

Q	$\mathcal{C}_{1}=\{e\}$	$\mathcal{C}_{2}=\{\bar{e}\}$	$\mathcal{C}_{3}=\{i, \bar{i}\}$	$\mathcal{C}_{4}=\{j, \bar{j}\}$	$\mathcal{C}_{5}=\{k, \bar{k}\}$
$\mu=1$	1	1	1	1	1
$\mu=2$	1	$\chi_{2,2}$	$\chi_{2,3}$	$\chi_{2,4}$	$\chi_{2,5}$
$\mu=3$	1	$\chi_{3,2}$	$\chi_{3,3}$	$\chi_{3,4}$	$\chi_{3,5}$
$\mu=4$	1	$\chi_{4,2}$	$\chi_{4,3}$	$\chi_{4,4}$	$\chi_{4,5}$
$\mu=5$	2	$\chi_{5,2}$	$\chi_{5,3}$	$\chi_{5,4}$	$\chi_{5,5}$

Character completeness for \mathcal{C}_{3} :

$$
\begin{equation*}
n_{\mathcal{C}_{3}} \sum_{\mu} \chi^{\mu}\left(\mathcal{C}_{3}\right) \chi_{\mu}^{\dagger}\left(\mathcal{C}_{3}\right)=2\left(1+\left|\chi_{2,3}\right|^{2}+\left|\chi_{3,3}\right|^{2}+\left|\chi_{4,3}\right|^{2}+\left|\chi_{5,3}\right|^{2}\right) \stackrel{!}{=} n_{G}=8 \tag{2.28}
\end{equation*}
$$

For $\mu=2,3,4,\left|\chi_{\mu, 3}\right|=1$, because $\chi^{\mu}(e)=1 \Rightarrow \chi_{5,3}=0$.
Analogousy, $\chi_{5,4}=\chi_{5,5}=0$.
Character orthogonality between $\mu=1$ and $\mu=5$:

$$
\begin{equation*}
\sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{1}^{*}(\mathcal{C}) \chi^{5}(\mathcal{C})=2+\chi_{5,2} \stackrel{!}{=} 0 \quad \Rightarrow \quad \chi_{5,2}=-2 \tag{2.29}
\end{equation*}
$$

Character orthogonality between $\mu=2,3,4$ and $\mu=5 \Rightarrow \chi_{2,2}=\chi_{3,2}=\chi_{4,2}=1$.
The remaining characters have $\left|\chi_{\mu, c}\right|=1, \mu=2,3,4, c=3,4,5$, because $\chi_{\mu, 1}=1$, and must be real, because each class contains the inverses of its elements, hence $\chi_{r, c}= \pm 1$.
Character orthogonality
\Rightarrow for each $\mu=2,3,4$, two of the remaining characters must be -1 , one +1 .
The complete character table is thus

Q	$\{e\}$	$\{\bar{e}\}$	$\{i, \bar{i}\}$	$\{j, \bar{j}\}$	$\{k, \bar{k}\}$
$\mu=1$	1	1	1	1	1
$\mu=2$	1	1	1	-1	-1
$\mu=3$	1	1	-1	1	-1
$\mu=4$	1	1	-1	-1	1
$\mu=5$	2	-2	0	0	0

Example: Degeneracies in coupled classical harmonic oscillators
System of N point particles of masses $m_{i}, i=1, \ldots, N$ at positions \vec{x}_{i} in d dimensions, coupled by springs of spring constants $k_{i j}, i, j=1, \ldots, N, i>j$.

Lagrangian:

$$
L=\frac{1}{2} \sum_{i} m_{i} \dot{\vec{x}}_{i}^{2}-\frac{1}{2} \sum_{i>j} k_{i j}\left(\vec{x}_{i}-\vec{x}_{j}\right)^{2} .
$$

Equation of motion can be written as

$$
\begin{equation*}
\ddot{x}_{a}=-K_{a b} x_{b}, \quad a=1, \ldots, N d \quad \text { running over all coordinates. } \tag{2.30}
\end{equation*}
$$

Ansatz: $x_{a}(t)=X_{a} \mathrm{e}^{\mathrm{i} \omega t}$.
\Rightarrow Squared eigenfrequencies are given by the eigenvalues of the matrix K.
Symmetry: let the system by invariant under $x \rightarrow x^{\prime}=D(g) x$, where $D(g)$ is an $N d$-dimensional representation of a group $G, g \in G$.

$$
\Rightarrow x^{\prime} \text { also solves the EOM }(2.30) \quad \Rightarrow \quad D(g) K=K D(g)
$$

Use Schur's lemma:

- G has irreducible representations μ of dimension $d_{\mu}, \mu=1, \ldots$.
- If the (in general reducible) representation $D(g)$ reduces to n_{1} times $\mu=1, n_{2}$ times $\mu=2, \ldots$, then K has the diagonalised form

$$
\begin{equation*}
\left.K_{\text {diag }}=\operatorname{diag}\left(\left(\omega_{1}^{(1)}\right)^{2} \mathbb{1}_{d_{1}}, \ldots,\left(\omega_{1}^{\left(n_{1}\right)}\right)^{2} \mathbb{1}_{d_{1}},\left(\omega_{2}^{(1)}\right)^{2} \mathbb{1}_{d_{2}}\right), \ldots,\left(\omega_{2}^{\left(n_{2}\right)}\right)^{2} \mathbb{1}_{d_{2}}, \ldots\right) \tag{2.31}
\end{equation*}
$$

Special case:
$N=3$ particles of identical mass in $d=3$ dimensions, coupled by identical springs.
\Rightarrow Symmetry transforms the coordinates under a $N d=9$-dimensional representation $D(g)$ of the symmetric group S_{3} (rsp. D_{3}, because $S_{3} \simeq D_{3}$). Need the character table of S_{3} (prove this!) and the characters of the representation $D(g)$:

$S_{3} \simeq D_{3}$	$\mathcal{C}_{1}=\{e\}$	$\mathcal{C}_{2}=\{(123),(132)\}$	$\mathcal{C}_{3}=\{(12),(23),(31)\}$
$n_{\mathcal{C}}$	1	2	3
$\mu=1$	1	1	1
$\mu=1^{\prime}$	1	1	-1
$\mu=2$	2	-1	0
$D(g)$	9	0	3

The characters of $D(g)$ are easy to find:

- $\chi(e)=\operatorname{dim}(D(g))=N d=9$,
- $\chi\left(\mathcal{C}_{2}\right)=0$, because the elements of \mathcal{C}_{2} leave no coordinate invariant,
- $\chi\left(\mathcal{C}_{3}\right)=d=3$, because the elements of \mathcal{C}_{3} leave the coordinates of one particle invariant and permutes all others.

Use (2.11) to calculate how often each irreducible representation appears in $D(g)$:

$$
\begin{align*}
n_{\mu}=\frac{1}{n_{G}} \sum_{\mathcal{C}} n_{\mathcal{C}} \chi_{\mu}^{*}(\mathcal{C}) \chi(\mathcal{C}) \Rightarrow n_{1} & =\frac{1}{6}(1 \cdot 1 \cdot 9+2 \cdot 1 \cdot 0+3 \cdot 1 \cdot 3)=3 \\
n_{1^{\prime}} & =\frac{1}{6}(1 \cdot 1 \cdot 9+2 \cdot 1 \cdot 0+3 \cdot(-1) \cdot 3)=0, \tag{2.32}\\
n_{2} & =\frac{1}{6}(1 \cdot 2 \cdot 9+2 \cdot(-1) \cdot 0+3 \cdot 0 \cdot 3)=3
\end{align*}
$$

We expect three 2-fold degeneracies and three non-degenerate modes.
But: This includes the "zero modes", i.e. modes with $\omega=0$. These are not all symmetry connected by S_{3}, hence, there are accidental degeneracies (\rightarrow space-time symmetries). With some physical intuition, we can identify the modes.
Zero modes ($\omega=0$):

- 1-dim: translation orthogonal to the plane spanned by the particles,
- 2-dim: translation within the plane,
- 1-dim: rotation around the symmetry axis,
- 2-dim: rotation around the two other axes.

Oscillation modes:

- 1-dim: "breathing mode"

- 2-dim: two degenerate oscillation modes

Chapter 3

$\mathrm{SO}(3)$ and $\mathrm{SU}(2)$

3.1 The rotation group $\mathrm{SO}(3)$

Definition:

$\mathrm{SO}(3) \equiv$ Lie group of all rotations in 3-dim. space.
Defining representation R in 3-dim. vector space $V=\mathbb{R}^{3}: \quad \vec{v} \rightarrow \vec{v}^{\prime}=R \vec{v}, \quad \vec{v} \in \mathbb{R}^{3}$, with the two requirements:

$$
\begin{align*}
& \vec{v}^{2} \stackrel{!}{=} \vec{v}^{\prime 2}=\vec{v}^{\prime \mathrm{T}} \vec{v}^{\prime}=\vec{v}^{\mathrm{T}} R^{\mathrm{T}} R \vec{v}, \quad R^{\mathrm{T}} R \stackrel{!}{=} \mathbb{1} \quad(\operatorname{det} R= \pm 1), \\
& \vec{u}^{\prime} \cdot(\vec{v} \times \vec{w}) \stackrel{!}{=} \vec{u} \cdot\left(\vec{v}^{\prime} \times \vec{w}^{\prime}\right)=(R \vec{u}) \cdot(R \vec{v} \times R \vec{w})=\operatorname{det} R \cdot \vec{u} \cdot(\vec{v} \times \vec{w}), \quad \operatorname{det} R=+1, \\
& \text { i.e. } R \text { preserves orientation of } 3 \text { vectors. } \tag{3.2}\\
& \Rightarrow \mathrm{SO}(3)=\left\{3 \times 3 \text { matrices } R \mid R \text { real, } R^{\mathrm{T}} R=\mathbb{1}, \operatorname{det} R=+1\right\} .
\end{align*}
$$

Infinitesimal rotations:

$$
\begin{array}{ll}
R=\mathbb{1}+\delta R, & \mathbb{1}^{!} \stackrel{!}{=}(\mathbb{1}+\delta R)^{\mathrm{T}}(\mathbb{1}+\delta R)=\mathbb{1}+\delta R+\delta R^{\mathrm{T}}+\theta\left(\delta R^{2}\right) \\
& \text { i.e. } \delta R^{\mathrm{T}}=-\delta R, \text { antisymmetry. }
\end{array}
$$

Note: No restruction on δR from $\operatorname{det} R=1$, since real orthogonal R with $\operatorname{det} R=-1$ cannot be obtained from $\mathbb{1}$ by continuous deformations.

$$
\begin{aligned}
\Rightarrow R(\delta \vec{\theta}) & \equiv \mathbb{1}+\delta R=\left(\begin{array}{ccc}
1 & \delta R_{12} & \delta R_{13} \\
& 1 & \delta R_{23} \\
\text { antisym. } & 1
\end{array}\right) \equiv\left(\begin{array}{ccc}
1 & -\delta \theta_{3} & \delta \theta_{2} \\
1 & -\delta \theta_{1} \\
\text { antisym. } & 1
\end{array}\right) \\
& =\mathbb{1}+\delta \vec{\theta} \times, \quad \delta \theta_{a}=\text { angle for infinitesimal rotation around } \vec{e}_{a} \text { axis } \\
& =\mathbb{1}-\mathrm{i} \delta \vec{\theta} \cdot \vec{J}^{(R)}, \quad \operatorname{dim} \operatorname{SO}(3)=3=\# \text { group parameters } \theta_{a} . \\
\vec{J}^{(R)} & =\text { generators of } \mathrm{SO}(3), \text { spanning the Lie algebra so }(3) \\
& \equiv \text { "angular momentum operator". }
\end{aligned}
$$

\hookrightarrow 3-dim. "defining representation" R of \vec{J} :

$$
J_{1}^{(R)}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{3.4}\\
0 & 0 & -\mathrm{i} \\
0 & \mathrm{i} & 0
\end{array}\right), \quad J_{2}^{(R)}=\left(\begin{array}{ccc}
0 & 0 & \mathrm{i} \\
0 & 0 & 0 \\
-\mathrm{i} & 0 & 0
\end{array}\right), \quad J_{3}^{(R)}=\left(\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Basic commutators of J_{a} ("Lie algebra") by identifying $J_{a} \equiv J_{a}^{(R)}$ in defining repr.:

$$
\left[J_{a}, J_{b}\right]=\mathrm{i} \sum_{c} \epsilon_{a b c} J_{c}, \quad \begin{align*}
& \text { verified by explicit calculation, } \tag{3.5}\\
& \text { but valid in all representations! }
\end{align*}
$$

Specifically, $\left(J_{a}^{(R)}\right)_{b c}=-\mathrm{i} \epsilon_{a b c}$ is given by the structure constants $\epsilon_{a b c}$ of $\mathrm{so}(3)$ and therefore called "adjoint representation".

Finite rotations:

$$
R(\vec{\theta}) \equiv \exp \left\{-\mathrm{i} \vec{\theta} \cdot \vec{J}^{(R)}\right\}, \quad \vec{\theta} \equiv\left(\begin{array}{c}
\theta_{1} \tag{3.6}\\
\theta_{2} \\
\theta_{3}
\end{array}\right)=\theta \vec{e}=\text { rotation by angle } \theta \text { aroung } \vec{e}, \vec{e}^{2}=1
$$

Properties:

- $R(0)=\mathbb{1}$, identity.
- $R(\vec{\theta})$ with $0<\theta<\pi$ are different for different axes $\vec{e}, \vec{e}^{\prime}$.
- $R(\vec{\theta})$ with $\vec{\theta}=\pi \vec{e}, \pi \vec{e}^{\prime}$ are different iff $\vec{e}^{\prime} \neq \pm \vec{e}$, i.e. $\pi \vec{e}$ and $-\pi \vec{e}$ are identical.
\hookrightarrow group parameter space of $\mathrm{SO}(3)$
$=$ sphere of radius π with antipodal points on its surface identified
$\equiv \mathbb{R} P^{3}$ ("real 3-dim. projective space").
Note: $\mathbb{R} P^{3}$ is "doubly connected", i.e. \exists two inequivalent classes of closed curves, where two curves are equivalent ("homotopic") if they can be continuously deformed into each other.
2 examples of inequivalent closed curves $\vec{\theta}(s) \perp \vec{e}_{3}(0 \leq s \leq 1)$:

$R(\vec{\theta}(s)) \sim R(\overrightarrow{0})=\mathbb{1}$
$\vec{\theta}(s)$ can be deformed into $R(\overrightarrow{0})=\mathbb{1}$.

$R(\vec{\theta}(s)) \nsim R(\overrightarrow{0})=\mathbb{1}$
$\vec{\theta}(s)$ cannot be deformed into $R(\overrightarrow{0})=\mathbb{1}$.

Explicit form of $R(\vec{\theta})$: (straightforward exercise!)

$$
\begin{align*}
& R(\vec{\theta})=\cos \theta \cdot \mathbb{1}+(1-\cos \theta) \underbrace{\vec{e} \cdot \vec{e}^{\mathrm{T}}}_{=\vec{e} \otimes \vec{e}}+\sin \theta \vec{e} \times, \tag{3.7}\\
& \hookrightarrow \text { cross product } \tag{3.8}\\
& R(\vec{\theta})_{a b}=\cos \theta \delta_{a b}+(1-\cos \theta) e_{a} e_{b}-\sin \theta \sum_{c} \epsilon_{a b c} e_{c} .
\end{align*}
$$

Alternative parametrization via "Euler angles":
\hookrightarrow Decomposition of rotation around $\vec{\theta}$ into 3 standard rotations:

$$
\begin{align*}
& R(\alpha, \beta, \gamma) \equiv \underbrace{R_{3}(\alpha) R_{2}(\beta) R_{3}(\gamma)}_{R_{j}(\varphi) \equiv R\left(\varphi \vec{e}_{j}\right)=\text { rotation by angle } \varphi \text { around } \vec{e}_{j}} \tag{3.9}\\
&=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right)\left(\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right), \\
& 0 \leq \alpha<2 \pi, \quad 0 \leq \beta<\pi, \quad 0 \leq \gamma<2 \pi .
\end{align*}
$$

Relation between α, β, γ and $\vec{\theta}$: (straightforward exercise)

$$
\begin{aligned}
\cos \theta & =\cos \beta \cos ^{2}\left(\frac{\alpha+\gamma}{2}\right)-\sin ^{2}\left(\frac{\alpha+\gamma}{2}\right) \\
e_{3} & =\frac{\cos ^{2}(\beta / 2) \sin (\alpha+\gamma)}{\sin \theta}, \quad e_{1}=\frac{\sin \beta(\sin \gamma-\sin \alpha)}{2 \sin \theta}, \quad e_{2}=\frac{\sin \beta(\cos \alpha+\cos \gamma)}{2 \sin \theta} .
\end{aligned}
$$

3.2 The group $\mathrm{SU}(2)$

Definition:

$\mathrm{SU}(2)=\left\{2 \times 2\right.$ matrices $U \mid U$ complex, $U^{\dagger} U=\mathbb{1}$, $\left.\operatorname{det} U=+1\right\}$.
Transformations, generators, Lie algebra:
Parametrization of $U(\vec{\theta})$ by real group parameters $\vec{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)^{\mathrm{T}}$ and generators \vec{T} :

$$
\begin{array}{rlrl}
U(\vec{\theta}) & =\exp \{-\mathrm{i} \vec{\theta} \cdot \vec{T}\} & =\mathbb{1}-\mathrm{i} \vec{\theta} \cdot \vec{T}+\ldots, \\
U(\vec{\theta})^{\dagger} & =\exp \left\{\mathrm{i} \vec{\theta} \cdot \overrightarrow{T^{\dagger}}\right\} & & =\mathbb{1}+\mathrm{i} \vec{\theta} \cdot \vec{T}^{\dagger}+\ldots, \\
U(\vec{\theta})^{-1} & =\exp \{\mathrm{i} \vec{\theta} \cdot \vec{T}\} . & & =\mathbb{1}+\mathrm{i} \vec{\theta} \cdot \vec{T}+\ldots \stackrel{!}{=} \mathbb{1}+\mathrm{i} \vec{\theta} \cdot \vec{T}^{\dagger}+\ldots, \\
\operatorname{det} U(\vec{\theta}) & =\exp \{-\mathrm{i} \vec{\theta} \cdot \operatorname{Tr}(\vec{T})\} & =1+\mathrm{i} \vec{\theta} \cdot \operatorname{Tr}(\vec{T})+\ldots \stackrel{!}{=} 1 . \tag{3.14}
\end{array}
$$

\Rightarrow Conditions on 2×2 generators $\vec{T}=\left(T_{1}, \ldots, T_{n}\right)$:

$$
\begin{equation*}
T_{a}=T_{a}^{\dagger}, \quad \operatorname{Tr}\left(T_{a}\right)=0 \tag{3.15}
\end{equation*}
$$

$\Rightarrow n=3$ independent T_{a} 's, usually chosen as $T_{a}=\frac{1}{2} \sigma_{a}$:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{3.16}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \text { "Pauli matrices" }
$$

Lie algebra $\operatorname{su}(2)=\operatorname{so}(3)$ (by explicit calculation):

$$
\begin{equation*}
\left[T_{a}, T_{b}\right]=\mathrm{i} \sum_{c} \epsilon_{a b c} T_{c}, \tag{3.17}
\end{equation*}
$$

Note: $\operatorname{su}(2)=\operatorname{so}(3) \equiv\left\{\sum_{a} c_{a} T_{a} \mid c_{a} \in \mathbb{R}\right\}=3$-dim. Lie algebra over \mathbb{R}, $\operatorname{sl}(2) \equiv\left\{\sum_{a} c_{a} T_{a} \mid c_{a} \in \mathbb{C}\right\},=3$-dim. Lie algebra over \mathbb{C}.

Finite group transformations:

$$
\begin{align*}
U(\vec{\theta}) & =\cos \frac{\theta}{2} \cdot \mathbb{1}-\mathrm{i} \sin \frac{\theta}{2}(\vec{e} \cdot \vec{\sigma}), \quad \vec{\theta}=\theta \vec{e}, \tag{3.18}\\
S U(2) & =\left\{U(\vec{\theta}) \mid 0 \leq \theta \leq 2 \pi, \vec{e} \in S^{2}=\text { unit sphere in } \mathbb{R}^{3}\right\} . \tag{3.19}
\end{align*}
$$

\hookrightarrow Group parameter space $=$ compact ball $B_{2 \pi}$ of radius 2π in \mathbb{R}^{3} (singly connected).

Relation between $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$:

- $\mathrm{su}(2)=\mathrm{so}(3) \quad \Rightarrow \mathrm{SU}(2)$ and $\mathrm{SO}(3)$ are locally isomorphic.
- But: $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ are not fully isomorphic, since group parameter spaces are not isomorphic (connectedness!).
- Precise relation obtained by inspecting the group homomorphism

$$
\begin{equation*}
f: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3), \quad f(U(\vec{\theta}))=R(\vec{\theta}), \quad \vec{\theta} \in B_{2 \pi} \tag{3.20}
\end{equation*}
$$

Determine kernel of $f: \quad R(\vec{\theta})=\mathbb{1}_{3} \Leftrightarrow \theta=0 \vee 2 \pi \Leftrightarrow U= \pm \mathbb{1}$.
$\hookrightarrow \operatorname{ker}(f)=\{ \pm \mathbb{1}\} \simeq \mathbb{Z}_{2}$.
$\Rightarrow \mathrm{SO}(3) \simeq \mathrm{SU}(2) / \mathbb{Z}_{2}$ according to first isomorphism theorem (Section 1.3.3).
Correspondence: $\quad R \leftrightarrow\{U,-U\}$,
i.e. $\mathrm{SO}(3)$ is multivalued on $B_{2 \pi}$ and $\mathrm{SU}(2)$ doubly covers $\mathrm{SO}(3)$.
$\mathrm{SU}(2)=$ "universal covering group" (simply connected) of $\mathrm{SO}(3)$.

- Implication on representations:
- Each representation of $\mathrm{SO}(3)$ defines a repr. of $\mathrm{SU}(2)$, where $D(2 \pi \vec{e})=\mathbb{1}$.
- Only representations of $\mathrm{SU}(2)$ with $D(2 \pi \vec{e})=\mathbb{1}$ define reprs. of $\mathrm{SO}(3)$.
- Representations of $\mathrm{SU}(2)$ with $D(2 \pi \vec{e})=-\mathbb{1}$ define "ray (or projective) representations" of $\mathrm{SO}(3)$, which define $D(g)$ for $g \in G$ only up to some constant:

$$
D(g) D\left(g^{\prime}\right) \propto D\left(g g^{\prime}\right)
$$

Comment: Ray representations are "good enough" to describe symmetries in QM, because qm. states are "rays" (=states with arbitrary normalization and phases) in some Hilbert space.
$\mathrm{SO}(3)$: group of rotations in classical physics,
$\mathrm{SU}(2)$: group describing rotations in QM .

3.3 Irreducible representations of $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$

Irred. representations of $\operatorname{su}(2)$ and so(3):
\hookrightarrow known from eigenvalue problem of angular momentum in QM:
For each $j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \exists(2 j+1)$ simultaneous eigenstates $\{|j, m\rangle \mid m=-j, \ldots, j\}$ of J_{3} and \vec{J}^{2}, which span some $(2 j+1)$-dim. vector space $V^{(j)}$:

$$
\begin{align*}
J_{3}|j, m\rangle & =m|j, m\rangle \\
\vec{J}^{2}|j, m\rangle & =j(j+1)|j, m\rangle \\
J_{+}|j, m\rangle & =\sqrt{j(j+1)-m(m+1)}|j, m+1\rangle \\
J_{-}|j, m\rangle & =\sqrt{j(j+1)-m(m-1)}|j, m-1\rangle \tag{3.21}
\end{align*}
$$

with the "shift operators" $J_{ \pm}=J_{1} \pm \mathrm{i} J_{2}$ obeying

$$
\begin{equation*}
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm}, \quad\left[J_{+}, J_{-}\right]=2 J_{3} \tag{3.22}
\end{equation*}
$$

Note: $\quad \vec{J}^{2}=$ "Casimir operator", i.e. $\left[\vec{J}^{2}, J_{a}\right]=0$, but $\vec{J}^{2} \notin \operatorname{su}(2)$.
\Rightarrow Each j defines a $(2 j+1)$-dim. representation $D^{(j)}$:

$$
\begin{align*}
|j, j\rangle & =\left(\begin{array}{c}
1 \\
0 \\
\vdots
\end{array}\right), \quad|j, j-1\rangle=\left(\begin{array}{c}
0 \\
1 \\
\vdots
\end{array}\right), \quad \ldots \quad|j,-j\rangle=\left(\begin{array}{c}
\vdots \\
0 \\
1
\end{array}\right), \\
J_{3}^{(j)} & =\operatorname{diag}(j, j-1, \ldots,-j), \quad\left(\vec{J}^{(j)}\right)^{2}=j(j+1) \mathbb{1}, \\
J_{+}^{(j)} & =\left(\begin{array}{ccccc}
0 & * & 0 & \ldots & 0 \\
& 0 & * & & \\
\vdots & 0 & \ddots & \vdots \\
& & \ddots & * \\
0 & \ldots & & 0
\end{array}\right), \quad J_{-}^{(j)}=\left(J_{+}^{(j)}\right)^{\dagger}=\left(\begin{array}{ccccc}
0 & & \cdots & & 0 \\
* & 0 & & & \\
0 & * & 0 & \ddots & \vdots \\
\vdots & & \ddots & \\
0 & \ldots & * & 0
\end{array}\right) . \tag{3.23}
\end{align*}
$$

Features of $D^{(j)}$:

- Consider $\mathrm{su}(2)$ as vector space spanned by basis $\left\{J_{3}, J_{+}, J_{-}\right\}$.
\hookrightarrow Brackets $\left[J_{a}, X\right] \in \operatorname{su}(2)$ act as linear operator (matrices!) on $X \in \operatorname{su}(2)$.
\hookrightarrow The matrices $\operatorname{ad}_{J_{a}} \equiv\left[J_{a},.\right]$ define a 3 -dim. repr. of $\operatorname{su}(2)$ on the vector space $\operatorname{su}(2)$, which is identical with the adjoint prepresentation:

$$
\begin{equation*}
\left[\operatorname{ad}_{J_{a}}, \operatorname{ad}_{J_{b}}\right]=\sum_{c} \mathrm{i} \epsilon_{a b c} \operatorname{ad}_{J_{c}} \tag{3.24}
\end{equation*}
$$

Note: The basis $\left\{J_{3}, J_{+}, J_{-}\right\}$is very special:

- J_{3} is diagonal: $\quad \operatorname{ad}_{J_{3}}(X)=\left[J_{3}, X\right]=f(X) X$.
- $J_{ \pm}$are nilpotent: $\quad \operatorname{ad}_{J_{ \pm}}^{3}(X)=\left[J_{ \pm},\left[J_{ \pm},\left[J_{ \pm}, X\right]\right]\right]=0$.
- Irreducibility:

All basis states $|j, m\rangle$ can be obtained from a single state upon applying $\left(J_{ \pm}\right)^{n}$, e.g.

$$
\begin{equation*}
\underbrace{|j, m\rangle}_{\text {state of "weight" } m} \propto\left(J_{-}^{(j)}\right)^{m-j} \underbrace{|j, j\rangle}_{\text {state of "maximal weight" }}, \quad\left(J_{+}^{(j)}\right)|j, j\rangle=0 . \tag{3.25}
\end{equation*}
$$

Example: $\quad j=1$.

- Generators:

$$
\begin{array}{ll}
J_{3}^{(1)}=\operatorname{diag}(1,0,-1), & \left(\vec{J}^{(1)}\right)^{2}=2 \cdot \mathbb{1}, \\
J_{+}^{(1)}=\sqrt{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), & J_{-}^{(1)}=\sqrt{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \\
J_{1}^{(1)}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & J_{2}^{(1)}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & -\mathrm{i} \\
0 & \mathrm{i} & 0
\end{array}\right) . \tag{3.26}
\end{array}
$$

- Relation to 3 -dim. defining representation R of so(3):

$$
J_{1}^{(R)}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{3.27}\\
0 & 0 & -\mathrm{i} \\
0 & \mathrm{i} & 0
\end{array}\right), \quad J_{2}^{(R)}=\left(\begin{array}{ccc}
0 & 0 & \mathrm{i} \\
0 & 0 & 0 \\
-\mathrm{i} & 0 & 0
\end{array}\right), \quad J_{3}^{(R)}=\left(\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Check whether $D^{(1)}$ and R are equivalent:

$$
\begin{equation*}
J_{a}^{(R)} \stackrel{?}{=} S J_{a}^{(1)} S^{-1} \tag{3.28}
\end{equation*}
$$

1. Diagonalize $J_{3}^{(R)}$.

$$
\begin{align*}
& \hookrightarrow S=\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right), \quad \vec{n}_{a}=\text { eigenvectors of } J_{3}^{(R)}, \\
& \quad \vec{n}_{1}=\frac{\mathrm{e}^{\mathrm{i} \delta_{1}}}{\sqrt{2}}\left(\begin{array}{l}
1 \\
\mathrm{i} \\
0
\end{array}\right), \quad \vec{n}_{2}=\mathrm{e}^{\mathrm{i} \delta_{2}}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \vec{n}_{3}=\frac{\mathrm{e}^{\mathrm{i} \delta_{3}}}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-\mathrm{i} \\
0
\end{array}\right) . \tag{3.29}
\end{align*}
$$

2. Check whether phases δ_{a} can be chosen so that (3.28) is valid for $a=1,2$.

$$
\hookrightarrow \text { Answer: yes! } 1=-\mathrm{e}^{\mathrm{i} \delta_{1}}=\mathrm{e}^{\mathrm{i} \delta_{2}}=\mathrm{e}^{\mathrm{i} \delta_{3}} .
$$

$$
\Rightarrow S=\left(\begin{array}{ccc}
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \tag{3.30}\\
-\mathrm{i} / \sqrt{2} & 0 & -\mathrm{i} / \sqrt{2} \\
0 & 1 & 0
\end{array}\right)
$$

\Rightarrow (3.28) holds, i.e. $R \simeq D^{(1)}$.

Irred. representations of $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$:

\hookrightarrow obtained from $D^{(j)}$ representation of the generators J_{a} :

$$
\begin{align*}
D^{(j)}(\vec{\theta}) & \equiv \exp \left\{-\mathrm{i} \vec{\theta} \vec{J}^{(j)}\right\}=(2 j+1) \times(2 j+1) \text { matrix } \tag{3.31}\\
D^{(j)}(\vec{\theta})_{m^{\prime} m} & =\left\langle j, m^{\prime}\right| \exp \{-\mathrm{i} \vec{\theta} \vec{J}\}|j, m\rangle . \tag{3.32}
\end{align*}
$$

Here Euler angles are particularly convenient:

$$
\begin{align*}
D^{(j)}(\alpha, \beta, \gamma)_{m^{\prime} m} & =\left\langle j, m^{\prime}\right| \exp \left\{-\mathrm{i} \alpha J_{3}^{(j)}\right\} \exp \left\{-\mathrm{i} \beta J_{2}^{(j)}\right\} \exp \left\{-\mathrm{i} \gamma J_{3}^{(j)}\right\}|j, m\rangle \\
& =\mathrm{e}^{-\mathrm{i} m^{\prime} \alpha-\mathrm{i} m \gamma} \underbrace{\left\langle j, m^{\prime}\right| \exp \left\{-\mathrm{i} \beta J_{2}\right\}|j, m\rangle}_{\equiv d_{m^{\prime} m}^{(j)}(\beta), \text { "Wigner's } d \text {-functions }} . \tag{3.33}
\end{align*}
$$

Properties:

- Irreducibility of $D^{(j)}$ follows from irreducibility of $J_{a}^{(j)}$.
- Explicit closed form:

$$
\begin{align*}
d_{m^{\prime} m}^{(j)}(\beta)= & \sum_{k}(-1)^{k-m+m^{\prime}} \frac{\sqrt{(j+m)!(j-m)!\left(j+m^{\prime}\right)!\left(j-m^{\prime}\right)!}}{(j+m-k)!k!\left(j-k-m^{\prime}\right)!\left(k-m+m^{\prime}\right)!} \\
& \uparrow \quad \times\left(\cos \frac{\beta}{2}\right)^{2 j-2 k+m-m^{\prime}}\left(\sin \frac{\beta}{2}\right)^{2 k-m+m^{\prime}} \tag{3.34}
\end{align*}
$$

all $k \in \mathbb{N}_{0}$ with $k \leq j+m, k \leq j-m^{\prime}, k \geq m-m^{\prime}$.
Possible proofs are based on:
$-d(\beta)$ as normalizable solutions of the differential eq.

$$
\begin{equation*}
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} \beta^{2}}+\cot \beta \frac{\mathrm{d}}{\mathrm{~d} \beta}-\frac{m^{2}+m^{\prime 2}-2 m m^{\prime} \cos \beta}{\sin ^{2} \beta}+j(j+1)\right] d(\beta)=0 \tag{3.35}
\end{equation*}
$$

which is related to the Jacobi differential eq.

- Analysis of "Schwinger's oscillator model" of angular momentum.
- $D^{(j)}(\alpha, \beta, \gamma)=$ unitary matrix,
$d_{m^{\prime} m}^{(j)}(\beta)=$ real orthogonal matrix (clever choice of Euler rotations!).
- Symmetries: $\quad d_{m^{\prime} m}^{(j)}(\beta)=(-1)^{m-m^{\prime}} d_{m m^{\prime}}^{(j)}(\beta)=(-1)^{m-m^{\prime}} d_{-m^{\prime},-m}^{(j)}(\beta)$.
- Orthogonality:

$$
\begin{align*}
\underbrace{\int_{0}^{2 \pi} \mathrm{~d} \alpha \int_{0}^{\pi} \mathrm{d} \beta \sin \beta \int_{0}^{2 \pi} \mathrm{~d} \gamma}_{\text {Haar measure of } \operatorname{SU}(2)} & D_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)}(\alpha, \beta, \gamma)^{*} D_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}(\alpha, \beta, \gamma) \\
& =\frac{8 \pi^{2}}{2 j_{1}+1} \delta_{j_{1} j_{2}} \delta_{m_{1} m_{2}} \delta_{m_{1}^{\prime} m_{2}^{\prime}} \tag{3.36}
\end{align*}
$$

- Global properties and action on states $|\psi\rangle \in V^{(j)}$:

representation for	$j=0,1,2, \ldots$	$j=\frac{1}{2}, \frac{3}{2}, \ldots$
$D^{(j)}(\vec{\theta})$ in $\mathrm{SO}(3)$	single valued	double valued
$D^{(j)}(\vec{\theta})$ in $\mathrm{SU}(2)$	single valued	single valued
$D^{(j)}(2 \pi \vec{e})\|\psi\rangle=$	$+\|\psi\rangle$	$-\|\psi\rangle$
$D^{(j)}(4 \pi \vec{e})\|\psi\rangle=$	$+\|\psi\rangle$	$+\|\psi\rangle$
state $=$	bosonic	fermionic

3.4 Product representations and Clebsch-Gordan decomposition

Qm. problem of addition of angular momenta:
Consider a qm. system of 2 independent components (e.g. 2 particles) with angular momenta $\vec{J}_{k}(k=1,2)$ each, i.e.

$$
\begin{array}{rlrl}
\vec{J}_{k}^{2}\left|j_{k}, m_{k}\right\rangle & =j_{k}\left(j_{k}+1\right)\left|j_{k}, m_{k}\right\rangle, & j_{k}=0, \frac{1}{2}, 1, \cdots=\text { fixed! } \\
J_{k, 3}\left|j_{k}, m_{k}\right\rangle & =m_{k}\left|j_{k}, m_{k}\right\rangle, & m_{k}=-j_{k},-j_{k}+1, \ldots, j_{k}, \\
{\left[J_{1, a}, J_{2, b}\right]} & =0, \text { independence of } 2 \text { components! } \tag{3.37}
\end{array}
$$

\Rightarrow Product basis of Hilbert space $\mathcal{H}: \quad\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle \equiv\left|j_{1}, m_{1}\right\rangle \otimes\left|j_{2}, m_{2}\right\rangle$.

$$
\hookrightarrow\left(2 j_{1}+1\right)\left(2 j_{2}+1\right) \text { states }
$$

Problem:
Express eigenstates $|j, m\rangle$ of total angular momentum $\vec{J}=\vec{J}_{1}+\vec{J}_{2}\left(\equiv \vec{J}_{1} \otimes \mathbb{1}+\mathbb{1} \otimes \vec{J}_{2}\right)$

$$
\begin{align*}
\vec{J}^{2}|j, m\rangle & =j(j+1)|j, m\rangle, & j & =? \\
J_{3}|j, m\rangle & =m|j, m\rangle, & m & =-j,-j+1, \ldots, j
\end{align*}
$$

in terms of $\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle$!
Commutators:

$$
\begin{equation*}
\left[J_{a}, J_{b}\right]=\mathrm{i} \sum_{c} \epsilon_{a b c} J_{c}, \quad \text { since } \vec{J}=\vec{J}_{1}+\vec{J}_{2}, \quad\left[J_{1, a}, J_{2, b}\right]=0 . \tag{3.39}
\end{equation*}
$$

$\hookrightarrow \vec{J}=$ indeed angular momentum operator.

$$
\left.\begin{array}{r}
{\left[J_{3}, J_{k, 3}\right]=0, \quad\left[J_{3}, \vec{J}_{k}^{2}\right]=0,} \\
{\left[\vec{J}^{2}, J_{k, 3}\right] \neq 0, \quad\left[\vec{J}^{2}, \vec{J}_{k}^{2}\right]=0,}
\end{array}\right\} \begin{aligned}
& \text { Simultaneously diagonalizable: } \quad \vec{J}_{1}^{2}, \vec{J}_{2}^{2}, \vec{J}^{2}, J_{3} . \tag{3.40}\\
& \hookrightarrow \text { Eigenstates: }|j, m\rangle \equiv\left|j_{1}, j_{2}, j, m\right\rangle .
\end{aligned}
$$

Basis change:

$$
\begin{align*}
& |j, m\rangle=\sum_{\substack{j_{1}^{\prime}, j_{2}^{\prime}, m_{1}, 2}}\left|j_{1}^{\prime}, j_{2}^{\prime} ; m_{1}, m_{2}\right\rangle \underbrace{\left\langle j_{1}^{\prime}, j_{2}^{\prime} ; m_{1}, m_{2} \mid j, m\right\rangle}_{\text {"Clebsch-Gordan coefficients" }} \tag{3.41}\\
& \neq 0 \text { only if } j_{1}^{\prime}=j_{1}, j_{2}^{\prime}=j_{2} \text {, } \\
& \text { because } 0=\left\langle j_{1}^{\prime}, j_{2}^{\prime} ; m_{1}, m_{2}\right| \vec{J}_{k}^{2}-\vec{J}_{k}^{2}\left|j_{1}, j_{2}, j, m\right\rangle \\
& =\underbrace{\left[j_{k}^{\prime}\left(j_{k}^{\prime}+1\right)-j_{k}\left(j_{k}+1\right)\right]}_{\neq 0 \text { for } j_{k}^{\prime} \neq j_{k}}\left\langle j_{1}^{\prime}, j_{2}^{\prime} ; m_{1}, m_{2} \mid j_{1}, j_{2}, j, m\right\rangle . \\
& \Rightarrow|j, m\rangle=\sum_{m_{1}, 2}\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle \underbrace{\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j, m\right\rangle}_{\neq 0 \text { only if } m=m_{1}+m_{2}}, \tag{3.42}\\
& \text { because } 0=\left\langle j_{1}, j_{2} ; m_{1}, m_{2}\right| J_{1,3}+J_{2,3}-J_{3}\left|j_{1}, j_{2}, j, m\right\rangle \\
& =\left(m_{1}+m_{2}-m\right)\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j_{1}, j_{2}, j, m\right\rangle .
\end{align*}
$$

Note: Both $\left\{\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle\right\}$ and $\{|j, m\rangle\}$ are orthonormal bases!
\Rightarrow Orthogonality relations:

$$
\begin{align*}
\sum_{j, m}\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j, m\right\rangle\left\langle j, m \mid j_{1}, j_{2} ; m_{1}^{\prime}, m_{2}^{\prime}\right\rangle & =\delta_{m_{1} m_{1}^{\prime}} \delta_{m_{2} m_{2}^{\prime}}, \tag{3.43}\\
\sum_{m_{1}, m_{2}}\left\langle j, m \mid j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j^{\prime}, m^{\prime}\right\rangle & =\delta_{j j^{\prime}} \delta_{m m^{\prime}} . \tag{3.44}
\end{align*}
$$

Calculation of CG coefficients:

- Step 0: $m=m_{\text {max }}$.

$$
\begin{align*}
& m_{\max }=\max \left(m_{1}+m_{2}\right)=j_{1}+j_{2} . \quad \Rightarrow j_{\max }=j_{1}+j_{2} \tag{3.45}\\
& \left|j=j_{1}+j_{2}, m=j_{1}+j_{2}\right\rangle \equiv\left|j_{1}, j_{2} ; j_{1}, j_{2}\right\rangle, \quad \text { unique up to phase choice! } \tag{3.46}\\
\Rightarrow & \left\langle j_{1}, j_{2} ; j_{1}, j_{2} \mid j_{1}+j_{2}, j_{1}+j_{2}\right\rangle=1 \tag{3.47}
\end{align*}
$$

- Step 1: $m=m_{\max }-1$.

Application of $J_{-}|j, m\rangle=\sqrt{j(j+1)-m(m-1)}|j, m-1\rangle$:

$$
\begin{align*}
& J_{-}\left|j_{1}+j_{2}, j_{1}+j_{2}\right\rangle=\sqrt{2\left(j_{1}+j_{2}\right)}\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle \\
&=\left(J_{1-}+J_{2-}\right)\left|j_{1}, j_{2} ; j_{1}, j_{2}\right\rangle \\
&=\sqrt{2 j_{1}}\left|j_{1}, j_{2} ; j_{1}-1, j_{2}\right\rangle+\sqrt{2 j_{2}}\left|j_{1}, j_{2} ; j_{1}, j_{2}-1\right\rangle \tag{3.48}\\
&\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle=\sqrt{\frac{j_{1}}{j_{1}+j_{2}}}\left|j_{1}, j_{2} ; j_{1}-1, j_{2}\right\rangle+\sqrt{\frac{j_{2}}{j_{1}+j_{2}}}\left|j_{1}, j_{2} ; j_{1}, j_{2}-1\right\rangle \tag{3.49}\\
& \Rightarrow\left\langle j_{1}, j_{2} ; j_{1}-1, j_{2} \mid j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle=\sqrt{\frac{j_{1}}{j_{1}+j_{2}}} \\
&\left\langle j_{1}, j_{2} ; j_{1}, j_{2}-1 \mid j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle=\sqrt{\frac{j_{2}}{j_{1}+j_{2}}} . \tag{3.50}
\end{align*}
$$

$\exists\left(2\right.$ nd state with $\left.m=j_{1}+j_{2}-1\right) \perp\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle:$
$\underbrace{\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle}_{\text {Check eigenvalue of } \vec{J}^{2} \text { explicitly! }}=\sqrt{\frac{j_{2}}{j_{1}+j_{2}}}\left|j_{1}, j_{2} ; j_{1}-1, j_{2}\right\rangle-\sqrt{\frac{j_{1}}{j_{1}+j_{2}}}\left|j_{1}, j_{2} ; j_{1}, j_{2}-1\right\rangle$.

$$
\begin{align*}
\Rightarrow\left\langle j_{1}, j_{2} ; j_{1}-1, j_{2} \mid j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle & =\sqrt{\frac{j_{2}}{j_{1}+j_{2}}}, \\
\left\langle j_{1}, j_{2} ; j_{1}, j_{2}-1 \mid j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle & =-\sqrt{\frac{j_{1}}{j_{1}+j_{2}}} . \tag{3.52}
\end{align*}
$$

- Step 2: $m=m_{\max }-2$.

Construct 3 states:

$$
\begin{align*}
J_{-}\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle & \propto\left|j_{1}+j_{2}, j_{1}+j_{2}-2\right\rangle=\ldots \tag{3.53}\\
J_{-}\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle & \propto\left|j_{1}+j_{2}-1, j_{1}+j_{2}-2\right\rangle=\ldots \tag{3.54}\\
\text { via orthogonalization: } & \left|j_{1}+j_{2}-1, j_{1}+j_{2}-2\right\rangle . \tag{3.55}
\end{align*}
$$

\hookrightarrow Express them in terms of $\left|j_{1}, j_{2} ; j_{1}-2, j_{2}\right\rangle$,

$$
\begin{aligned}
& \left|j_{1}, j_{2} ; j_{1}-1, j_{2}-1\right\rangle \\
& \left|j_{1}, j_{2} ; j_{1}, j_{2}-2\right\rangle
\end{aligned}
$$

$\Rightarrow 9 \mathrm{CG}$ coefficients with $m=j_{1}+j_{2}-2$.
Graphical illustration:

- Step k : $m=m_{\text {max }}-k$.

Construct $k+1$ states:

$$
\begin{align*}
J_{-}\left|j_{1}+j_{2}, j_{1}+j_{2}-k+1\right\rangle & \propto\left|j_{1}+j_{2}, j_{1}+j_{2}-k\right\rangle=\ldots \tag{3.56}\\
\vdots & \vdots \tag{3.57}\\
J_{-}\left|j_{1}+j_{2}-k+1, j_{1}+j_{2}-k+1\right\rangle & \propto\left|j_{1}+j_{2}-k+1, j_{1}+j_{2}-k\right\rangle=\ldots \tag{3.58}\\
\text { via orthogonalization: } & \left|j_{1}+j_{2}-k, j_{1}+j_{2}-k\right\rangle .
\end{align*}
$$

But: $\quad m_{1,2}$ values: $\quad m_{1}=j_{1}-k \stackrel{!}{\geq}-j_{1}, \quad m_{2}=j_{2}$

$$
\begin{array}{ll}
m_{1}=j_{1}, & m_{2}=j_{2}-k \geq \\
\Rightarrow k \leq \min \left(2 j_{1}, 2 j_{2}\right) .
\end{array}
$$

Otherwise there cannot be a new state with $j=j_{1}+j_{2}-k$!

$$
\begin{equation*}
\Rightarrow j_{\min }=j_{1}+j_{2}-\min \left(2 j_{1}, 2 j_{2}\right)=\left|j_{1}-j_{2}\right| . \tag{3.59}
\end{equation*}
$$

- Further steps analogously until $m=-m_{\max }=m_{\min }$, but no new states via orthogonalization for $m<\left|j_{1}-j_{2}\right|$.

$$
\begin{aligned}
& \text { \# states }=\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}(2 j+1)=\sum_{j=0}^{j_{1}+j_{2}} 2 j-\sum_{j=0}^{\left|j_{1}-j_{2}\right|-1} 2 j+j_{1}+j_{2}-\left(\left|j_{1}-j_{2}\right|-1\right) \\
& =\left(j_{1}+j_{2}\right)\left(j_{1}+j_{2}-1\right)-\left(\left|j_{1}-j_{2}\right|-1\right)\left|j_{1}-j_{2}\right|+j_{1}+j_{2}-\left(\left|j_{1}-j_{2}\right|-1\right) \\
& \quad=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right) . \quad \#
\end{aligned}
$$

Example: $\quad j_{1}=\frac{1}{2}, j_{2}=1 . \quad \Rightarrow j=\frac{3}{2}, \frac{1}{2}$.
Bases:

$$
\begin{aligned}
\left.\left.\| m_{1}, m_{2}\right\rangle\right\rangle \equiv\left|\frac{1}{2}, 1 ; m_{1}, m_{2}\right\rangle: & m_{1}= \pm \frac{1}{2}, m_{2}=0, \pm 1, \\
|j, m\rangle: & j=\frac{3}{2}, m= \pm \frac{3}{2}, \pm \frac{1}{2} ; \\
& j=\frac{1}{2}, m= \pm \frac{1}{2} .
\end{aligned}
$$

Construction of states:

$$
\left.\left.\begin{array}{rl}
m=\frac{3}{2}: & \left|\frac{3}{2}, \frac{3}{2}\right\rangle
\end{array}=\| \frac{1}{2}, 1\right\rangle\right\rangle, \quad \text { highest-weight state. }
$$

Clebsch-Gordan series:

Matrix notation:

$$
A^{(j)}=C^{(j) \dagger} A^{\left(j_{1} \otimes j_{2}\right)} C^{(j)}, \quad|j, j\rangle=\left(\begin{array}{c}
1 \tag{3.68}\\
0 \\
\vdots
\end{array}\right), \quad|j, j-1\rangle=\left(\begin{array}{c}
0 \\
1 \\
\vdots
\end{array}\right), \quad \text { etc. }
$$

Block structure of $\oplus_{j} A^{(j)}=\oplus_{j}\left(\vec{J}^{(j)}\right)^{2}, \oplus_{j} J_{3}^{(j)}, \oplus_{j} J_{ \pm}^{(j)}: \quad\left(j_{\max }=j_{1}+j_{2}, j_{\text {min }}=\left|j_{1}-j_{2}\right|\right)$

$$
\begin{aligned}
\oplus_{j=j_{\min }}^{j_{\max }}\left(\vec{J}^{(j)}\right)^{2} & =\left(\begin{array}{cccc}
\left(\vec{J}^{\left(j_{\max }\right)}\right)^{2} & & \\
& \left(\vec{J}^{\left(j_{\max }-1\right)}\right)^{2} & & \\
& & \ddots & \\
& & & \left(\vec{J}^{\left(j_{\min }\right)}\right)^{2}
\end{array}\right), \quad\left(\vec{J}^{(j)}\right)^{2}=j(j+1) \cdot \mathbb{1}_{2 j+1}, \\
& =\text { diagonal, }
\end{aligned}
$$

$$
\oplus_{j=j_{\min }}^{j_{\max }} J_{3}^{(j)}=\left(\begin{array}{cccc}
J_{3}^{\left(j_{\max }\right)} & & & \\
& J_{3}^{\left(j_{\max }-1\right)} & & \\
& & \ddots & \\
& & & J_{3}^{\left(j_{\min }\right)}
\end{array}\right), \quad J_{3}^{(j)}=\operatorname{diag}(j, j-1, \ldots,-j)
$$

$$
=\text { diagonal, }
$$

$$
\oplus_{j=j_{\min }}^{j_{\max }} J_{ \pm}^{(j)}=\left(\begin{array}{cccc}
J_{ \pm}^{\left(j_{\max }\right)} & & & \\
& J_{ \pm}^{\left(j_{\max }-1\right)} & & \\
& & \ddots & \\
& & & J_{ \pm}^{\left(j_{\min }\right)}
\end{array}\right), \quad J_{ \pm}^{(j)}=(2 j+1) \times(2 j+1) \text { matrix }
$$

= block-diagonal.
\Rightarrow CG decomposition of $D^{\left(j_{1}\right)} \otimes D^{\left(j_{2}\right)}$:

$$
\begin{align*}
C^{\dagger}\left[D^{\left(j_{1}\right)} \otimes D^{\left(j_{2}\right)}\right] C & =\oplus_{j=j_{\min }}^{j_{\max }} D^{(j)}, \quad D^{(j)}=\text { irreducible }, \\
D^{\left(j_{1}\right)} \otimes D^{\left(j_{2}\right)} & \simeq D^{\left(j_{1}+j_{2}\right)} \oplus \cdots \oplus D^{\left(\left|j_{1}-j_{2}\right|\right)} \tag{3.70}
\end{align*}
$$

$$
\begin{align*}
& |j, m\rangle=\sum_{\substack{m_{1} \\
\left(m_{2}=m-m_{1}\right)}}\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle \underbrace{\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j, m\right\rangle}_{\equiv C_{m_{1} m}^{(j)},} . \tag{3.66}\\
& C=C^{\left(j_{1}+j_{2}\right)} \oplus \cdots \oplus C^{\left(\left|j_{1}-j_{2}\right|\right)}=\text { unitary } \\
& \Rightarrow\left\langle j, m^{\prime}\right| A|j, m\rangle=\sum_{\substack{m_{1} \\
\left(m_{2}=m-m_{1}\right)}}\left\langle j, m^{\prime}\right| A\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle C_{m_{1} m}^{(j)} \\
& =\sum_{\substack{\left.m_{1}, m_{1}^{\prime} \\
\text { (ma } \\
m_{2}^{\prime}=m_{2}-m_{1} \\
m_{2}^{\prime}-m_{1}^{\prime}\right)}} C_{m_{1}^{\prime} m^{\prime}}^{(j) *}\left\langle j_{1}, j_{2} ; m_{1}^{\prime}, m_{2}^{\prime}\right| A\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle C_{m_{1} m}^{(j)} \tag{3.67}
\end{align*}
$$

3.5 Irreducible tensors, Wigner-Eckart theorem

Tensor operators in QM: (recap)

Let $U(\vec{\theta})$ be the rotation operator on some Hilbert space \mathcal{H} of qm. states $|\psi\rangle$:

$$
\begin{align*}
& |\psi\rangle \underset{R}{\longrightarrow}\left|\psi^{\prime}\right\rangle=U(\vec{\theta})|\psi\rangle, \tag{3.71}\\
& |\vec{x}\rangle \underset{R}{\longrightarrow}\left|\vec{x}^{\prime}\right\rangle=U(\vec{\theta})|\vec{x}\rangle=\underbrace{|R \vec{x}\rangle, \quad R=R(\vec{\theta})=\text { rotation matrix }}_{\text {defines the geometrical meaning of } U(\vec{\theta})}, \tag{3.72}\\
& \Rightarrow \hat{\vec{x}}^{\prime}=U(\vec{\theta}) \hat{\vec{x}} U(\vec{\theta})^{\dagger}=U(\vec{\theta}) \hat{\vec{x}} U(\vec{\theta})^{\dagger} \underbrace{\int \mathrm{d}^{3} \vec{x}|\vec{x}\rangle\langle\vec{x}|}_{=\mathbb{1}} \\
& \quad=\int \mathrm{d}^{3} \vec{x} U(\vec{\theta}) \hat{\vec{x}}\left|R^{-1} \vec{x}\right\rangle\langle\vec{x}|=\int \mathrm{d}^{3} \vec{x} U(\vec{\theta}) R^{-1} \vec{x}\left|R^{-1} \vec{x}\right\rangle\langle\vec{x}| \\
& \quad=\int \mathrm{d}^{3} \vec{x} R^{-1} \vec{x}|\vec{x}\rangle\langle\vec{x}|=R^{-1} \hat{\vec{x}} \int \mathrm{~d}^{3} \vec{x}|\vec{x}\rangle\langle\vec{x}|=R^{-1} \hat{\vec{x}} . \tag{3.73}
\end{align*}
$$

Vector and (rank- n) tensor operators defined by analogous behaviour under rotations:

$$
\begin{align*}
\hat{\vec{v}}^{\prime} & =U(\vec{\theta}) \hat{\vec{v}} U(\vec{\theta})^{\dagger}=R^{-1} \hat{\vec{v}}, \tag{3.74}\\
T_{a_{1} \ldots a_{n}}^{\prime} & =U(\vec{\theta}) T_{a_{1} \ldots a_{n}} U(\vec{\theta})^{\dagger}=\sum_{a_{1}^{\prime}, \ldots, a_{n}^{\prime}}\left(R^{-1}\right)_{a_{1} a_{1}^{\prime}} \cdots\left(R^{-1}\right)_{a_{n} a_{n}^{\prime}} T_{a_{1}^{\prime} \ldots a_{n}^{\prime}} . \tag{3.75}
\end{align*}
$$

Infinitesimal rotations:

$$
\begin{align*}
& U(\delta \vec{\theta})=\mathbb{1}-\mathrm{i} \delta \vec{\theta} \vec{J}+\ldots, \tag{3.76}\\
& R(\delta \vec{\theta})=\mathbb{1}-\mathrm{i} \delta \vec{\theta} \vec{J}^{(R)}+\ldots, \quad\left(J_{a}^{(R)}\right)_{b c}=-\mathrm{i} \epsilon_{a b c} \tag{3.77}
\end{align*}
$$

\Rightarrow Transformation property (3.75) implies commutation relations: $\quad\left(\hat{v}_{a} \equiv T_{a}\right)$

$$
\begin{equation*}
\left[J_{a}, T_{a_{1} \ldots a_{n}}\right]=\mathrm{i} \sum_{a_{1}^{\prime}} \epsilon_{a a_{1} a_{1}^{\prime}} T_{a_{1}^{\prime} \ldots a_{n}}+\cdots+\mathrm{i} \sum_{a_{n}^{\prime}} \epsilon_{a a_{n} a_{n}^{\prime}} T_{a_{1} \ldots a_{n}^{\prime}} \tag{3.78}
\end{equation*}
$$

Note: Cartesian tensors $T_{a_{1} \ldots a_{n}}$ in general have the flaw of being reducible.
Example: rank-2 tensor $T_{a b}$.

$$
\begin{equation*}
T_{a b}=\underbrace{\frac{1}{3} \operatorname{Tr}(T)}_{\equiv S_{0}} \delta_{a b}+\underbrace{\frac{1}{2}\left(T_{a b}-T_{b a}\right)}_{\equiv A_{a b}}+\underbrace{\left[\frac{1}{2}\left(\left(T_{a b}+T_{b a}\right)-\frac{1}{3} \operatorname{Tr}(T) \delta_{a b}\right]\right.}_{\equiv S_{a b}} . \tag{3.79}
\end{equation*}
$$

The parts $S_{0}, A_{a b}, S_{a b}$ transform independently:

- $S_{0}=\operatorname{Tr}(T)=\sum_{a} T_{a a}=$ invariant, i.e. S_{0} defines a "scalar".
- $A_{a b}=$ antisymmetric, i.e. $A_{a} \equiv \sum_{c, b} \epsilon_{a b c} A_{b c}$ defines a (pseudo)vector.
- $S_{a b}=$ traceless symmetric $=$ irreducible rank-2 part of T.

Irreducible (spherical) tensors:

\hookrightarrow Definition via irreducible $\mathrm{SU}(2)$ representations $D^{(j)}$:
A set of $(2 j+1)$ operators $T_{m}^{(j)}(m=-j,-j+1, \ldots, j)$ for a fixed $j=0, \frac{1}{2}, 1, \ldots$ is called "irreducible (spherical) tensor operator" of rank j if it behaves as

$$
T^{(j) \prime}=U(\vec{\theta}) T^{(j)} U(\vec{\theta})^{\dagger}=D^{(j)}(\vec{\theta})^{\mathrm{T}} T^{(j)}, \quad T^{(j)} \equiv\left(\begin{array}{c}
T_{+j}^{(j)} \tag{3.80}\\
\vdots \\
T_{-j}^{(j)}
\end{array}\right)
$$

\hookrightarrow Irreducibility is implied by the irred. of $D^{(j)}$, i.e. all components $T_{m}^{(j)}$ can be obtained from a single component via symmetry relations (rotations).

Construction of spherical from cartesian tensors:

Recall spherical harmonics $Y_{l m}$ (which transform like spherical tensors!):

$$
\begin{align*}
Y_{l m}(\vartheta, \varphi) & =\langle\vec{e} \mid l, m\rangle, \quad \vec{e}=\text { unit vector with polar coordinates } \vartheta, \varphi \tag{3.81}\\
Y_{l m}\left(\vartheta^{\prime}, \varphi^{\prime}\right) & =\langle\vec{e}| U(\vec{\theta})|l, m\rangle \quad\left(\vartheta^{\prime}, \varphi^{\prime} \text { correspond to } \vec{e}^{\prime}=R^{-1} \vec{e} .\right) \\
& =\sum_{m^{\prime}}\left\langle\vec{e} \mid l, m^{\prime}\right\rangle\left\langle l, m^{\prime}\right| U(\vec{\theta})|l, m\rangle, \quad \sum_{m^{\prime}}\left|l, m^{\prime}\right\rangle\left\langle l, m^{\prime}\right|=\mathbb{1}_{2 l+1} \text { on } D^{(l)} \\
& =\sum_{m^{\prime}} Y_{l m^{\prime}}(\vartheta, \varphi) D_{m^{\prime} m}^{(l)}(\vec{\theta})=\sum_{m^{\prime}} D_{m m^{\prime}}^{(l)}(\vec{\theta})^{\mathrm{T}} Y_{l m^{\prime}}(\vartheta, \varphi) \tag{3.82}
\end{align*}
$$

Note: $\quad r^{l} Y_{l m}(\vartheta, \varphi)=$ homogeneous polynomial of degree l in coordinates x_{1}, x_{2}, x_{3}, where $\vec{x}=r \vec{e}=\left(x_{1}, x_{2}, x_{3}\right)^{\mathrm{T}}$.

Procedure to construct $T_{m}^{(l)}$ out of some given $T_{a_{1} \ldots a_{l}}$:
Calculate symmetrized version $\bar{T}_{a_{1} \ldots a_{l}}$ of $T_{a_{1} \ldots a_{l}}$ and define

$$
\begin{equation*}
T_{m}^{(l)}=\underbrace{\left.\sqrt{\frac{4 \pi}{2 l+1}} r^{l} Y_{l m}(\vartheta, \varphi)\right|_{x_{a_{1} \cdots x_{a_{l}} \rightarrow \bar{T}_{a_{1} \ldots a_{l}}}} ~ . ~}_{\text {or any other normalization }} \tag{3.83}
\end{equation*}
$$

(Symmetrization of T necessary to obtain a unique correspondence!)
Proof of irreducibility:

$$
\begin{aligned}
T_{m}^{(l) \prime} & =U(\vec{\theta}) T_{m}^{(l)} U(\vec{\theta})^{\dagger}=\left.\sqrt{\frac{4 \pi}{2 l+1}} r^{l} Y_{l m}(\vartheta, \varphi)\right|_{x_{a_{1} \ldots x_{a_{l}} \rightarrow \bar{T}_{a_{1} \ldots a_{l}}^{\prime}}=\sum_{a_{1}^{\prime}, \ldots, a_{l}^{a_{l}}}(R-1)_{a_{1} a_{1}^{\prime}} \ldots \bar{T}_{a_{1} \ldots a_{l}}} \\
& =\left.\sqrt{\frac{4 \pi}{2 l+1}} r^{l} Y_{l m}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\right|_{x_{a_{1} \cdots x_{a_{l}} \rightarrow \bar{T}_{a_{1} \ldots a_{l}}}} \\
& =\left.\sqrt{\frac{4 \pi}{2 l+1}} r^{l} \sum_{m^{\prime}} D_{m m^{\prime}}^{(l)}(\vec{\theta})^{\mathrm{T}} Y_{l m^{\prime}}(\vartheta, \varphi)\right|_{x_{a_{1} \cdots x_{a_{l}} \rightarrow \bar{T}_{a_{1} \ldots a_{l}}}=\sum_{m^{\prime}} D_{m m^{\prime}}^{(l)}(\vec{\theta})^{\mathrm{T}} T_{m^{\prime} .}^{(l)} \quad \#}
\end{aligned}
$$

Examples:

- $l=0: \quad T_{0}=$ scalar $\rightarrow T^{(0)}, \quad \sqrt{4 \pi} r^{0} Y_{00} \equiv 1$, trivial case!
- $l=1: \quad \vec{T}=\left(T_{a}\right)=$ vector $\rightarrow T^{(1)}$.

$$
\begin{array}{ll}
\sqrt{\frac{4 \pi}{3}} r^{1} Y_{1, \pm 1}=\mp\left(x_{1} \pm \mathrm{i} x_{2}\right) / \sqrt{2} & \\
\rightarrow \mp\left(T_{1} \pm \mathrm{i} T_{2}\right) / \sqrt{2} \equiv T_{ \pm 1}^{(1)} \tag{3.84}\\
\sqrt{\frac{4 \pi}{3}} r^{1} Y_{1,0}=x_{3} &
\end{array} T_{3} \equiv T_{0}^{(1)} .
$$

- $l=2: \quad T_{a b}=$ rank-2 tensor $\rightarrow T^{(2)}$.

$$
\begin{align*}
\sqrt{\frac{4 \pi}{5}} r^{2} Y_{2, \pm 2} & =\sqrt{\frac{3}{8}}\left(x_{1}^{2}-x_{2}^{2} \pm 2 \mathrm{i} x_{1} x_{2}\right) & & \rightarrow \sqrt{\frac{3}{8}}\left[T_{11}-T_{22} \pm \mathrm{i}\left(T_{12}+T_{21}\right)\right] \equiv T_{ \pm 2}^{(2)} \\
\sqrt{\frac{4 \pi}{5}} r^{2} Y_{2, \pm 1} & =\mp \sqrt{\frac{3}{2}}\left(x_{1} \pm \mathrm{i} x_{2}\right) x_{3} & & \rightarrow \mp \sqrt{\frac{3}{8}}\left[T_{13}+T_{31} \pm \mathrm{i}\left(T_{23}+T_{32}\right)\right] \equiv T_{ \pm 1}^{(2)} \\
\sqrt{\frac{4 \pi}{5}} r^{2} Y_{2,0} & =\frac{1}{2}\left(2 x_{3}^{2}-x_{1}^{2}-x_{2}^{2}\right) & & \rightarrow \frac{1}{2}\left(2 T_{33}-T_{11}-T_{22}\right) \equiv T_{0}^{(2)} \tag{3.85}
\end{align*}
$$

Commutator relations for $T^{(j)}$ from infinitesimal rotations:

$$
\begin{align*}
U(\delta \vec{\theta}) & =\mathbb{1}-\mathrm{i} \delta \vec{\theta} \vec{J}+\ldots, \\
D^{(j)}(\delta \vec{\theta}) & =\mathbb{1}-\mathrm{i} \delta \vec{\theta} \vec{J}^{(j)}+\ldots \tag{3.86}\\
\Rightarrow\left[\vec{J}, T_{m}^{(j)}\right] & =\sum_{m^{\prime}} T_{m^{\prime}}^{(j)} \underbrace{\vec{J}_{m^{\prime} m}^{(j)}}, \\
{\left[J_{3}, T_{m}^{(j)}\right] } & =m T_{m}^{(j)}, \quad\left[J_{ \pm}, T_{m}^{(j)}\right]=\sqrt{j(j+1)-m(m \pm 1)} T_{m \pm 1}^{(j)} . \tag{3.87}
\end{align*}
$$

Compare with

$$
\begin{equation*}
J_{3}|j, m\rangle=m|j, m\rangle, \quad J_{ \pm}|j, m\rangle=\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle . \tag{3.88}
\end{equation*}
$$

$\Rightarrow T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle$ behaves under rotations like $\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle$:

$$
\begin{align*}
\vec{J} T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle= & {\left[\vec{J}, T_{m_{1}}^{\left(j_{1}\right)}\right]\left|j_{2}, m_{2}\right\rangle+T_{m_{1}}^{\left(j_{1}\right)} \vec{J}\left|j_{2}, m_{2}\right\rangle, } \\
J_{3} T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle= & \left(m_{1}+m_{2}\right) T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle, \\
J_{ \pm} T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle= & \sqrt{j_{1}\left(j_{1}+1\right)-m_{1}\left(m_{1} \pm 1\right)} T_{m_{1} \pm 1}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle \\
& +\sqrt{j_{2}\left(j_{2}+1\right)-m_{2}\left(m_{2} \pm 1\right)} T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2} \pm 1\right\rangle . \tag{3.89}
\end{align*}
$$

Wigner-Eckart theorem

The matrix elements of an irreducible tensor operator $T_{m}^{(j)}$ between angular momentum eigenstates $|\alpha, j, m\rangle$ obey: $\quad\left(\alpha^{(1)}=\right.$ remaining quantum numbers $)$

$$
\langle\alpha, j, m| T_{m_{1}}^{\left(j_{1}\right)}\left|\alpha^{\prime}, j_{2}, m_{2}\right\rangle=\underbrace{\left\langle j, m \mid j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle}_{\text {CG coefficient }} \cdot \frac{\left\langle\alpha, j\left\|T^{\left(j_{1}\right)}\right\| \alpha^{\prime}, j_{2}\right\rangle}{\sqrt{2 j+1}},
$$

$$
\left\langle\ldots\left\|T^{\left(j_{1}\right)}\right\| \ldots\right\rangle=\text { "reduced matrix element", }
$$ independent of m, m_{1}, m_{2}

Proof based on the analogy between $T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle$ and $\left.\ j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle$:
\Rightarrow Modify recursive calculation of CG coefficients described in Section 3.4:

- Procedure for each j-value:

Construct $\{|j, m\rangle\}_{m=j, j-1, \ldots,-j}$ for $j=j_{1}+j_{2}$, then $j=j_{1}+j_{2}-1, \ldots, j=\left|j_{1}-j_{2}\right|$.
Previously: $|j, m\rangle$ expressed in terms of $\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle$.
Now: $|j, m\rangle$ expressed in terms of $T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle$.

- Highest m-values for fixed j :

Previously: $|j, m=j\rangle$ fixed up to phase choice in terms of $\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle$, e.g.
$\left|j_{1}+j_{2}, j_{1}+j_{2}\right\rangle \equiv\left|j_{1}, j_{2} ; m_{1}=j_{1}, m_{2}=j_{2}\right\rangle$, $\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle \perp$ known $\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle$, etc.
Now: $|j, m=j\rangle$ fixed by $T_{m_{1}=j_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}=j_{2}\right\rangle$ up to some constant $A(j)$, since there is no canonical normalization of $T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle$
(in contrast to $\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle$).

- Lower m-values for fixed j :

Previously: Evaluate $J_{-}^{j-m}|j, j\rangle$ to derive relation:

$$
|j, m\rangle=\sum_{m_{1}, m_{2}}\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle \underbrace{\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j, m\right\rangle}_{\text {explicitly constructed }} .
$$

Now: The same procedure applied to $J_{-}^{j-m}|j, j\rangle \cdot A(j)$ yields

$$
\begin{equation*}
A(j)|j, m\rangle=\sum_{m_{1}, m_{2}} T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j, m\right\rangle \tag{3.91}
\end{equation*}
$$

- Solve (3.91) for $\left\langle j, m^{\prime}\right| T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle$ upon evaluating $\left\langle j, m^{\prime}\right| \cdot(3.91)$:

$$
A(j) \delta_{m m^{\prime}}=\sum_{m_{1}, m_{2}}\left\langle j, m^{\prime}\right| T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j, m\right\rangle
$$

and calculating $\sum_{m}\left\langle j, m \mid j_{1}, j_{2} ; m_{1}^{\prime}, m_{2}^{\prime}\right\rangle \cdots$:

$$
\begin{aligned}
& A(j)\left\langle j, m^{\prime} \mid j_{1}, j_{2} ; m_{1}^{\prime}, m_{2}^{\prime}\right\rangle= \sum_{m_{1}, m_{2}}\left\langle j, m^{\prime}\right| T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle \\
& \times \underbrace{\sum_{m}\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j, m\right\rangle\left\langle j, m \mid j_{1}, j_{2} ; m_{1}^{\prime}, m_{2}^{\prime}\right\rangle}_{=\delta_{m_{1} m_{1}^{\prime}} \delta_{m_{2} m_{2}^{\prime}}} \\
&=\left\langle j, m^{\prime}\right| T_{m_{1}^{\prime}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}^{\prime}\right\rangle .
\end{aligned}
$$

\Rightarrow WE theorem $\left(A(j) \rightarrow\right.$ reduced matrix element; α, α^{\prime} suppressed in notation).

Implications of the WE theorem:

- Qm. transition probabilities from some state $\left|j_{2}, m_{2}\right\rangle \rightarrow|j, m\rangle$ typically ruled by matrix elements such as
$\langle j, m| \underbrace{T_{m_{1}}^{\left(j_{1}\right)}}_{\text {operator for interaction }}\left|j_{2}, m_{2}\right\rangle=0 \quad$ if $\underbrace{m \neq m_{1}+m_{2} \text { or } j \neq j_{1}+j_{2}, j_{1}+j_{2}-1, \ldots,\left|j_{1}-j_{2}\right|}_{\text {selection rules implied by the WE theorem }}$. driving the transition
E.g. $T^{\left(j_{1}\right)}=\operatorname{scalar} T^{(0)}$: only $j=j_{2}$ "allowed", $T^{\left(j_{1}\right)}=$ vector $T^{(1)}: \quad$ only $j=j_{2}, j_{2} \pm 1$.
- Relative strengths of transition matrix elements entirely given by CG coefficients:

$$
\begin{equation*}
\left|\frac{\langle j, m| T_{m_{1}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}\right\rangle}{\left\langle j, m^{\prime}\right| T_{m_{1}^{\prime}}^{\left(j_{1}\right)}\left|j_{2}, m_{2}^{\prime}\right\rangle}\right|=\left|\frac{\left\langle j, m \mid j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle}{\left\langle j, m^{\prime} \mid j_{1}, j_{2} ; m_{1}^{\prime}, m_{2}^{\prime}\right\rangle}\right| . \tag{3.93}
\end{equation*}
$$

3.6 Tensors of $\mathrm{SO}(\mathrm{N})$

Definition: $\mathrm{SO}(N), N \in \mathbb{N}$, is the group of real orthogonal $N \times N$ matrices $R, R^{\mathrm{T}} R=\mathbb{1}_{N}$, with $\operatorname{det} R=1$ ("defining representation").
The matrices R form an N-dimensional (irreducible for $N>2$) representation on the vector space $V=\mathbb{R}^{N}$:

$$
\begin{equation*}
v \in V: v^{i} \rightarrow v^{\prime i}=R^{i j} v^{j} . \tag{3.94}
\end{equation*}
$$

A tensor $T^{i_{1} \ldots i_{r}}$ of rank r transforms like the tensor product of r vectors:

$$
\begin{equation*}
T^{i_{1} \ldots i_{r}} \rightarrow T^{\prime i_{1} \ldots i_{r}}=R^{i_{1} j_{1}} \ldots R^{i_{r} j_{r}} T^{j_{1} \ldots j_{r}} . \tag{3.95}
\end{equation*}
$$

Properties:

- The tensor product of two tensors of ranks r_{1} and r_{2},

$$
\begin{equation*}
T_{3}^{i_{1} \ldots i_{r_{1}+r_{2}}}=T_{1}^{i_{1} \ldots i_{r_{1}}} T_{2}^{i_{1}+\ldots i_{r_{1}+r_{2}}} \tag{3.96}
\end{equation*}
$$

transforms as a tensor of rank $r_{1}+r_{2}$.

- The contraction $\sum_{j} T^{i_{1} \ldots j \ldots j \ldots i_{r}}$ of a rank-r tensor transforms as a tensor of rank $r-2$.
- The components of $T^{i_{1} \ldots i_{r}}$ furnish an N^{r}-dimensional representation D of $\operatorname{SO}(N)$:

$$
\begin{equation*}
\vec{T}=\left(T^{1 \ldots 11}, T^{1 \ldots 12}, \ldots, T^{N \ldots N N}\right)^{\mathrm{T}}: \quad \vec{T}^{a} \rightarrow \vec{T}^{\prime a}=D^{a b} \vec{T}^{b}, \quad a, b=1, \ldots, N^{r} . \tag{3.97}
\end{equation*}
$$

"Invariant symbols" are tensors that are invariant under group transformations (in a more general context "relative tensors", i.e. they receive a factor $(\operatorname{det} R)^{w}$ with some "weight" w when transformed by R). Invariant symbols follow from the defining properties of R :

- $R R^{\mathrm{T}}=\mathbb{1} \Rightarrow\left(\delta^{\prime}\right)^{i j}=R^{i k} R^{j l} \delta^{k l}=R^{i k} R^{j k}=R^{i k}\left(R^{\mathrm{T}}\right)^{k j}=\delta^{i j}$,
- $1=\operatorname{det} R=R^{1 i_{1}} \ldots R^{N i_{N}} \epsilon^{i_{1} \ldots i_{N}} \quad \Rightarrow \quad\left(\epsilon^{\prime}\right)^{i_{1} \ldots i_{N}} \equiv R^{i_{1} j_{1}} \ldots R^{i_{N} j_{N}} \epsilon^{j_{1} \ldots j_{N}}=\epsilon^{i_{1} \ldots i_{N}}$.

Example: Reducibility of rank-2 tensors
The representations under which tensors of rank $r>1$ transform are reducible. A rank-2 tensor $T^{i j}$ can be decomposed according to

$$
\begin{align*}
T^{i j} & =S^{i j}+A^{i j}+\frac{1}{N} \delta^{i j} S_{0} & \text { with } & \tag{3.98}\\
S^{i j} & =\frac{1}{2}\left(T^{i j}+T^{j i}\right)-\frac{1}{N} \delta^{i j} S_{0} & & \text { symmet } \\
A^{i j} & =\frac{1}{2}\left(T^{i j}-T^{j i}\right) & & \text { antisym } \\
S_{0} & =T^{i i} & & \text { scalar. }
\end{align*}
$$

$$
S^{i j}=\frac{1}{2}\left(T^{i j}+T^{j i}\right)-\frac{1}{N} \delta^{i j} S_{0} \quad \text { symmetric and traceless, }
$$

$$
A^{i j}=\frac{1}{2}\left(T^{i j}-T^{j i}\right) \quad \text { antisymmetric }
$$

The $S^{i j}, A^{i j}$, and S_{0} parts span invariant subspaces under group transformations: $T^{i j} \pm T^{j i} \rightarrow R^{i k} R^{j l}\left(T^{k l} \pm T^{l k}\right)$. The representation decomposes as

$$
\begin{equation*}
\underbrace{N \otimes N}_{\text {general rank } 2}=\underbrace{\left(\frac{1}{2} N(N+1)-1\right)}_{\text {sym. traceless }} \oplus \underbrace{\frac{1}{2} N(N-1)}_{\text {antisym. }} \oplus \underbrace{1}_{\text {trace }} \tag{3.99}
\end{equation*}
$$

For higher ranks, the symmetry patterns become more complicated. A full classification is possible in the formalism of "Young tableaux" which are related to the representations of the symmetric groups S_{r} (see, e.g., Chapter 5 in [9]).
Dual, self-dual, and anti-self-dual tensors
For a totally antisymmetric tensor $A^{i_{1} \ldots i_{r}}$, its dual tensor $\tilde{A}^{i_{1} \ldots i_{N-r}}$ is defined as

$$
\begin{equation*}
\tilde{A}^{i_{1} \ldots i_{N-r}}=\frac{1}{r!} \epsilon^{i_{1} \ldots i_{N}} A^{i_{N-r+1} \ldots i_{N}} \tag{3.100}
\end{equation*}
$$

and antisymmetric by construction. For $\mathrm{SO}(2 N)$, we can define the self-dual $(+)$ and anti-self-dual (-) tensors

$$
\begin{equation*}
T_{ \pm}^{i_{1} \ldots i_{N}}=\frac{1}{2}\left(A^{i_{1} \ldots i_{N}} \pm \tilde{A}^{i_{1} \ldots i_{N}}\right) \quad \Rightarrow \quad \tilde{T}_{ \pm}^{i_{1} \ldots i_{N}}= \pm T_{ \pm}^{i_{1} \ldots i_{N}} \tag{3.101}
\end{equation*}
$$

The self-dual and anti-self-dual tensors span invariant subspaces under group transformations.

Examples

- Special case $\mathrm{SO}(4)$: For $N=4$, the 6-dimensional representation furnished by an antisymmetric tensor $A^{i j}$ reduces to two 3 -dimensional representations:

$$
\underbrace{4 \otimes 4}_{\begin{array}{l}
\text { general } \tag{3.102}\\
\text { rank 2 }
\end{array}}=\underbrace{9}_{\begin{array}{c}
\text { sym. } \\
\text { trace- } \\
\text { less }
\end{array}} \oplus \underbrace{3}_{\begin{array}{c}
\text { self- } \\
\text { dual }
\end{array}} \oplus \underbrace{3}_{\begin{array}{c}
\text { anti- } \\
\text { self- } \\
\text { dual }
\end{array}} \oplus \underbrace{1}_{\text {trace }}
$$

This happens in a similar way (up to factors of i) in the Lorentz group $\mathrm{SO}(3,1)$:
Electromagnetic field strength tensor $F^{\mu \nu}$ and its dual $\tilde{F}^{\mu \nu} \rightarrow F_{ \pm}^{\mu \nu}=F^{\mu \nu} \pm \mathrm{i} \tilde{F}^{\mu \nu}$.

- Special case $\mathrm{SO}(3)$:

$$
A^{i j}=\left(\begin{array}{ccc}
0 & A^{3} & -A^{2} \tag{3.103}\\
-A^{3} & 0 & A^{1} \\
A^{2} & -A^{1} & 0
\end{array}\right) \quad \rightarrow \quad \frac{1}{2} \epsilon^{k i j} A^{i j}=\left(\begin{array}{c}
A^{1} \\
A^{2} \\
A^{3}
\end{array}\right)
$$

\Rightarrow It is always possible to trade a pair of antisymmetric indices for one index.
\Rightarrow It is sufficient to regard symmetric traceless tensors when studying irreducible representations of $\mathrm{SO}(3)$. Number of components:

Symmetric tensor of rank r : $\sum_{n_{1}=0}^{r} \sum_{n_{2}=0}^{r-n_{1}} 1=\frac{1}{2}(r+1)(r+2)$ components (n_{1} indices have the value $1, n_{2}$ the value $2, n_{3}=r-n_{1}-n_{2}$ the value 3).
Each pair of indices can be contracted. $\Rightarrow \frac{1}{2} r(r-1)$ trace conditions.
Traceless symmetric tensor: $\frac{1}{2}(r+1)(r+2)-\frac{1}{2} r(r-1)=2 r+1$ components $\left(\widehat{=} 2 l+1\right.$ components of a spherical tensor $\left.T^{(l)}\right)$.

The Lie algebra so(N)

As shown in Section 3.1, with the convention that $\operatorname{SO}(N)$ elements are expressed as $R=\exp \left\{-\mathrm{i} \theta_{a} J_{a}\right\}$, the generators J_{a} of $\mathrm{SO}(N)$ are hermitian and antisymmetric (i.e. i J_{a} is real and antisymmetric).
\Rightarrow There are $\frac{1}{2} N(N-1)$ generators. In the defining representation, the generators can be chosen as

$$
\begin{equation*}
J_{(m n)}^{i j}=\mathrm{i}\left(\delta^{m j} \delta^{n i}-\delta^{m i} \delta^{n j}\right), \tag{3.104}
\end{equation*}
$$

where $(m n), m>n$, takes the values $(m n) \equiv a=1, \ldots, \frac{1}{2} N(N-1)$, and $J_{(n m)}=-J_{(m n)}$. Lie algebra so (N) (independent of the representation!):

$$
\begin{equation*}
\left[J_{(m n)}, J_{(p q)}\right]=\mathrm{i}\left(\delta^{m p} J_{(n q)}+\delta^{n q} J_{(m p)}-\delta^{m q} J_{(n p)}-\delta^{n p} J_{(m q)}\right) \equiv \mathrm{i} f_{(m n)(p q) c} J_{c}, \tag{3.105}
\end{equation*}
$$

where the last equality defines the structure constants $f_{a b c}$.
Every antisymmetric tensor $A^{i j}$ can be expressed as $A^{i j}=\mathrm{i} \mathcal{A}_{a} J_{a}^{i j}, \mathcal{A}_{a} \in \mathbb{R}$, i.e. in a basis J_{a} of generators it can be represented by the coefficients \mathcal{A}_{a}.
\hookrightarrow How do the \mathcal{A}_{a} transform under an $\mathrm{SO}(N)$ transformation with group parameters θ_{a} ?

$$
\begin{equation*}
A^{\prime i j}=R^{i k}(\theta) R(\theta)^{j l} A^{k l}=R(\theta)^{i k} A^{k l}\left(R(\theta)^{-1}\right)^{l j} \quad \Rightarrow \quad A^{\prime}=R(\theta) A R(\theta)^{-1} . \tag{3.106}
\end{equation*}
$$

Transformation with infinitesimal θ_{a} :

$$
\begin{align*}
\delta A & =A^{\prime}-A=\left(\mathbb{1}-\mathrm{i} \theta_{a} J_{a}\right) A\left(\mathbb{1}+\mathrm{i} \theta_{b} J_{b}\right)-A=-\mathrm{i} \theta_{a}\left[J_{a}, A\right]=\theta_{a} \mathcal{A}_{b}\left[J_{a}, J_{b}\right] \\
& =\mathrm{i} \theta_{a} \mathcal{A}_{b} f_{a b c} J_{c} . \tag{3.107}
\end{align*}
$$

On the other hand, with $A^{\prime}=\mathrm{i} \mathcal{A}_{a}^{\prime} J_{a}$ and $\mathcal{A}_{a}^{\prime}=\mathcal{A}_{a}+\delta \mathcal{A}_{a}$,

$$
\begin{align*}
\delta A & =\mathrm{i} \mathcal{A}_{c}^{\prime} J_{c}-\mathrm{i} \mathcal{A}_{c} J_{c}=\mathrm{i} \delta \mathcal{A}_{c} J_{c} \\
\Rightarrow \quad \mathcal{A}_{c}^{\prime} & =\left(\delta_{c b}+\theta_{a} f_{a b c}\right) \mathcal{A}_{b} . \equiv\left(\delta_{c b}-\mathrm{i} \theta_{a}\left(F_{a}\right)_{c b}\right) \mathcal{A}_{b} \tag{3.108}
\end{align*}
$$

$\Rightarrow \mathcal{A}_{a}$ transforms under the adjoint representation with the generators

$$
\begin{equation*}
\left(F_{a}\right)_{b c}=\mathrm{i} f_{a c b}=-\mathrm{i} f_{a b c} . \tag{3.109}
\end{equation*}
$$

Example: so(4)

$\mathrm{SO}(4)$ has six generators:

$$
J_{(12)} \equiv J_{3}, \quad J_{(23)} \equiv J_{1}, \quad J_{(31)} \equiv J_{2}, \quad J_{(14)} \equiv K_{1}, \quad J_{(24)} \equiv K_{2}, \quad J_{(34)} \equiv K_{3} .
$$

The Lie algebra is (verify this!)

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=\mathrm{i} \epsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=\mathrm{i} \epsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=\mathrm{i} \epsilon_{i j k} J_{k} \tag{3.110}
\end{equation*}
$$

$\hookrightarrow J_{i}, i=1,2,3$, generate the $\mathrm{SO}(3)$ rotations in the $x_{1}-x_{2}-x_{3}$ space.
$\hookrightarrow K_{i}, i=1,2,3$, transform like the components of a vector $\vec{K} \in \mathrm{SO}(3)$.
Choose a new basis $T_{1, i}=\frac{1}{2}\left(J_{i}+K_{i}\right), T_{2, i}=\frac{1}{2}\left(J_{i}-K_{i}\right)$. Lie algebra in this basis:

$$
\begin{equation*}
\left[T_{1, i}, T_{1, j}\right]=\mathrm{i} \epsilon_{i j k} T_{1, k}, \quad\left[T_{2, i}, T_{2, j}\right]=\mathrm{i} \epsilon_{i j k} T_{2, k}, \quad\left[T_{1, i}, T_{2, j}\right]=0 \tag{3.111}
\end{equation*}
$$

\Rightarrow The Lie algebra so(4) falls apart into two $\mathrm{su}(2)$ algebras, $\mathrm{so}(4) \simeq \mathrm{su}(2) \times \operatorname{su}(2)$.
\Rightarrow The group $\mathrm{SO}(4)$ is locally isomorphic to $\mathrm{SU}(2) \times \mathrm{SU}(2)$
$(\mathrm{SU}(2) \times \mathrm{SU}(2)$ is a universal cover of $\mathrm{SO}(4))$.

3.7 Tensors of $\mathrm{SU}(\mathrm{N})$

Definition: $\operatorname{SU}(N), N \in \mathbb{N}$: the group of unitary $N \times N$ matrices $U, U^{\dagger} U=\mathbb{1}_{N}$, with $\operatorname{det} U=1$ ("defining representation").
The matrices U form an N-dimensional (irreducible for $N>1$) representation on the vector space $V=\mathbb{C}^{N}$:

$$
\begin{equation*}
u \in V: u^{i} \rightarrow u^{\prime i}=U^{i}{ }_{j} u^{j} . \tag{3.112}
\end{equation*}
$$

The transformations U leave the scalar product $v^{\dagger} u$ invariant:

$$
\begin{equation*}
v^{\dagger} u=v^{\dagger} U^{\dagger} U u \quad \Leftrightarrow \quad\left(v^{i}\right)^{*} u^{i}=\left(v^{i}\right)^{*}\left(U^{j}{ }_{i}\right)^{*} U^{j}{ }_{k} u^{k} \tag{3.113}
\end{equation*}
$$

$\Rightarrow v^{*}$ transforms with the complex conjugate representation $U^{*}:\left(v^{*}\right)^{i} \rightarrow\left(U^{*}\right)^{i}{ }_{j}\left(v^{*}\right)^{j}$.
\hookrightarrow Define $v_{i} \equiv\left(v^{*}\right)^{i}$ with a lower index. Lower indices transform with U^{*}, while upper indices transform with U. We can then write

$$
\begin{equation*}
v_{i}^{\prime} u^{\prime i}=\left(\left(U^{*}\right)^{i}{ }_{j}\left(v^{*}\right)^{j}\right)\left(U^{i}{ }_{k} u^{k}\right)=v_{j}\left(U^{\dagger}\right)^{j}{ }_{i} U^{i}{ }_{k} u^{k}=v_{i} u^{i}, \tag{3.114}
\end{equation*}
$$

where contractions are always performed between upper and lower indices (sometimes the notation $U_{i}{ }^{j} \equiv\left(U^{\dagger}\right)^{j}{ }_{i}$ is used so that $\left.v_{i}^{\prime}=U_{i}{ }^{j} v_{j}\right)$. Contractions $v^{i} u^{i}$ and $v_{i} u_{i}$ do not transform as scalars and are (in this sense) not defined.
Tensors of $\mathrm{SU}(N)$ can carry both upper and lower indices and transform as

$$
\begin{equation*}
T_{j_{1} \ldots j_{m}}^{i_{1} \ldots i_{n}} \rightarrow T_{j_{1} \ldots j_{m}}^{\prime i_{1} \ldots i_{n}}=U^{i_{1}}{ }_{k_{1}} \ldots U^{i_{n}}{ }_{k_{n}} T_{l_{1} \ldots l_{m}}^{k_{1} \ldots k_{n}}\left(U^{\dagger}\right)^{l_{1}}{ }_{j_{1}} \ldots\left(U^{\dagger}\right)^{l_{m}}{ }_{j_{m}} . \tag{3.115}
\end{equation*}
$$

Invariant symbols:

- $\left(U^{\dagger}\right)^{i}{ }_{j} U^{j}{ }_{k}=\delta_{k}^{i} \quad \Rightarrow \quad \delta_{k}^{i} \rightarrow \delta_{k}^{\prime i}=\left(U^{\dagger}\right)^{i}{ }_{j}{ }_{l}^{j} U^{l}{ }_{k}=\delta_{k}^{i}$.

There are no invariant symbols $\delta^{i j}$ and $\delta_{i j} \Rightarrow$ Traces wrt. two upper (rsp. two lower) indices do not transform as tensors.

- $\operatorname{det} U=1 \quad \Rightarrow \quad \epsilon^{i_{1} \ldots i_{N}} \rightarrow \epsilon^{i_{1} \ldots i_{N}}=U^{i_{1}}{ }_{j_{1}} \ldots U^{i_{N}}{ }_{j_{N}} \epsilon^{j_{1} \ldots j_{N}}=\epsilon^{i_{1} \ldots i_{N}}$.
- $\operatorname{det} U^{\dagger}=1 \Rightarrow \epsilon_{i_{1} \ldots i_{N}} \rightarrow \epsilon_{i_{1} \ldots i_{N}}^{\prime}=\epsilon_{j_{1} \ldots j_{N}}\left(U^{\dagger}\right)^{j_{1}}{ }_{i_{1}} \ldots\left(U^{\dagger}\right)^{j_{N}}{ }_{i_{N}}=\epsilon_{i_{1} \ldots i_{N}}$.

Special case $\mathrm{SU}(2)$:

- For $N=2, U(\vec{\phi})=\exp \{-\mathrm{i} \vec{\phi} \cdot \vec{\sigma} / 2\}$ and $U^{*}(\vec{\phi})=\exp \left\{\mathrm{i} \vec{\phi} \cdot \vec{\sigma}^{*} / 2\right\}$ are equivalent. For infinitesimal $\vec{\phi}$:

$$
\begin{aligned}
& U(\vec{\phi})^{i}{ }_{j}=\delta_{j}^{i}-\frac{\mathrm{i}}{2} \phi_{a}\left(\sigma_{a}\right)^{i}{ }_{j}, \quad U^{*}(\vec{\phi})_{i}{ }^{j}=\delta_{i}^{j}+\frac{\mathrm{i}}{2} \phi_{a}\left(\sigma_{a}^{*}\right)_{i}{ }^{j}=\epsilon_{i k} U(\vec{\phi})^{k}{ }_{l} \epsilon^{l j}, \\
& \text { because } \quad \epsilon_{i k}\left(\sigma_{a}\right)^{k}{ }_{l} \epsilon^{l j}=-\left(\sigma_{a}^{*}\right)_{i}{ }^{j} .
\end{aligned}
$$

$\Rightarrow \mathrm{SU}(2)$ is pseudoreal and has the antisymmetric invariant bilinear form $v^{\mathrm{T}} \epsilon u=$ $v^{j} \epsilon_{i j} u^{i}, \epsilon^{\mathrm{T}}=-\epsilon$.

- A tensor with n upper and m lower indices can always be expressed as an equivalent tensor with $n+m$ upper (or lower) indices:

$$
\begin{equation*}
T_{j_{1} \ldots j_{m}}^{i_{1} \ldots i_{n}} \rightarrow T^{i_{1} \ldots i_{n} j_{1} \ldots j_{m}}=T_{k_{1} \ldots k_{m}}^{i_{1} \ldots i_{n}}{ }^{j_{1} k_{1}} \ldots \epsilon^{j_{m} k_{m}} . \tag{3.117}
\end{equation*}
$$

- Antisymmetric contributions in any two indices span invariant subspaces: $\epsilon_{j k} T^{i_{1} \ldots j \ldots k_{i} i_{r}}$ transforms as a rank $r-2$ tensor.
- Number of independent components $T^{1 \ldots 1}, T^{1 \ldots 12}, \ldots, T^{1 \ldots 12 \ldots 2}, \ldots, T^{2 \ldots 2}$ of a symmetric tensor $T^{i_{1} \ldots i_{r}}: r+1$.

Special case $\operatorname{SU}(3)$:

- Similarly to $\mathrm{SO}(3), \epsilon^{i j k}$ can be used to trade two antisymmetric lower indices for one upper index (analogously for $\epsilon_{i j k}$), i.e. antisymmetric contributions can be expressed as symmetric tensors of lower rank.
\Rightarrow Tensors that are totally symmetric in all upper indices and in all lower indices always span invariant subspaces.
- The trace $\delta_{i_{1}}^{j_{1}} T_{j_{1} \ldots j_{m}}^{i_{1} \ldots i_{n}}$ (symmetry \Rightarrow all traces are equivalent) spans an invariant subspace.
- Number of components of a traceless tensor $T_{j_{1} \ldots j_{m}}^{i_{1} \ldots i_{n}}$ with all upper and all lower indices symmetric:

$$
\begin{align*}
& \underbrace{\frac{1}{2}(n+1)(n+2)}_{n \text { sym. upper ind. }} \cdot \underbrace{\frac{1}{2}(m+1)(m+2)}_{m \text { sym. lower ind. }}-\underbrace{\frac{1}{2} n(n+1) \cdot \frac{1}{2} m(m+1)}_{\text {trace, rank }(n-1, m-1) \text { sym. tensor }} \\
& =\frac{1}{2}(n+1)(m+1)(n+m+2) . \tag{3.118}
\end{align*}
$$

Dimensions of the irreducible representations (n, m) of $\mathrm{SU}(3)$ up to $m=n=3$:

(n, m)	$n=0$	1	2	3
$m=0$	1	3	6	10
1	3^{*}	8	15	24
2	6^{*}	15^{*}	27	42
3	10^{*}	24^{*}	42^{*}	64

Besides (n, m) the dimension can be used to label irreducible representations. Representations with $n<m$ are then labelled by $\operatorname{dim}(n, m)^{*}$ to distinguish them from (m, n), e.g. $(1,0) \equiv 3,(0,1) \equiv 3^{*} ;(m, n) \simeq(n, m)^{*}$.

- Clebsch-Gordan series for $\mathrm{SU}(3)$

Given two irreducible tensors $A_{\left\{j_{1} \ldots j_{m}\right\}}^{\left.\left\{i_{1}\right\} i_{n}\right\}}$ and $B_{\left\{j_{1} \ldots j_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n^{\prime}}\right\}}(\{\ldots\}$ means that the indices are totally symmetric). How does the tensor product $T_{\left\{k_{1} \ldots k_{m}\right\}\left\{1_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n}\right\}}=$ $A_{\left\{j_{1} \ldots j_{m}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}} B_{\left\{j_{1} \ldots j_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n^{\prime}}\right\}}$ decompose into irreducible representations?

1. Recursively take out all traces:

$$
\begin{aligned}
& \delta_{i_{1}}^{l_{1}} \int_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n^{\prime}}\right\}}, \quad \delta_{j_{1}}^{k_{1}} T_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n^{\prime}}\right\}}, \\
& \delta_{i_{1}}^{l_{1}} \delta_{i_{2}}^{l_{2}} T_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left.\left.\left\{i_{1}, i_{n}\right\}\right\} j_{1} \ldots j_{n^{\prime}}\right\}}, \quad \delta_{i_{1}}^{l_{1}} \delta_{j_{1}}^{k_{1}} T_{\left.\left\{k_{1} \ldots k_{m}\right\}\right\}}^{\left\{i_{1} \ldots i_{1} \ldots l_{1} \ldots j_{m^{\prime}}\right\}}, \quad \delta_{j_{1}}^{k_{1}} \delta_{j_{2}}^{k_{2}} T_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n^{\prime}}\right\}},
\end{aligned}
$$

\hookrightarrow Produces a traceless tensor $\tilde{T}_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{\left\{_{1} \ldots i_{n}\right\} j_{1} \ldots j_{n^{\prime}}\right\}}$ that transforms under a (reducible, because \tilde{T} is not yet totally symmetric) representation labelled by ($n, m ; n^{\prime}, m^{\prime}$).

$$
\begin{equation*}
\Rightarrow \quad(n, m) \otimes\left(n^{\prime}, m^{\prime}\right)=\bigoplus_{p=0}^{\min \left(n, m^{\prime}\right)} \bigoplus_{q=0}^{\min \left(n^{\prime}, m\right)}\left(n-p, m-q ; n^{\prime}-q, m^{\prime}-p\right) \tag{3.119}
\end{equation*}
$$

2. Recursively take out antisymmetric contributions from traceless tensors:

$$
\begin{aligned}
& \epsilon_{i_{1} j_{1} s_{1}} \tilde{T}_{\left\{k_{1} \ldots k_{m}\right\}\left\{i_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n^{\prime}}\right\}}, \quad \epsilon^{k_{1} l_{1} t_{1} 1_{1}} \tilde{T}_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n^{\prime}}\right\}}, \\
& \epsilon_{i_{1} j_{1} s_{1} s_{1}} \epsilon_{i_{2} j_{2} s_{2}} \tilde{T}_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n^{\prime}}\right\}}, \quad \epsilon^{k_{1} l_{1} t_{1}} \epsilon^{k_{2} l_{2} t_{2}} \tilde{T}_{\left\{k_{1} \ldots k_{m}\right\}\left\{l_{1} \ldots l_{m^{\prime}}\right\}}^{\left\{i_{1} \ldots i_{n}\right\}\left\{j_{1} \ldots j_{n^{\prime}}\right\}},
\end{aligned}
$$

Note that e.g. contraction with $\epsilon_{i_{1} j_{1} s_{1}}$ automatically results in symmetric lower indices (verify this!). Analogously for, e.g., $\epsilon^{k_{1} l_{1} t_{1}}$.

$$
\begin{align*}
\Rightarrow\left(n, m ; n^{\prime}, m^{\prime}\right)=\left(n+n^{\prime}, m+m^{\prime}\right) & \bigoplus_{p=1}^{\min \left(n, n^{\prime}\right)}\left(n+n^{\prime}-2 p, m+m^{\prime}+p\right) \oplus \\
& \bigoplus_{p=1}^{\min \left(m, m^{\prime}\right)}\left(n+n^{\prime}+p, m+m^{\prime}-2 p\right)
\end{align*}
$$

Example:

$(1,1) \otimes(1,1)=(1,1 ; 1,1) \oplus(1,0 ; 0,1) \oplus(0,1 ; 1,0) \oplus(0,0 ; 0,0)$
with $(1,1 ; 1,1)=(2,2) \otimes(3,0) \otimes(0,3)$,
$(1,0 ; 0,1)=(1,1)$,
$(0,1 ; 1,0)=(1,1)$, $(0,0 ; 0,0)=(0,0)$.
$\Rightarrow \quad(1,1) \otimes(1,1)=(2,2) \oplus(3,0) \oplus(0,3) \oplus(1,1) \oplus(1,1) \oplus(0,0)$,
$\Leftrightarrow 8 \otimes 8=27 \oplus 10 \oplus 10^{*} \oplus 8 \oplus 8 \oplus 1$.

Chapter 4

SU(3)

4.1 The su(3) algebra, roots, and weights

The defining representation of the algebra su(3) consists of traceless hermitian matrices. A common basis choice is given by the Gell-Mann matrices

$$
\begin{array}{ll}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{2}=\left(\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
\lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -\mathrm{i} \\
0 & 0 & 0 \\
\mathrm{i} & 0 & 0
\end{array}\right), \quad \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\mathrm{i} \\
0 & \mathrm{i} & 0
\end{array}\right), \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right),
\end{array}
$$

which generalise the Pauli matrices from $\mathrm{su}(2)$ (it is straightforward to write down a basis for $\operatorname{su}(N)$ for any $N)$.
$\hookrightarrow \mathrm{SU}(3)$ generators in the fundamental representation: $T_{a}=\frac{1}{2} \lambda_{a}, a=1, \ldots, 8$.
\hookrightarrow Normalisation: $\operatorname{Tr} T^{a} T^{b}=T_{F} \delta^{a b}, T_{F}=\frac{1}{2}$.
\hookrightarrow Lie algebra $\left[T^{a}, T^{b}\right]=\mathrm{i} f^{a b c} T^{c}, f^{a b c}$ totally antisymmetric with non-zero components

$$
\begin{array}{ll}
f^{123}=1, & f^{147}=f^{246}=f^{257}=f^{345}=\frac{1}{2}, \\
f^{156}=f^{367}=-\frac{1}{2}, & f^{458}=f^{678}=\frac{\sqrt{3}}{2} .
\end{array}
$$

In the fundamental representation, the anti-commutator has the form

$$
\begin{equation*}
\left\{T_{a}, T_{b}\right\}=\frac{1}{3} \delta_{a b}+d_{a b c} T_{c} \quad \Rightarrow \quad T_{a} T_{b}=\frac{1}{6} \delta_{a b}+\frac{1}{2}\left(d_{a b c}+\mathrm{i} f_{a b c}\right) T_{c} \tag{4.2}
\end{equation*}
$$

where $d_{a b c}$ is totally symmetric with non-zero components

$$
\begin{align*}
& d_{118}=d_{228}=d_{338}=-d_{888}=\frac{1}{\sqrt{3}} \\
& d_{448}=d_{558}=d_{668}=d_{778}=-\frac{1}{2 \sqrt{3}} \tag{4.3}\\
& d_{146}=d_{157}=d_{256}=d_{344}=d_{355}=-d_{247}=-d_{366}=-d_{377}=\frac{1}{2} .
\end{align*}
$$

$\mathrm{su}(3)$ contains three "overlapping" $\mathrm{su}(2)$ subalgebras. Defining

$$
\begin{equation*}
I_{1,2,3}=T^{1,2,3}, \quad U_{1,2}=T^{6,7}, \quad V_{1,2}=T^{4,5}, \quad Y=\frac{2}{\sqrt{3}} T^{8} \tag{4.4}
\end{equation*}
$$

- $\left[I_{1}, I_{2}\right]=\mathrm{i} I_{3}$ (cyclic),
- $\left[U_{1}, U_{2}\right]=\mathrm{i} \frac{1}{2}\left(I_{3}+\frac{3}{2} Y\right) \equiv \mathrm{i} U_{3}$ (cyclic),
- $\left[V_{1}, V_{2}\right]=\mathrm{i} \frac{1}{2}\left(-I_{3}+\frac{3}{2} Y\right) \equiv \mathrm{i} V_{3}$ (cyclic).
I_{3}, U_{3}, V_{3} are not independent $\Rightarrow \mathrm{su}(3) \nsucceq \mathrm{su}(2) \times \mathrm{su}(2) \times \mathrm{su}(2)$.
Definition: The number of simultaneously diagonalisable generators is called the rank of the Lie algebra.
$\mathrm{su}(3)$ has rank 2 ; choose I_{3} and Y which are already diagonal.
\Rightarrow Classify states by their eigenvalues of I_{3} and Y :

$$
\begin{equation*}
I_{3}\left|i_{3}, y\right\rangle=i_{3}\left|i_{3}, y\right\rangle, \quad Y\left|i_{3}, y\right\rangle=y\left|i_{3}, y\right\rangle \tag{4.5}
\end{equation*}
$$

Definition: The vectors $\vec{\omega}=\left(i_{3}, y\right)$ of eigenvalues of the diagonal generators are called weights of the weight vectors $|\vec{\omega}\rangle \equiv\left|i_{3}, y\right\rangle$.
Definition: The non-zero vectors $\vec{\alpha}=\left(\Delta i_{3}, \Delta y\right)$ for which there exists an $X_{\alpha} \in \operatorname{su}(3)_{\mathbb{C}}$ $\left[\right.$ complexification of su(3): all linear combinations of T^{a} with complex coefficients; $\operatorname{su}(3)_{\mathbb{C}} \simeq$ $\operatorname{sl}(3, \mathbb{C})]$, so that

$$
\begin{equation*}
\left[\vec{H}, X_{\alpha}\right]=\vec{\alpha} X_{\alpha} \quad \text { with } \quad \vec{H}=\left(I_{3}, Y\right) \tag{4.6}
\end{equation*}
$$

are called the roots of $\operatorname{su}(3) . X_{\alpha}$ is called the root vector corresponding to the root $\vec{\alpha}$. In other words, X_{α} is a common eigenvector of $\operatorname{ad}_{I_{3}}$ and ad_{Y} with eigenvalues Δi_{3} and Δy. $\mathrm{su}(3)$ has six root vectors $I_{ \pm}, U_{ \pm}, V_{ \pm}$with roots $\Delta \vec{i}_{ \pm}, \Delta \vec{u}_{ \pm}, \Delta \vec{v}_{ \pm}$:

$$
\begin{array}{lll}
I_{ \pm}=I_{1} \pm \mathrm{i} I_{2}: & {\left[I_{3}, I_{ \pm}\right]= \pm I_{ \pm},} & {\left[Y, I_{ \pm}\right]=0}
\end{array} \quad \Rightarrow \quad \Delta \vec{i}_{ \pm}=(\pm 1,0), ~\left(\mp \frac{1}{2}, \quad\left[Y, U_{ \pm}\right]= \pm U_{ \pm} \quad \Rightarrow \quad \Delta \vec{u}_{ \pm}=\left(\mp \frac{1}{2}, \pm 1\right),\right.
$$

In the basis $I_{ \pm}, U_{ \pm}, V_{ \pm}, I_{3}, Y$, the commutators not listed in (4.7) are

$$
\begin{array}{rlrl}
{\left[I_{+}, I_{-}\right]} & =2 I_{3}, & {\left[I_{+}, U_{+}\right]} & =V_{+}, \\
{\left[U_{+}, U_{-}\right]} & =-I_{3}+\frac{3}{2} Y, & {\left[I_{+}, V_{-}\right]} & =-U_{-}, \\
{\left[V_{+}, U_{-}\right]} & =0 \\
& =I_{3}+\frac{3}{2} Y, & {\left[I_{+}, V_{+}\right]} & =0 \tag{4.8}\\
{\left[U_{+}, V_{-}\right]} & =I_{-}, & {\left[U_{+}, V_{+}\right]} & =0
\end{array}
$$

(remaining commutators by hermitian conjugation, e.g. $\left[I_{-}, U_{-}\right]=\left[I_{+}, U_{+}\right]^{\dagger}$).
Root diagram:

Of the six roots, only two are linearly independent.

- Positive roots: all roots in some given half-space. Common choice: $\Delta \vec{i}_{+}, \Delta \vec{u}_{+}, \Delta \vec{v}_{+}$.
- Simple roots: minimal subset of positive roots so that all positive roots can be expressed as linear combinations of simple roots with positive coefficients.
Here: $\Delta \vec{v}_{+}=\Delta \vec{i}_{+}+\Delta \vec{u}_{+} \Rightarrow \Delta \vec{i}_{+}$and $\Delta \vec{u}_{+}$are simple.
Applying a root vector X_{α} to a weight vector $|\vec{\omega}\rangle$ shifts the weight by $\vec{\alpha}$:

$$
\begin{align*}
\vec{H} X_{\alpha}|\vec{\omega}\rangle=\left(X_{\alpha} \vec{H}+\left[\vec{H}, X_{\alpha}\right]\right)|\vec{\omega}\rangle & =\left(X_{\alpha} \vec{\omega}+\vec{\alpha} X_{\alpha}\right)|\vec{\omega}\rangle=(\vec{\omega}+\vec{\alpha}) X_{\alpha}|\vec{\omega}\rangle \\
\Rightarrow \quad X_{\alpha}|\vec{\omega}\rangle & \propto|\vec{\omega}+\vec{\alpha}\rangle \tag{4.9}\\
\Rightarrow \quad I_{ \pm}\left|i_{3}, y\right\rangle & \propto\left|i_{3} \pm 1, y\right\rangle, \\
U_{ \pm}\left|i_{3}, y\right\rangle & \propto\left|i_{3} \mp \frac{1}{2}, y \pm 1\right\rangle, \\
V_{ \pm}\left|i_{3}, y\right\rangle & \propto\left|i_{3} \pm \frac{1}{2}, y \pm 1\right\rangle .
\end{align*}
$$

The proportionality constants may vanish for certain weights.

4.2 Irreducible representations

Possible values of i_{3} and y :

- I_{1}, I_{2}, I_{3} span an $\operatorname{su}(2)$ algebra

$$
\begin{equation*}
\Rightarrow \quad i_{3} \in\{-i,-i+1, \ldots, i\}, \quad 2 i \in \mathbb{N}_{0} \tag{4.10}
\end{equation*}
$$

- $U_{1}, U_{2}, U_{3}=\frac{1}{2}\left(I_{3}+\frac{3}{2} Y\right)$ span an su(2) algebra

$$
\begin{array}{lll}
\Rightarrow & u_{3}=i_{3}+\frac{3}{2} y \in \mathbb{Z} & \tag{4.11}\\
\hookrightarrow & \frac{3}{2} y \in \mathbb{Z}\left(y=\ldots,-\frac{4}{3},-\frac{2}{3}, 0, \frac{2}{3},-\frac{4}{3}, \ldots\right) & \text { if } i_{3} \text { is integer, } \\
\hookrightarrow & \frac{3}{2}\left(y+\frac{1}{3}\right) \in \mathbb{Z}\left(y=\ldots,-\frac{5}{3},-1,-\frac{1}{3}, \frac{1}{3}, 1, \frac{5}{3}, \ldots\right) & \text { if } i_{3} \text { is half-integer. }
\end{array}
$$

Choosing U_{3} and $I_{3}+\frac{1}{2} Y$ as diagonal basis elements instead shows that

$$
\begin{equation*}
u_{3} \in\{-u,-u+1, \ldots, u\}, \quad 2 u \in \mathbb{N}_{0} . \tag{4.12}
\end{equation*}
$$

$\mathrm{SU}(3)$ has two irreducible representations of dimension 3 corresponding to the rank-1 tensors with one upper index, T^{j}, or one lower index, T_{j}. The conditions on i_{3} and u_{3} fix the two possible sets of weight vectors that furnish the 3-dimensional representations:

- This is called a weight diagram.
- Denoting by (n, m) the upper rank n and lower rank m representations, $(1,0)$ (left diagram) is called the fundamental representation and $(0,1)$ (right diagram) the anti-fundamental representation.
- These are the lowest-dimensional non-trivial representations of $\operatorname{SU}(3)$.
- The encircled dot denotes the highest weight $\vec{\omega}_{\max }=\vec{f}_{1}^{(*)}$ of the representation, satisfying

$$
\begin{equation*}
I_{+}\left|\vec{\omega}_{\max }\right\rangle=U_{+}\left|\vec{\omega}_{\max }\right\rangle=V_{+}\left|\vec{\omega}_{\max }\right\rangle=0, \tag{4.13}
\end{equation*}
$$

i.e. the root vectors corresponding to positive roots lead out of the representation's weight space.

- The weights can be constructed from the highest weight of the representation by applying I_{-}and U_{-}(in the corresponding representations). Fundamental representation:

$$
\begin{align*}
& I_{-}\left|\vec{f}_{1}\right\rangle=\left|\overrightarrow{f_{2}}\right\rangle, \\
& I_{-}\left|\overrightarrow{f_{2}}\right\rangle=0, \\
& I_{-}\left|\overrightarrow{f_{3}}\right\rangle=0, \\
& U_{-}\left|\vec{f}_{1}\right\rangle=0, \tag{4.14}\\
& U_{-}\left|\vec{f}_{2}\right\rangle=\left|\overrightarrow{f_{3}}\right\rangle, \\
& U_{-}\left|\overrightarrow{f_{3}}\right\rangle=0 .
\end{align*}
$$

Anti-fundamental representation:
$I_{-}\left|\vec{f}_{1}^{*}\right\rangle=0$,
$I_{-}\left|\vec{f}_{2}^{*}\right\rangle=\left|\vec{f}_{3}^{*}\right\rangle$,
$I_{-}\left|\vec{f}_{3}^{*}\right\rangle=0$,
$U_{-}\left|\vec{f}_{1}^{*}\right\rangle=\left|\vec{f}_{2}^{*}\right\rangle$,
$U_{-}\left|\vec{f}_{2}^{*}\right\rangle=0$,
$U_{-}\left|\vec{f}_{3}^{*}\right\rangle=0$.

Constructing higher-dimensional irreducible representations

The irreducible representation (n, m) can be constructed from its highest weight vector

$$
\begin{equation*}
\left|\frac{n}{2}, \frac{1}{3}(n+2 m)\right\rangle=\underbrace{\left|\overrightarrow{f_{1}}\right\rangle \otimes \cdots \otimes\left|\overrightarrow{f_{1}}\right\rangle}_{n \text { times }} \otimes \underbrace{\left|\vec{f}_{1}^{*}\right\rangle \otimes \cdots \otimes\left|\overrightarrow{f_{1}^{*}}\right\rangle}_{m \text { times }} \tag{4.16}
\end{equation*}
$$

by applying the root vectors

$$
\begin{align*}
I_{-}^{(n, m)} & =I_{-} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}+\mathbb{1} \otimes I_{-} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}+\mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes I_{-} \\
U_{-}^{(n, m)} & =U_{-} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}+\mathbb{1} \otimes U_{-} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}+\mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes U_{-} \tag{4.17}
\end{align*}
$$

in this representation.
Example: The irreducible representation $(1,1)$
Apply $I_{-}(\swarrow)$ and $U_{-}(\searrow)$ repeatedly to the highest weight $\left|\frac{1}{2}, 1\right\rangle=\left|\overrightarrow{f_{1}}\right\rangle \otimes\left|\overrightarrow{f_{1}^{*}}\right\rangle$ (omitting \otimes in the following).

- There are 8 different states.
- The two states $\left|\vec{f}_{3}\right\rangle\left|\vec{f}_{1}^{*}\right\rangle+\left|\vec{f}_{2}\right\rangle\left|\vec{f}_{2}^{*}\right\rangle$ and $\left|\vec{f}_{2}\right\rangle\left|\vec{f}_{2}^{*}\right\rangle+\left|\vec{f}_{1}\right\rangle\left|\vec{f}_{3}^{*}\right\rangle$ have the same weight (indicated by the multiplicity 2 next to the weight), because

$$
\overrightarrow{f_{1}}+\overrightarrow{f_{3}^{*}}=\overrightarrow{f_{2}}+\overrightarrow{f_{2}^{*}}=\overrightarrow{f_{3}}+\overrightarrow{f_{1}^{*}}=(0,0) .
$$

- \exists a 3rd linear combination $\left|\overrightarrow{f_{2}}\right\rangle\left|\vec{f}_{2}^{*}\right\rangle$ -$\left|\vec{f}_{1}\right\rangle\left|\vec{f}_{3}^{*}\right\rangle-\left|\vec{f}_{3}\right\rangle\left|\vec{f}_{1}^{*}\right\rangle$ of weight $|0,0\rangle$ that does not belong to the representation $(1,1)$. This must be the representation $(0,0)$:

$$
\begin{gathered}
(1,0) \otimes(0,1)=(1,1) \oplus(0,0) \\
3 \otimes 3^{*}=8 \oplus+
\end{gathered}
$$

Example: The weight diagram of the representation (3,0)

- Start from highest weight $\left|\vec{f}_{1}\right\rangle\left|\vec{f}_{1}\right\rangle\left|\vec{f}_{1}\right\rangle=\left|\frac{3}{2}, 1\right\rangle$.
- 10 states, no multiple weights.
- Highest-dimensional representation in the Clebsch-Gordan series

$$
\begin{aligned}
& (1,0) \otimes(1,0) \otimes(1,0)=(3,0) \oplus(1,1) \oplus(1,1) \oplus(0,0), \\
& 3 \otimes 3 \otimes 3=10 \oplus 8 \oplus 8 \oplus 1 .
\end{aligned}
$$

General case: The weight diagram of a representation (n, m)

Weight multiplicities:

- Red numbers in the diagram.
- Weights on the outermost hexagon have multiplicity 1. Multiplicity increases by 1 on each hexagon closer to the origin, but stays constant at maximal multiplicity $w=\min (n, m)+1$ once the hexagon turns into a triangle.
- Multiplicities can, e.g., be calculated by Freudenthal's formula (see Section 6.5.3).
- Dimension of the representation:

$$
\operatorname{dim}(n, m)=\frac{1}{2}(n+1)(m+1)(n+m+2)
$$

as derived in Section 3.7.

4.3 Clebsch-Gordan decomposition

This section lists results and recipes. For more information see, e.g., M. Grigorescu: SU(3) Clebsch-Gordan Coeffixients (arXiv:math-ph/0007033).
Besides n, m, i_{3}, y, one more label is required to distinguish degenerate weights. This
can be achieved by $\vec{I}^{2}=I_{1}^{2}+I_{2}^{2}+I_{3}^{3}$ with eigenvalues $i(i+1)$:

$$
\begin{align*}
\vec{I}^{2}\left|n, m, i, i_{3}, y\right\rangle & =i(i+1)\left|n, m, i, i_{3}, y\right\rangle \\
I_{3}\left|n, m, i, i_{3}, y\right\rangle & =i_{3}\left|n, m, i, i_{3}, y\right\rangle \tag{4.18}\\
Y\left|n, m, i, i_{3}, y\right\rangle & =y\left|n, m, i, i_{3}, y\right\rangle
\end{align*}
$$

i can take values $2 i \in \mathbb{N}_{0}$ with

$$
\left|\frac{1}{3}(m-n)-\frac{1}{2} y\right| \leq i \leq i_{\max }, \quad i_{\max }=\left\{\begin{array}{lll}
\frac{1}{3}(2 n+m)-\frac{1}{2} y & \text { if } & y \geq \frac{1}{3}(n-m) \tag{4.19}\\
\frac{1}{3}(n+2 m)+\frac{1}{2} y & \text { if } & y \leq \frac{1}{3}(n-m)
\end{array}\right.
$$

The operators corresponding to n and m are the two Casimir operators

$$
\begin{equation*}
C_{1}=\sum_{a} T_{a} T_{a}, \quad C_{2}=\sum_{a, b, c} d_{a b c} T_{a} T_{b} T_{c} \tag{4.20}
\end{equation*}
$$

that have the form

$$
\begin{align*}
& C_{1}=\left(\frac{1}{3}\left(n^{2}+n m+m^{2}\right)+n+m\right) \mathbb{1} \\
& C_{2}=\frac{1}{18}(n-m)(n+2 m+3)(m+2 n+3) \mathbb{1} \tag{4.21}
\end{align*}
$$

in the representation $(n, m) . C_{1}, C_{2}, \vec{I}^{2}, I_{3}, Y$ form a complete set of commuting operators. $I_{ \pm}, U_{ \pm}, V_{ \pm}$act as

$$
\begin{align*}
I_{ \pm}\left|n, m, i, i_{3}, y\right\rangle= & \sqrt{i(i+1)-i_{3}\left(i_{3} \pm 1\right)}\left|n, m, i, i_{3} \pm 1, y\right\rangle, \tag{4.22}\\
U_{+}\left|n, m, i, i_{3}, y\right\rangle= & +\gamma_{n, m, i, i_{3}, y}^{+}\left|n, m, i+\frac{1}{2}, i_{3}-\frac{1}{2}, y+1\right\rangle \\
& -\gamma_{n, m, i, i_{3}, y}^{-}\left|n, m, i-\frac{1}{2}, i_{3}-\frac{1}{2}, y+1\right\rangle \tag{4.23}\\
U_{-}\left|n, m, i, i_{3}, y\right\rangle= & -\gamma_{n, m, i+\frac{1}{2}, i_{3}+\frac{1}{2}, y-1}^{-}\left|n, m, i+\frac{1}{2}, i_{3}+\frac{1}{2}, y-1\right\rangle \\
& +\gamma_{n, m, i-\frac{1}{2}, i_{3}+\frac{1}{2}, y-1}^{+}\left|n, m, i-\frac{1}{2}, i_{3}+\frac{1}{2}, y-1\right\rangle, \tag{4.24}\\
V_{+}\left|n, m, i, i_{3}, y\right\rangle= & +\gamma_{n, m, i,-i_{3}, y}^{+}\left|n, m, i+\frac{1}{2}, i_{3}+\frac{1}{2}, y+1\right\rangle \\
& +\gamma_{n, m, i,-i, y}^{-}\left|n, m, i-\frac{1}{2}, i_{3}+\frac{1}{2}, y+1\right\rangle, \tag{4.25}\\
V_{-}\left|n, m, i, i_{3}, y\right\rangle= & +\gamma_{n, m, i+\frac{1}{2},-i_{3}+\frac{1}{2}, y-1}^{-}\left|n, m, i+\frac{1}{2}, i_{3}-\frac{1}{2}, y-1\right\rangle \\
& +\gamma_{n, m, i-\frac{1}{2},-i_{3}+\frac{1}{2}, y-1}^{+}\left|n, m, i-\frac{1}{2}, i_{3}-\frac{1}{2}, y-1\right\rangle, \tag{4.26}
\end{align*}
$$

with

$$
\begin{align*}
\gamma_{n, m, i, i_{3}, y}^{-}= & \sqrt{\frac{i+i_{3}}{2 i(2 i+1)}} \\
& \times \sqrt{\left(\frac{1}{3}(2 n+m)+i-\frac{1}{2} y+1\right)\left(\frac{1}{3}(n+2 m)-i+\frac{1}{2} y+1\right)\left(\frac{1}{3}(m-n)+i-\frac{1}{2} y\right)}, \\
\gamma_{n, m, i, i_{3}, y}^{+}= & \sqrt{\frac{3+2 i}{1+2 i}} \gamma_{m, n, i+1,-i_{3},-y}^{-} . \tag{4.27}
\end{align*}
$$

Clebsch-Gordan coefficients

Tensor product of representations $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ (see Section 3.7):

$$
\begin{equation*}
\left(n_{1}, m_{1}\right) \otimes\left(n_{2}, m_{2}\right)=\bigoplus_{k}\left(n^{k}, m^{k}\right) \tag{4.28}
\end{equation*}
$$

Express product states

$$
\begin{equation*}
\left|n_{1}, m_{1}, i_{1}, i_{1,3}, y_{1} ; n_{2}, m_{2}, i_{2}, i_{2,3}, y_{2}\right\rangle \equiv\left|n_{1}, m_{1}, i_{1}, i_{1,3}, y_{1}\right\rangle\left|n_{2}, m_{2}, i_{2}, i_{2,3}, y_{2}\right\rangle \tag{4.29}
\end{equation*}
$$

which are eigenstates of

$$
\begin{equation*}
C_{1,1}, \quad C_{1,2}, \quad \vec{I}_{1}^{2}, \quad I_{1,3}, \quad Y_{1}, \quad C_{2,1}, \quad C_{2,2}, \quad \vec{I}_{2}^{2}, \quad I_{2,3}, \quad Y_{2} \tag{4.30}
\end{equation*}
$$

in terms of

$$
\begin{equation*}
\left|n^{k}, m^{k}, i^{k}, i_{3}^{k}, y^{k}\right\rangle_{\gamma} \tag{4.31}
\end{equation*}
$$

which are eigenstates of

$$
\begin{align*}
& C_{1}, \quad C_{2}, \quad C_{1,1}, \quad C_{1,2}, \quad C_{2,1}, \quad C_{2,2}, \\
& \vec{I}^{2}=\left(\vec{I}_{1}+\vec{I}_{2}\right)^{2}, \quad I_{3}=I_{1,3}+I_{2,3}, \quad Y=Y_{1}+Y_{2} \tag{4.32}
\end{align*}
$$

There are 10 operators in (4.30), but only 9 in (4.32). This reflects the fact that the same representation may appear multiply on the right-hand side of (4.28) and is taken into account by the index γ in (4.31). It is possible to find an operator to complete the set (4.32), but it is more convenient to use an orthogonalisation procedure instead.

1. Start with the subspace of highest weight in (4.28) and apply I_{-}and U_{-}to calculate all states in this space.
2. Proceed to the subspaces with the next-to-highest weight, which have all the same highest weight. If there is more than one subspace with this highest weight, choose states so that

$$
\begin{equation*}
{ }_{\gamma}\left\langle n^{k}, m^{k}, i^{k}, i_{3}^{k}, y^{k} \mid n^{k}, m^{k}, i^{k}, i_{3}^{k}, y^{k}\right\rangle_{\gamma^{\prime}}=\delta_{\gamma \gamma^{\prime}} . \tag{4.33}
\end{equation*}
$$

3. Apply I_{-}and U_{-}to calculate all states in these spaces.
4. If there are any (combinations of) product states left, proceed with 2 for the next-to-next-to-highest weight, etc..

The Clebsch-Gordan coefficients then follow from

$$
\begin{gather*}
\left|n^{k}, m^{k}, i^{k}, i_{3}^{k}, y^{k}\right\rangle_{\gamma}=\sum_{i_{1}, i_{2}} \sum_{i_{1,3}, i_{2,3}} \sum_{y_{1}, y_{2}}\left\langle n_{1}, m_{1}, i_{1}, i_{1,3}, y_{1} ; n_{2}, m_{2}, i_{2}, i_{2,3}, y_{2} \mid n^{k}, m^{k}, i^{k}, i_{3}^{k}, y^{k}\right\rangle_{\gamma} \\
\times\left|n_{1}, m_{1}, i_{1}, i_{1,3}, y_{1} ; n_{2}, m_{2}, i_{2}, i_{2,3}, y_{2}\right\rangle \tag{4.34}
\end{gather*}
$$

4.4 Isospin and hypercharge

4.4.1 $\mathrm{SU}(2)$ isospin

Hadrons (=strongly interacting particles) occur in sets of similar mass of $\mathcal{O}(1 \%)$ differences.
Nucleons: $m_{p}=938.3 \mathrm{MeV} / c^{2}, \quad m_{n}=939.6 \mathrm{MeV} / c^{2} \quad \Rightarrow \quad \frac{m_{n}-m_{p}}{m_{n}+m_{p}} \approx 0.069 \%$.
Pions: $m_{\pi^{ \pm}}=139.6 \mathrm{MeV} / c^{2}, \quad m_{\pi^{0}}=135.0 \mathrm{MeV} / c^{2} \quad \Rightarrow \quad \frac{m_{\pi^{ \pm}-} m_{\pi^{0}}}{m_{\pi^{ \pm}}+m_{\pi^{0}}} \approx 1.7 \%$.
The strong interaction seems not to distinguish between particles in such a set.
\hookrightarrow Hypothesis: Strong interaction is (approximately) invariant under an $\operatorname{SU}(2)$ "isospin" symmetry that transforms hadrons into each other.

- Nucleons form an isospin $I=\frac{1}{2}$ doublet (p, n).
- Pions form an isospin $I=1 \operatorname{triplet}\left(\pi^{+}, \pi^{0}, \pi^{-}\right)$.
- Masses are not equal.
\hookrightarrow Symmetry is broken, e.g. by (but not only by) electromagnetic interaction, because the particles have different electric charges.
- Symmetry constrains strong interaction between particles. \hookrightarrow Clebsch-Gordan coefficients \& Wigner-Eckart theorem.

Example: Ratio of deuteron production cross sections
The deuteron d (heavy hydrogen nucleus) is a bound state of a proton and a neutron.

$$
\begin{equation*}
\frac{1}{2} \otimes \frac{1}{2}=1 \oplus 0 \quad \Rightarrow \quad d \text { has either } I=0 \quad \text { or } \quad I=1 \tag{4.35}
\end{equation*}
$$

$p p$ and $n n$ bound states have not been observed. $\Rightarrow d$ must form an $I=0$ singlet.
An example:

$$
\begin{equation*}
\frac{\sigma\left(p+p \rightarrow d+\pi^{+}\right)}{\sigma\left(p+n \rightarrow d+\pi^{0}\right)}=\frac{\left.\left|\left\langle d, \pi^{+}\right| \mathcal{T}\right| p, p\right\rangle\left.\right|^{2}}{\left.\left|\left\langle d, \pi^{0}\right| \mathcal{T}\right| p, n\right\rangle\left.\right|^{2}} \tag{4.36}
\end{equation*}
$$

with a transition operator \mathcal{T} of definite $\mathrm{SU}(2)$ transformation property.
Well-motivated assumption: $\mathcal{T}=$ scalar (otherwise no isospin conservation in reaction, i.e. more particles should appear).
\hookrightarrow Clebsch-Gordan decomposition:

$$
\begin{align*}
&|p, p\rangle \equiv\left|\frac{1}{2}, \frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\left|\frac{1}{2}, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}\right\rangle=|1,1\rangle \\
&|p, n\rangle \equiv\left|\frac{1}{2}, \frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\left|\frac{1}{2}, \frac{1}{2} ; \frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(|1,0\rangle-|0,0\rangle), \\
&\left|d, \pi^{+}\right\rangle \equiv|0,0\rangle \otimes|1,1\rangle=|1,1\rangle, \\
&\left|d, \pi^{0}\right\rangle \equiv|0,0\rangle \otimes|1,0\rangle=|1,0\rangle . \tag{4.37}\\
& \Rightarrow \quad \frac{\sigma\left(p+p \rightarrow d+\pi^{+}\right)}{\sigma\left(p+n \rightarrow d+\pi^{-}\right)}=\frac{|\langle 1,1| \mathcal{T}| 1,0\rangle\left.\right|^{2}}{\left\lvert\,\left.\langle 1,0| \mathcal{T} \frac{1}{\sqrt{2}}(|1,0\rangle-|0,0\rangle)\right|^{2}\right.}=2 . \tag{4.38}
\end{align*}
$$

Tensor method and effective field theory

Write nucleons as a vector N^{i} and pions as a rank-(1,1) tensor Φ_{j}^{i},

$$
N=\binom{p}{n}, \quad \Phi=\vec{\pi} \cdot \frac{\vec{\sigma}}{2}=\left(\begin{array}{cc}
\pi_{3} & \pi_{1}-\mathrm{i} \pi_{2} \tag{4.39}\\
\pi_{1}+\mathrm{i} \pi_{2} & -\pi_{3}
\end{array}\right) \equiv\left(\begin{array}{cc}
\pi^{0} & \sqrt{2} \pi^{+} \\
\sqrt{2} \pi^{-} & -\pi_{0}
\end{array}\right)
$$

where $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)^{\mathrm{T}}$ is in the cartesian vector representation and $\left(\pi^{+}, \pi^{0}, \pi^{-}\right)$in the spherical basis.
\hookrightarrow Build an $\mathrm{SU}(2)$-invariant interaction Lagrangian of an effective theory of nucleons and pions by combining N and Φ to singlets (trivial representation):

$$
\begin{equation*}
\mathcal{L}_{\text {int }}=g N_{j} \Phi_{i}^{j} N^{i}=g \bar{N} \Phi N=g \bar{p} \pi^{0} p-g \bar{n} \pi^{0} n+\sqrt{2} g \bar{p} \pi^{+} n+\sqrt{2} g \bar{n} \pi^{-} p \tag{4.40}
\end{equation*}
$$

with some coupling constant g. Feynman diagrams of nucleon scattering:

\Rightarrow Relations between different ($p p, n p, p \pi^{0}$, etc.) scattering cross sections can be derived.

4.4.2 $\mathrm{SU}(3)$ flavour symmetry

Further experimental observations:

- Different $\mathrm{SU}(2)$ multiplets of hadrons of the same spin show typical mass differences by $\mathcal{O}(10 \%)$ (for baryons) or more (for mesons).
- Some hadrons have longer lifetimes than expected from the strong interaction.
\hookrightarrow Explanation by the quantum number "strangeness" S that is conserved by the strong interaction. Those hadrons decay via the weak interaction.
$\Rightarrow \mathrm{SU}(2)$ multiplets of hadrons of the same spin can be arranged into representations of the $\mathrm{SU}(3)$ flavour symmetry.
Spin-0 mesons:

- The octet consists of the pion triplet, the two kaon doublets $\left(K^{0}, K^{+}\right)$and (K^{-}, \bar{K}^{0}), and the isospin singlet η.
- This scheme of organising hadrons is called "The Eightfold Way".
- Together with the η^{\prime} in the $(0,0)$ representation, the spin- 0 mesons form the $(1,0) \otimes$ $(0,1)$ nonet.
- Electric charge: $Q=I_{3}+\frac{1}{2} Y$ (Gell-Mann-Nishijima formula).
- Strangeness: $S=Y-B$ with the "baryon number" $B=0$ for mesons.

Quarks and anti-quarks

This structure is explained by regarding hadrons as composite particles that consist of more fundamental particles called quarks and their anti-particles, anti-quarks, which furnish the fundamental rsp. anti-fundamental representations of $\mathrm{SU}(3)$.
Quantum numbers of the $u(" u p$ "), d ("down"), and s ("strange") quarks:

	Q	I	I_{3}	Y	S	B
u	$2 / 3$	$1 / 2$	$1 / 2$	$1 / 3$	0	$1 / 3$
d	$-1 / 3$	$1 / 2$	$-1 / 2$	$1 / 3$	0	$1 / 3$
s	$-1 / 3$	0	0	$-2 / 3$	-1	$1 / 3$

Differences in the quark masses are another source for breaking the flavour symmetry.
There are 3 more quarks ($c=$ "charm", $b=$ "bottom", $t=$ "top"), but their masses are so large that the approximate flavour symmetries $\mathrm{SU}(4)$ and $\mathrm{SU}(5)$ are crudely broken. The topquark does not even form bound states.

Baryon multiplets and triality

$J^{P}=0^{-}$pseudoscalar meson octet;
$(0,0)$ representation: η^{\prime}

$J^{P}=1^{-}$vector meson octet;
$(0,0)$ representation: ω

Since quarks are fermions, the wave functions of hadrons must be totally antisymmetric under exchange of two quarks.
\hookrightarrow How is this possible e.g. in the case of the spin- $\frac{3}{2}$ baryon Δ^{++}of 3 up quarks?

$$
\begin{equation*}
\left|\Delta^{++}\right\rangle=|u \uparrow\rangle|u \uparrow\rangle|u \uparrow\rangle \tag{4.41}
\end{equation*}
$$

is totally symmetric.
\Rightarrow There must exist another quantum number. This is the "colour charge":

- 3 charges that transform under an $\mathrm{SU}(3)$ symmetry.
- This is the symmetry of quantum chromodynamics.
- Unlike flavour-SU(3), colour symmetry is exact.

Observable states must be colour singlets ("colour confinement"). This is the reason why only representations (n, m) with $n-m=0(\bmod 3)$ are populated with hadrons. This fact is called triality.

4.4.3 Gell-Mann-Okubo mass formula

The hadron octets can be arranged into the components of a tensor Φ_{j}^{i}. Spin-0 mesons:

$$
\Phi=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \tag{4.42}\\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}} \eta
\end{array}\right)
$$

Assuming exact flavour symmetry, the mass term in the Lagrangian would be

$$
\begin{equation*}
\mathcal{L}_{\text {mass }}^{(0)}=\frac{1}{2} m_{1}^{2} \operatorname{Tr} \Phi^{2}=\frac{1}{2} m_{1}^{2} \Phi_{j}^{i} \Phi_{i}^{j} \tag{4.43}
\end{equation*}
$$

This would imply that all masses are equal. The symmetry can be broken by introducing mass terms that transform like the $(1,1)$ and the $(2,2)$ representations:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{mass}}=\frac{1}{2} m_{1}^{2} \Phi_{j}^{i} \Phi_{i}^{j}+\frac{1}{2} \Phi_{j}^{i} M_{k}^{j} \Phi_{i}^{k}+\frac{1}{2} \Phi_{j}^{i} \tilde{M}_{i k}^{j l} \Phi_{l}^{k} . \tag{4.44}
\end{equation*}
$$

- Assumption: The $\mathrm{SU}(3)$ symmetry is only broken by the octet M_{k}^{j}, i.e. $\tilde{M}_{i k}^{j l}=0$.
- The mass term must conserve i_{3} and y.
$\Rightarrow \quad M_{k}^{j}$ transforms like the η meson
$\Rightarrow \quad M=3 m_{2}^{2} Y$ (factor 3 is convention).
The mass term is thus (note that \bar{K}^{0} is the antiparticle of K^{0} and K^{-}that of K^{+})

$$
\begin{align*}
& \mathcal{L}_{\text {mass }}=\frac{1}{2} m_{1}^{2} \operatorname{Tr} \Phi^{2}+\frac{1}{2} \operatorname{Tr} \Phi M \Phi=\frac{1}{2} m_{\eta}^{2} \eta^{2}+\frac{1}{2} m_{\pi}^{2} \operatorname{Tr} \bar{\pi} \pi+\frac{1}{2} m_{K}^{2} \bar{K} K \\
& \text { with } \quad m_{\eta}^{2}=m_{1}^{2}-m_{2}^{2}, \quad m_{\pi}^{2}=m_{1}^{2}+m_{2}^{2}, \quad m_{K}^{2}=m_{1}^{2}-\frac{1}{2} m_{2}^{2} . \tag{4.45}
\end{align*}
$$

Eliminating m_{1} and m_{2} in (4.45) shows that

$$
\begin{equation*}
4 m_{K}^{2}=3 m_{\eta}^{2}+m_{\pi}^{2} \tag{4.46}
\end{equation*}
$$

which is fulfilled to better than 4%.
With the same method, a mass formula for the baryon octet can be derived, where two symmetry breaking terms transforming under (1,1) can appear: $m_{2} \operatorname{Tr} \bar{B} Y B$ and $m_{3} \operatorname{Tr} \bar{B} B Y$. Instead of working this out, we derive a formula for the case of a hadron multiplet of an arbitrary representation of $\mathrm{SU}(3)$.

There can be at most two symmetry breaking mass terms that transform under the $(1,1)$ representation. For a baryon multiplet $B_{j_{1} \ldots j_{m}}^{i_{1} \ldots i_{n}}$ of (m, n) :

$$
\begin{equation*}
\bar{B}_{i_{1} \ldots i_{n}}^{j_{1} \ldots j_{m}} \phi_{k}^{i_{1}} B_{j_{1} \ldots j_{m}}^{k i_{2} \ldots i_{n}}, \quad \bar{B}_{i_{1} \ldots i_{n}}^{k j_{2} \ldots j_{m}} \phi_{k}^{j_{1}} B_{j_{1} \ldots j_{m}}^{i_{1} \ldots i_{n}}, \tag{4.47}
\end{equation*}
$$

with some tensor ϕ_{j}^{i}.
\Rightarrow Expressing the mass terms in terms of operators acting on the hadron multiplets, there
can be at most two such operators.
The generators of a Lie algebra transform under the adjoint representation.
\hookrightarrow Arrange the generators of $\mathrm{SU}(3)$ in a traceless 3×3 matrix G :

$$
G=\left(\begin{array}{ccc}
I_{3}+\frac{1}{2} Y & I_{-} & V_{-} \tag{4.48}\\
I_{+} & -I_{3}+\frac{1}{2} Y & U_{-} \\
V_{+} & U_{+} & -Y
\end{array}\right)
$$

From the same arguments as in the case of the meson octet, one of the possible operators is Y, i.e. the component G_{3}^{3}. The second operator can be constructed by projecting out an octet in the Clebsch-Gordan decomposition of the tensor product $G_{j}^{i} G_{m}^{l}$,

$$
\begin{align*}
\tilde{G}_{a}^{b} & =\frac{1}{2} \epsilon_{a j l} \epsilon^{b k m} G_{k}^{j} G_{m}^{l} \\
\Rightarrow \tilde{G}_{3}^{3} & =\frac{1}{2}\left(G_{1}^{1} G_{2}^{2}+G_{2}^{2} G_{1}^{1}-G_{2}^{1} G_{1}^{2}-G_{1}^{2} G_{2}^{1}\right) \\
& =\frac{1}{4} Y^{2}-I_{3}^{2}-\frac{1}{2}\left(I_{+} I_{-}+I_{-} I_{+}\right)=\frac{1}{4} Y^{2}-\vec{I}^{2} . \tag{4.49}
\end{align*}
$$

Note that \tilde{G}_{a}^{b} is not yet traceless, but this does not affect the mass formula. The masses of the particles in a $\mathrm{SU}(2)$ multiplet of isospin i and hypercharge y are thus

$$
\begin{equation*}
M_{i, y}=m_{1}+m_{2} y+m_{3}\left(\frac{1}{4} y^{2}-i(i+1)\right) \tag{4.50}
\end{equation*}
$$

with parameters m_{1}, m_{2}, m_{3}. This is the Gell-Mann-Okubo mass formula.
In case of the baryon octet we obtain

$$
\begin{array}{ll}
m_{N} \equiv M_{\frac{1}{2}, 1}=m_{1}+m_{2}-\frac{1}{2} m_{3}, & m_{\Lambda} \equiv M_{0,0}=m_{1}, \\
m_{\Xi} \equiv M_{\frac{1}{2},-1}=m_{1}-m_{2}-\frac{1}{2} m_{3}, & m_{\Sigma} \equiv M_{1,0}=m_{1}-2 m_{3} \\
\Rightarrow \quad m_{\Sigma}+3 m_{\Lambda}=2 m_{N}+2 m_{\Xi} . & \tag{4.51}
\end{array}
$$

This relation is fulfilled to better than 3%.
Comment: In a similar way it is possible to derive relations between magnetic moments of hadrons (though not as a generic formula for arbitrary representations).

Chapter 5

Lie groups and Lie algebras

5.1 Lie groups

Definitions:

- "Lie group" \equiv a smooth manifold G that is also a group with the property that the group product $G \times G \rightarrow G$ and the inverse map $G \rightarrow G: g \mapsto g^{-1}$ are smooth.
Loosely speaking, a "smooth manifold" is a set of points that looks locally like a neighbourhood of some point of \mathbb{R}^{n}, and "smooth" mappings are meant to be infinitely many times differentiable (for precise definitions, see, e.g., Ref. [2]).
- "Matrix Lie group" \equiv closed subgroup of GL $\left(\mathbb{C}^{n}\right)$.
"Closed" means here: If $\left\{A_{m}\right\}$ is some sequence of matrices in G converging to some matrix A, then either $A \in G$ or A is not invertible.

This lecture focuses on matrix Lie groups:

- do not exhaust all Lie groups, but by far the most important in physics;
- are easier to handle (manipulations made very explicit).

Examples for groups that are not Lie groups:

- $\mathrm{GL}\left(\mathbb{Q}^{n}\right)=$ invertible $n \times n$ matrices with coefficients $\in \mathbb{Q}$.
- $G=\left\{\operatorname{diag}\left(\mathrm{e}^{\mathrm{i} t}, \mathrm{e}^{\mathrm{i} a t}\right) \mid t \in \mathbb{R}\right\}$, with fixed $a \in \mathbb{R}$, but $a \notin \mathbb{Q}$.

For an example of a Lie group that is not a matrix Lie group and has no faithful finitedimensional representations, see chap. 4.8 in [6].

Characterization of a Lie group G

- Group multiplication encoded in analytical mappings $f_{A}\left(\vec{\theta}^{\prime}, \vec{\theta}\right)$ of group parameters $\vec{\theta}^{\prime}, \vec{\theta}$:

$$
\begin{align*}
& g^{\prime \prime}=g^{\prime} g, \quad g\left(\vec{\theta}^{\prime \prime}\right)=g\left(\vec{\theta}^{\prime}\right) g(\vec{\theta}), \quad g, g^{\prime}, g^{\prime \prime} \in G, \\
& \theta_{A}^{\prime \prime}=f_{A}\left(\vec{\theta}^{\prime}, \vec{\theta}\right), \quad A=1, \ldots, n=\operatorname{dim} G \\
& \theta_{A}=f_{A}(0, \vec{\theta})=f_{A}(\vec{\theta}, 0), \quad \text { since } g(\overrightarrow{0})=e . \tag{5.1}
\end{align*}
$$

The existence of $g(\vec{\theta})^{-1}$, in particular, implies the local invertibility of f_{A} :

$$
\begin{align*}
\Theta^{B}{ }_{A}(\vec{\theta}) & \left.\equiv \frac{\partial f_{A}\left(\overrightarrow{\theta^{\prime}}, \vec{\theta}\right)}{\partial \theta_{B}^{\prime}}\right|_{\vec{\theta}^{\prime}=\overrightarrow{0}}=\text { non-singular, } \quad \Theta(\overrightarrow{0})=\mathbb{1}, \\
\Psi(\vec{\theta}) & \equiv \Theta(\vec{\theta})^{-1} . \tag{5.2}
\end{align*}
$$

- Locally a Lie group is fully determined by its "Lie algebra" (Lie's theorems).
\hookrightarrow General Lie groups treated below!
Special case of matrix Lie groups (previous chapters):
Lie algebra spanned by the generators T^{A} for infinitesimal group elements

$$
\begin{equation*}
U(\delta \vec{\theta})=\mathbb{1}-\mathrm{i} \delta \theta_{A} T^{A}+\mathcal{O}\left(\delta \theta_{A}^{2}\right), \tag{5.3}
\end{equation*}
$$

with the commutators $\left[T^{A}, T^{B}\right]=T^{A} T^{B}-T^{B} T^{A}$ as product of generators.
Note: In general Lie algebras there is no matrix multiplication to define $T^{A} T^{B}$.

- Global properties of the group parameter space are necessary to define a Lie group uniquely.

Important global properties:

- "Compactness": Group parameter space is compact in the topological sense. Compact groups have similar properties as finite groups, in particular wrt. representation theory (finite-dim. representation can be chosen unitary).
\hookrightarrow Finite representations can directly represent qm. states.
Examples:
- Compact: $\quad \mathrm{O}(N), \mathrm{SO}(N), \mathrm{U}(N), \mathrm{SU}(N)$.
- Non-compact: translational group, Euclidean groups, Lorentz group.
- "Connectedness": Each element is connected to the identity element by a continuous path in G.
\hookrightarrow Group parameter space decomposes into disjoint, isomorphic sets $G_{j}, G=\cup_{j} G_{j}$, but only one component (the "identity component" G_{0}) contains the unit element.
Some properties:
- The components $G_{j \neq 0}$ are no groups $\left(e \notin G_{j \neq 0}\right)$.
- G_{0} is an invariant subgroup of G.
- The factor group $D_{G}=G / G_{0}$ is a (finite or infinite) discrete group.

Examples:

- Connected: $\quad \mathrm{SO}(N), \mathrm{U}(N), \mathrm{SU}(N)$.
- Not connected: $\mathrm{O}(N)$, Lorentz group.
- "Simple connectedness": Each closed path in G can be continuously contracted to a point.
Each connected Lie group G has a "universal covering group" which is locally isomorphic (isomorphic Lie algebras) and simply connected.
(Subtlely: The universal covering group of a mtrix Lie group might not be a matrix Lie group.)

If a Lie group has m independent non-equivalent closed curves (" m-connected group"), m-valued representations are possible.
\hookrightarrow Universal covering groups only have single-valued representations.
Examples:

- Simply connected: $\quad \mathrm{SU}(N)$.
- Not simply connected: $\operatorname{SO}(N)$.
- Recall: $\mathrm{SU}(2)$ is universal covering group of $\mathrm{SO}(3)$.

Local properties (Lie's theorems and their converses)

In addition to the Lie group G itself, consider its realization as transformations on some vector $\vec{x} \in \mathbb{R}^{N}$:

$$
\begin{equation*}
x_{a}^{\prime}=F_{a}(\vec{\theta}, \vec{x}), \quad x_{a}=F_{a}(\overrightarrow{0}, \vec{x}), \quad a=1, \ldots, N \tag{5.4}
\end{equation*}
$$

Infinitesimal trafo $\delta \vec{\theta}$ near identity $(\vec{\theta}=\overrightarrow{0})$:

$$
\begin{equation*}
x_{a}+\mathrm{d} x_{a}=F_{a}(\delta \vec{\theta}, \vec{x}), \quad \mathrm{d} x_{a}=\delta \theta_{A} u_{a}^{A}(\vec{x}),\left.\quad u_{a}^{A}(\vec{x}) \equiv \frac{\partial F_{a}(\vec{\theta}, \vec{x})}{\partial \theta_{A}}\right|_{\vec{\theta}=\overrightarrow{0}} . \tag{5.5}
\end{equation*}
$$

Infinitesimal trafo $\mathrm{d} \vec{\theta}$ near finite $\vec{\theta}: \mathrm{d} \vec{\theta}$ and $\delta \vec{\theta}$ are related by $\theta_{A}+\mathrm{d} \theta_{A}=f_{A}(\delta \vec{\theta}, \vec{\theta})$.

$$
\begin{equation*}
\Rightarrow \mathrm{d} \theta_{A}=\delta \theta_{B} \Theta_{A}^{B}(\vec{\theta}), \quad \delta \theta_{B}=\mathrm{d} \theta_{A} \Psi^{A}{ }_{B}(\vec{\theta}) \tag{5.6}
\end{equation*}
$$

according to (5.2).

$$
\begin{align*}
\Rightarrow x_{a}^{\prime}+\mathrm{d} x_{a}^{\prime} & =F_{a}(\vec{\theta}+\mathrm{d} \vec{\theta}, \vec{x})=F_{a}\left(\delta \vec{\theta}, \vec{x}^{\prime}\right) \\
\mathrm{d} x_{a}^{\prime} & =u_{a}^{B}\left(\vec{x}^{\prime}\right) \delta \theta_{B}=\mathrm{d} \theta_{A} \Psi^{A}{ }_{B}(\vec{\theta}) u_{a}^{B}\left(\vec{x}^{\prime}\right) . \tag{5.7}
\end{align*}
$$

Lie's theorems:

- Lie's 1st theorem:

$$
\begin{equation*}
\frac{\partial x_{a}^{\prime}}{\partial \theta_{A}}=\Psi^{A}{ }_{B}(\vec{\theta}) u_{a}^{B}\left(\vec{x}^{\prime}\right) \tag{5.8}
\end{equation*}
$$

with analytical functions $\Psi^{A}{ }_{B}(\vec{\theta})$ and $u_{a}^{B}\left(\vec{x}^{\prime}\right)$.
Note: decoupling of $\vec{\theta}$ and \vec{x}^{\prime} dependences in evolution in θ_{A} !

- Lie's 2nd theorem:

The generators

$$
\begin{equation*}
\mathcal{X}^{A}(\vec{\theta}) \equiv-\mathrm{i} \Theta^{A}{ }_{B}(\vec{\theta}) \frac{\partial}{\partial \theta_{B}}, \quad X^{A}(\vec{x}) \equiv-\mathrm{i} u_{a}^{A}(\vec{x}) \frac{\partial}{\partial x_{a}} \tag{5.9}
\end{equation*}
$$

obey the commutation relations:

$$
\begin{equation*}
\left[\mathcal{X}^{A}(\vec{\theta}), \mathcal{X}^{B}(\vec{\theta})\right]=\mathrm{i} f^{A B}{ }_{C} \mathcal{X}^{C}(\vec{\theta}), \quad\left[X^{A}(\vec{x}), X^{B}(\vec{x})\right]=\mathrm{i} f^{A B}{ }_{C} X^{C}(\vec{x}) \tag{5.10}
\end{equation*}
$$

with the "structure constants", which neither depend on $\vec{\theta}$ nor on \vec{x}.

- Lie's 3rd theorem:

The structure constants obey

$$
\begin{align*}
f^{A B} & =-f^{B A}{ }_{C} . & & \text { (antisymmetry) } \tag{5.11}\\
0 & =f^{A B}{ }_{C} f^{D C}{ }_{E}+f^{D A}{ }_{C} f^{B C}{ }_{E}+f^{B D}{ }_{C} f^{A C}{ }_{E} . & & \text { (Jacobi identity) } \tag{5.12}
\end{align*}
$$

Both equations immediately follow from the definitions of the generators, in particular the second is due to $\left[\left[\mathcal{X}^{A}(\vec{\theta}), \mathcal{X}^{B}(\vec{\theta})\right], \mathcal{X}^{C}(\vec{\theta})\right]+$ cyclic $=0$.

Proof of Lie's 2nd theorem:
Take derivative of (5.8) wrt. θ_{C} :

$$
\begin{align*}
\frac{\partial^{2} x_{a}^{\prime}}{\partial \theta_{A} \partial \theta_{C}} & =\frac{\partial}{\partial \theta_{C}}\left[\Psi^{A}{ }_{B}(\vec{\theta}) u_{a}^{B}\left(\vec{x}^{\prime}(\vec{\theta})\right)\right] \\
& =\frac{\partial \Psi^{A}{ }_{B}(\vec{\theta})}{\partial \theta_{C}} u_{a}^{B}\left(\vec{x}^{\prime}(\vec{\theta})\right)+\Psi^{A}{ }_{B}(\vec{\theta}) \frac{\partial u_{a}^{B}}{\partial x_{b}^{\prime}} \frac{\partial x_{b}^{\prime}}{\partial \theta_{C}} \\
& =\frac{\partial \Psi^{A}{ }_{B}(\vec{\theta})}{\partial \theta_{C}} u_{a}^{B}\left(\vec{x}^{\prime}(\vec{\theta})\right)+\Psi^{A}{ }_{B}(\vec{\theta}) \frac{\partial u_{a}^{B}}{\partial x_{b}^{\prime}} \Psi^{C}{ }_{D}(\vec{\theta}) u_{b}^{D}\left(\vec{x}^{\prime}\right) . \tag{5.13}
\end{align*}
$$

Using $\frac{\partial^{2} x_{a}^{\prime}}{\partial \theta_{A} \partial \theta_{C}}=\frac{\partial^{2} x_{a}^{\prime}}{\partial \theta_{C} \partial \theta_{A}}$ and renaming indices, we get

$$
\begin{equation*}
\left(\frac{\partial \Psi^{A}{ }_{B}(\vec{\theta})}{\partial \theta_{C}}-\frac{\partial \Psi^{C}{ }_{B}(\vec{\theta})}{\partial \theta_{A}}\right) u_{a}^{B}\left(\vec{x}^{\prime}\right)=\Psi^{A}{ }_{B}(\vec{\theta}) \Psi^{C}{ }_{D}(\vec{\theta})\left[\frac{\partial u_{a}^{D}}{\partial x_{b}^{\prime}} u_{b}^{B}\left(\vec{x}^{\prime}\right)-\frac{\partial u_{a}^{B}}{\partial x_{b}^{\prime}} u_{b}^{D}\left(\vec{x}^{\prime}\right)\right] \tag{5.14}
\end{equation*}
$$

Aim: separation of variables $\vec{\theta}$ and \vec{x}^{\prime}, but problem with $u_{a}^{B}\left(\vec{x}^{\prime}\right)$ term on l.h.s., which is not necessarily invertible.
\hookrightarrow Take special case for $x_{a}^{\prime}=F_{a}(\vec{\theta}, \vec{x})$ interpreting \vec{x}^{\prime} as $\vec{\theta}^{\prime}$:

$$
\left.\begin{array}{rl}
& \vec{x}^{\prime} \rightarrow \vec{\theta}^{\prime}, \quad u_{b}^{A}\left(\vec{x}^{\prime}\right) \rightarrow \Theta^{A}{ }_{B}\left(\vec{\theta}^{\prime}\right) . \\
\Rightarrow & \left(\frac{\partial \Psi^{A}{ }_{B}(\vec{\theta})}{\partial \theta_{C}}-\frac{\partial \Psi^{C}{ }_{B}(\vec{\theta})}{\partial \theta_{A}}\right) \Theta^{B}{ }_{E}\left(\vec{\theta}^{\prime}\right) \\
& =\Psi^{A}{ }_{B}(\vec{\theta}) \Psi^{C}{ }_{D}(\vec{\theta})\left[\frac{\partial \Theta^{D}{ }_{E}}{\partial \theta_{F}^{\prime}} \Theta^{B}{ }_{F}\left(\vec{\theta}^{\prime}\right)-\frac{\partial \Theta^{B}{ }_{E}}{\partial \theta_{F}^{\prime}} \Theta^{D}{ }_{F}\left(\vec{\theta}^{\prime}\right)\right] . \\
\Leftrightarrow & \underbrace{\Theta^{H}{ }_{A}(\vec{\theta}) \Theta^{I}{ }_{C}(\vec{\theta})\left(\frac{\partial \Psi^{A}{ }_{G}(\vec{\theta})}{\partial \theta_{C}}-\frac{\partial \Psi^{C}{ }_{G}(\vec{\theta})}{\partial \theta_{A}}\right)}_{\text {function of } \vec{\theta}} \\
& =\underbrace{\left.\frac{\partial \Theta^{I}{ }_{E}}{\partial \theta_{F}^{\prime}} \Theta^{H}{ }_{F}\left(\vec{\theta}^{\prime}\right)-\frac{\partial \Theta^{H}{ }_{E}}{\partial \theta_{F}^{\prime}} \Theta^{I}{ }_{F}\left(\vec{\theta}^{\prime}\right)\right] \Psi^{E}{ }_{G}\left(\vec{\theta}^{\prime}\right)}_{\text {function of } \vec{\theta}^{\prime}} \tag{5.15}
\end{array} \stackrel{!}{=} \text { const. } \equiv-f^{H I}{ }_{G} .\right]
$$

The remaining steps are fully straightforward:

- Calculate commutators of $\mathcal{X}^{A}(\vec{\theta})$:

$$
\begin{aligned}
{\left[\mathcal{X}^{A}(\vec{\theta}), \mathcal{X}^{B}(\vec{\theta})\right] } & =\left[-\mathrm{i} \Theta^{A}{ }_{C}(\vec{\theta}) \frac{\partial}{\partial \theta_{C}},-\mathrm{i} \Theta^{B}{ }_{D}(\vec{\theta}) \frac{\partial}{\partial \theta_{D}}\right] \\
& =\underbrace{\left(-\Theta^{A}{ }_{C}(\vec{\theta}) \frac{\partial \Theta^{B}{ }_{E}(\vec{\theta})}{\partial \theta_{C}}+\Theta^{B}{ }_{D}(\vec{\theta}) \frac{\partial \Theta^{A}{ }_{E}(\vec{\theta})}{\partial \theta_{D}}\right)}_{=f^{A B_{F}} \Theta^{F} E_{E}(\vec{\theta}) \text { accorcing to (5.15) }} \frac{\partial}{\partial \theta_{E}}=\mathrm{i} f^{A B}{ }_{F} \mathcal{X}^{F}(\vec{\theta}) .
\end{aligned}
$$

- Calculate commutators of $X^{A}(\vec{x})$:

$$
\begin{aligned}
{\left[X^{A}(\vec{x}), X^{A}(\vec{x})\right] } & =\left[-\mathrm{i} u_{a}^{A}(\vec{x}) \frac{\partial}{\partial x_{a}},-\mathrm{i} u_{b}^{B}(\vec{x}) \frac{\partial}{\partial x_{b}}\right] \\
& =\left(-u_{a}^{A}(\vec{x}) \frac{\partial u_{c}^{B}(\vec{x})}{\partial x_{a}}+u_{b}^{B}(\vec{x}) \frac{\partial u_{c}^{A}(\vec{x})}{\partial x_{b}}\right) \frac{\partial}{\partial x_{c}} \\
& =(5.14) \underbrace{\left(-\frac{\partial \Psi^{C}{ }_{E}(\vec{\theta})}{\partial \theta_{D}}+\frac{\partial \Psi^{D}{ }_{E}(\vec{\theta})}{\partial \theta_{C}}\right) \Theta_{C}^{A}(\vec{\theta}) \Theta^{B}{ }_{D}(\vec{\theta})}_{=f^{A B_{E}} \text { accorcing to (5.15) }} u_{c}^{E}(\vec{x}) \frac{\partial}{\partial x_{c}} \\
& =\mathrm{i} f^{A B}{ }_{E} X^{E}(\vec{x}) .
\end{aligned}
$$

Converse statements of Lie's theorems:

- Converse of the 1st theorem:

If functions $f_{A}\left(\vec{\theta}^{\prime}, \vec{\theta}\right)$ and $F_{a}(\vec{\theta}, \vec{x})$ that are analytic around $\vec{\theta}=\vec{\theta}^{\prime}=\overrightarrow{0}$ and $\vec{x}=\overrightarrow{0}$ exist, then there is a corresponding "local Lie group" and "local Lie transformations" (i.e. in the vicinities of the group identity and of points $\vec{x}=\overrightarrow{0}$) with the generators $\mathcal{X}^{A}(\vec{\theta})$ and $X^{A}(\vec{x})$.

- Converse of the 2 nd theorem:

The Lie algebra of the generators $\mathcal{X}^{A}(\vec{\theta})$ and $X^{A}(\vec{x})$ determines a local Lie group up to (local analytic) isomorphism (i.e. up to a linear transformation in the Lie algebra).

- Converse of the 3rd theorem:

An abstract Lie algebra (see Section 5.4) determines a simply connected Lie group uniquely up to isomorphism.
Extension: For each given finite-dimensional Lie algebra \mathcal{L} there is even a matrix Lie group with \mathcal{L} as Lie algebra.

Implications:

- All simply connected Lie groups (universal covering groups) can be classified by classifying Lie algebras.
The classification of matrix Lie algebras provides also a classification of all abstract Lie algebras.
- All Lie groups for a given Lie algebra can be obtained from the corresponding universal covering group G by determining the discrete, invariant subgroups G_{d} of G and deducing the factor groups G / G_{d}.
Note: Since G is simply connected, the subgroups G_{d} consist of elements that commute with all $g \in G$, i.e. the G_{d} are the subgroups of the centre of G.

Special case: matrix Lie groups

Matrix transformation:

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{F}(\vec{\theta}, \vec{x})=U(\vec{\theta}) \vec{x} . \tag{5.16}
\end{equation*}
$$

Construction of generators:

$$
\begin{equation*}
\vec{u}^{A}(\vec{x})=\left.\frac{\partial U(\vec{\theta})}{\partial \theta_{A}}\right|_{\vec{\theta}=\overrightarrow{0}} \vec{x} \equiv-\mathrm{i} T^{A} \vec{x}, \quad T^{A}=N \times N \text { matrix. } \tag{5.17}
\end{equation*}
$$

\hookrightarrow Generators for transformation (5.16):

- as differential operators:

$$
\begin{equation*}
X^{A}(\vec{x})=-\mathrm{i} u_{a}^{A}(\vec{x}) \frac{\partial}{\partial x_{a}}=-T_{a b}^{A} x_{b} \frac{\partial}{\partial x_{a}} ; \tag{5.18}
\end{equation*}
$$

- as matrices: The T^{A} obey the Lie commutators:

$$
\begin{align*}
{\left[X^{A}(\vec{x}), X^{B}(\vec{x})\right] } & =\left[T_{a b}^{A} x_{b} \frac{\partial}{\partial x_{a}}, T_{c d}^{B} x_{d} \frac{\partial}{\partial x_{c}}\right]=T_{a b}^{A} T_{c d}^{B} \underbrace{\left[x_{b} \frac{\partial}{\partial x_{a}}, x_{d} \frac{\partial}{\partial x_{c}}\right]}_{=x_{b} \delta_{a d} \partial_{c}-x_{d} \delta_{c b} \partial_{a}} \\
& =\left(T^{B} T^{A}\right)_{c b} x_{b} \frac{\partial}{\partial x_{c}}-\left(T^{A} T^{B}\right)_{a d} x_{d} \frac{\partial}{\partial x_{a}}=-\left[T^{A} T^{B}\right]_{a b} x_{b} \frac{\partial}{\partial x_{a}} \\
& =\mathrm{i} f^{A B}{ }_{C} X^{C}(\vec{x})=-\mathrm{i} f^{A B}{ }_{C} T_{a b}^{C} x_{b} \frac{\partial}{\partial x_{a}} . \\
\Rightarrow\left[T^{A}, T^{B}\right] & =\mathrm{i} f^{A B}{ }_{C} T^{C} . \tag{5.19}
\end{align*}
$$

5.2 One-parameter subgroups, exponentiation, and BCH formula

Problem: Functions $\theta_{A}^{\prime \prime}=f_{A}\left(\vec{\theta}^{\prime}, \vec{\theta}\right)$ in general hard to get, but

- one-parameter subgroups admit canonical form $\theta^{\prime \prime}=\theta^{\prime}+\theta$;
- general case ruled by Baker-Campbell-Hausdorff (BCH) formula.

Theorem on one-parameter subgroups

Each direction in group-parameter space of a Lie group G, defined by some unit vector $\vec{n}=\left(n_{A}\right)$, determines a one-parameter subgroup $G_{\vec{n}}$ with the multiplication property $g\left(\lambda^{\prime}+\lambda\right)=g\left(\lambda^{\prime}\right) g(\lambda)$, where $g(\lambda) \equiv g(\vec{\theta}=\lambda \vec{n})$.
The corresponding Lie group transformation on some vector $\vec{x} \in \mathbb{R}^{N}$ is given by

$$
\begin{equation*}
\vec{x}(\lambda)=\mathcal{U}(\lambda) \vec{x}, \quad \mathcal{U}(\lambda) \equiv \exp \left\{\mathrm{i} \lambda n_{A} X^{A}(\vec{x})\right\}, \tag{5.20}
\end{equation*}
$$

with the generators $X^{A}(\vec{x})$ of G at the start point $\vec{x}(0)=\vec{x}$ of the trajectory:

$$
\begin{equation*}
X^{A}(\vec{x})=-\mathrm{i} u_{a}^{A}(\vec{x}) \frac{\partial}{\partial x_{a}} . \tag{5.21}
\end{equation*}
$$

Proof:
Subgroup defined by constructing a trajectory $\vec{x}(\lambda)$ with $\vec{x}(0)=\vec{x}$ which corresponds to some Lie group transformation with $\vec{\theta}=\lambda \vec{n}$:

- Lie's 1st theorem for one-parameter group $G_{\vec{n}}$:

$$
\begin{equation*}
\frac{\mathrm{d} x_{a}(\lambda)}{\mathrm{d} \lambda}=n_{A} u_{a}^{A}(\vec{x}(\lambda)), \quad \vec{x}^{\prime}=\vec{x}(\lambda) \tag{5.22}
\end{equation*}
$$

where $\Theta(\vec{\theta})=\Psi(\vec{\theta})=1$, since $\lambda^{\prime \prime} \stackrel{!}{=} \lambda^{\prime}+\lambda$.

- As 1st-order ordinary differential equation, (5.22) has a unique solution for given $\vec{x}(0)=\vec{x}$.
\hookrightarrow Check that (5.20) solves (5.22): $\vec{x}(0)=\vec{x}$ is obvious.

$$
\begin{equation*}
\frac{\mathrm{d} \vec{x}(\lambda)}{\mathrm{d} \lambda}=\frac{\mathrm{d} \mathcal{U}(\lambda)}{\mathrm{d} \lambda} \vec{x}=\mathcal{U}(\lambda) \mathrm{i} n_{A} X^{A}(\vec{x}) \vec{x}=\mathcal{U}(\lambda) n_{A} \vec{u}^{A}(\vec{x}) . \tag{5.23}
\end{equation*}
$$

\Rightarrow Still to show:

$$
\begin{equation*}
\mathcal{U}(\lambda) n_{A} \vec{u}^{A}(\vec{x})=n_{A} \vec{u}^{A}(\vec{x}(\lambda)) . \tag{5.24}
\end{equation*}
$$

- Proof of (5.24) with auxiliary relation for linear operators A, B : (Exercise!)

$$
\begin{equation*}
\exp (A) B \exp (-A)=\exp \left(\operatorname{ad}_{A}\right)(B), \quad\left(\operatorname{ad}_{A}\right)^{k}(B) \equiv \underbrace{[A,[\ldots,[A, B], \ldots]]}_{k \text { commutators }} \tag{5.25}
\end{equation*}
$$

Choose $A=\mathrm{i} \lambda n_{A} X^{A}(\vec{x})$ and $B=x_{b}$:

$$
\begin{align*}
\operatorname{ad}_{A}(B) & =[A, B]=\mathrm{i} \lambda n_{A} \vec{u}^{A}(\vec{x})\left(\frac{\partial}{\partial \vec{x}} x_{b}\right)=\text { function of } \vec{x} \text { (multiplicative op.) } \\
\left(\operatorname{ad}_{A}\right)^{k}(B) & =\left(\left(\mathrm{i} \lambda n_{A} \vec{u}^{A}(\vec{x}) \frac{\partial}{\partial \vec{x}}\right)^{k} x_{b}\right) . \\
\hookrightarrow \exp \left(\operatorname{ad}_{A}\right)(B) & =\mathcal{U}(\lambda) x_{b}=x_{b}(\lambda) \\
& =\exp (A) B \exp (-A)=\mathcal{U}(\lambda) x_{b} \mathcal{U}(\lambda)^{-1} . \tag{5.26}
\end{align*}
$$

Since $\vec{u}^{A}(\vec{x})$ is analytic, $\mathcal{U}(\lambda) x_{b} \mathcal{U}(\lambda)^{-1}=x_{b}(\lambda)$ implies (5.24):

$$
\begin{aligned}
\mathcal{U}(\lambda) n_{A} \vec{u}^{A}(\vec{x}) & =\mathcal{U}(\lambda) n_{A} \vec{u}^{A}(\vec{x}) \mathcal{U}(\lambda)^{-1} \cdot 1=n_{A} \vec{u}^{A}\left(\mathcal{U}(\lambda) \vec{x} \mathcal{U}(\lambda)^{-1}\right) \cdot 1 \\
& =n_{A} \vec{u}^{A}(\vec{x}(\lambda)) .
\end{aligned}
$$

Special case: matrix Lie groups

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{F}(\vec{\theta}, \vec{x})=U(\vec{\theta}) \vec{x} . \tag{5.27}
\end{equation*}
$$

Transformation operator for one-parameter Lie group: $\quad \vec{\theta}=\lambda \vec{n}$.

$$
\begin{equation*}
\mathcal{U}(\lambda)=\exp \left\{\mathrm{i} \lambda n_{A} X^{A}(\vec{x})\right\}=\exp \left\{-\mathrm{i} \lambda n_{A} T_{a b}^{A} x_{b} \frac{\partial}{\partial x_{a}}\right\} . \tag{5.28}
\end{equation*}
$$

\hookrightarrow Derivation of matrix transformation $U(\vec{\theta})=U(\lambda \vec{n}): \quad\left(\vec{x}=x_{a} \vec{e}_{a}\right)$

$$
\begin{align*}
-\mathrm{i} \theta_{A} T_{a b}^{A} x_{b} \frac{\partial}{\partial x_{a}} \vec{x} & =-\mathrm{i} \theta_{A} T_{a b}^{A} x_{b} \vec{e}_{a}=-\mathrm{i} \theta_{A} T^{A} \vec{x} \\
\left(-\mathrm{i} \theta_{A} T_{a b}^{A} x_{b} \frac{\partial}{\partial x_{a}}\right)^{k} \vec{x} & =\left(-\mathrm{i} \theta_{A} T^{A}\right)^{k} \vec{x} . \\
\Rightarrow \mathcal{U}(\lambda) \vec{x} & =\exp \left\{-\mathrm{i} \theta_{A} T^{A}\right\} \vec{x} . \quad \Rightarrow U(\vec{\theta})=\exp \left\{-\mathrm{i} \theta_{A} T^{A}\right\} \tag{5.29}
\end{align*}
$$

Convergence and consistency of exp

- The exponential form of the transformations $\mathcal{U}(\lambda)$ and $U(\vec{\theta})$ always converge.
- In the identity component of compact groups, all group transformations can be written in exponential form. For non-compact groups, in general a product of a finite number of exponentials is required.

Non-canonical parametrizations of group elements

The canonical form of matrix Lie group elements

$$
\begin{equation*}
U(\vec{\theta})=\exp \left\{-\mathrm{i} \theta_{A} T^{A}\right\} \tag{5.30}
\end{equation*}
$$

is sometimes inconvenient to calculate matrix elements $\langle\psi| U(\vec{\theta})|\phi\rangle$!
\hookrightarrow Often non-canonical forms like

$$
\begin{equation*}
U\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\exp \left\{-\mathrm{i} \alpha_{1} \tilde{T}^{1}\right\} \exp \left\{-\mathrm{i} \alpha_{2} \tilde{T}^{2}\right\} \ldots \tag{5.31}
\end{equation*}
$$

are more convenient if some of the new generators \tilde{T}^{A} are

- diagonal (exp easy to compute) or
- nilpotent (exp series truncates).

Example: Euler-angle parametrizations of $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$ elements:

$$
D(\vec{\theta})=\exp \{-\mathrm{i} \vec{\theta} \vec{J}\}=D(\alpha, \beta, \gamma)=\exp \left\{-\mathrm{i} \alpha J_{3}\right\} \exp \left\{-\mathrm{i} \beta J_{2}\right\} \exp \left\{-\mathrm{i} \gamma J_{3}\right\}
$$

with $J_{3}=$ diagonal in the usual representations.

Baker-Campbell-Hausdorff (BCH) formula

Given two elements X, Y in the Lie algebra \mathcal{L} of a Lie group G sufficiently close to 0 , the following relation holds:

$$
\begin{equation*}
-\mathrm{i} \ln \left(\mathrm{e}^{\mathrm{i} X} \mathrm{e}^{\mathrm{i} Y}\right)=X+\int_{0}^{1} \mathrm{~d} t g\left(e^{\mathrm{i} \mathrm{ad}_{X}} e^{\mathrm{it} \operatorname{ad}_{Y}}\right)(Y) \in \mathcal{L} \tag{5.32}
\end{equation*}
$$

with

$$
\begin{equation*}
g(z) \equiv \frac{\ln z}{1-1 / z}=\text { analytic function for }|z-1|<1 \tag{5.33}
\end{equation*}
$$

$\Rightarrow \mathrm{BCH}$ formula explicitly constructs the group element $\mathrm{e}^{\mathrm{i} Z}=\mathrm{e}^{\mathrm{i} X} \mathrm{e}^{\mathrm{i} Y}$ for given X, Y.
Differential form:

$$
\begin{equation*}
\ln \left(\mathrm{e}^{\mathrm{i} X} \mathrm{e}^{\mathrm{i} Y}\right)=\mathrm{i} X+\mathrm{i} Y-\frac{1}{2}[X, Y]-\frac{\mathrm{i}}{12}[X,[X, Y]]+\frac{\mathrm{i}}{12}[Y,[X, Y]]+\ldots, \tag{5.34}
\end{equation*}
$$

where \ldots stands for multiple commutators with at least 4 operators X, Y.
\hookrightarrow Form useful to obtain local information on functions $f_{A}\left(\overrightarrow{\theta^{\prime}}, \vec{\theta}\right)$ for small $\vec{\theta}^{\prime}, \vec{\theta}$.
Comments:

- BCH formula and its proof rather non-trivial (see, e.g., [6]).
- Special case: (proven in Exercise 1.4)

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} X} \mathrm{e}^{\mathrm{i} Y}=\mathrm{e}^{\mathrm{i} X+\mathrm{i} Y-\frac{1}{2}[X, Y]} \quad \text { if }[X,[X, Y]]=[Y,[X, Y]]=0 . \tag{5.35}
\end{equation*}
$$

5.3 Invariant group integration

Aim: generalization of $\sum_{g} F(g)=\sum_{g} F\left(g^{\prime} g\right) \forall g^{\prime} \in G$ ($=$ finite group), which

- is valid due to the rearrangement lemma,
- attributes equal weight $(=1)$ to each element $g \in G$,
to Lie group with elements $g=g(\vec{\theta})$:

$$
\begin{equation*}
\sum_{g} F(g) \rightarrow \int_{G} \mathrm{~d} \mu_{g} F(g)=\int \mathrm{d}^{n} \vec{\theta} \underbrace{\rho(\vec{\theta})}_{\text {density function }} F(g(\vec{\theta})) . \tag{5.36}
\end{equation*}
$$

\hookrightarrow "Left invariance" requirement: $\underbrace{\mathrm{d} \mu_{g}}_{\text {volume element at } g}=\underbrace{\mathrm{d} \mu_{g^{\prime} g}}_{\text {volume element at } g^{\prime} g} \forall g^{\prime} \in G$.
Construction of $\rho(\vec{\theta})$:

$$
\begin{align*}
& g^{\prime \prime}=g^{\prime} g, \quad g\left(\vec{\theta}^{\prime \prime}\right)=g\left(\vec{\theta}^{\prime}\right) g(\vec{\theta}), \\
& \theta_{A}^{\prime \prime}=f_{A}\left(\vec{\theta}^{\prime}, \vec{\theta}\right), \quad \theta_{A}=f_{A}(0, \vec{\theta})=f_{A}(\vec{\theta}, 0), \quad \text { since } g(\overrightarrow{0})=e \tag{5.37}
\end{align*}
$$

Taking $\vec{\theta} \rightarrow \hat{\vec{\theta}}=$ infinitesimal yields
\Rightarrow Definition:

$$
\begin{equation*}
\rho(\vec{\theta}) \equiv \frac{\rho(\overrightarrow{0})}{J(\vec{\theta})}, \quad \rho(\overrightarrow{0})=\text { convention } \tag{5.39}
\end{equation*}
$$

Check invariance of $\mathrm{d} \mu_{g}$:

$$
\begin{equation*}
\mathrm{d} \mu_{g^{\prime} g}=\mathrm{d}^{n} \vec{\theta}^{\prime} \rho\left(\overrightarrow{\theta^{\prime}}\right)=\mathrm{d}^{n} \hat{\vec{\theta}} \rho(\overrightarrow{0})=\mathrm{d}^{n} \vec{\theta} \rho(\vec{\theta})=\mathrm{d} \mu_{g} \tag{5.40}
\end{equation*}
$$

Theorem for compact groups:

a) $\int \mathrm{d} \mu_{g}=V_{G}<\infty$ exists ("Haar measure"), usual convention: $V_{G}=1$. Fixing V_{G}, the Haar measure is unique.
b) The "left-invariant" measure $\mathrm{d} \mu_{g}$ is also "right invariant", i.e.

$$
\begin{equation*}
\int_{G} \mathrm{~d} \mu_{g} F(g)=\int_{G} \mathrm{~d} \mu_{g} F\left(g^{\prime} g\right)=\int_{G} \mathrm{~d} \mu_{g} F\left(g g^{\prime}\right) \quad \forall g^{\prime} \in G . \tag{5.41}
\end{equation*}
$$

For a proof of a), see math. literature.

A sketchy proof of b) in 3 steps:

1. Show that $\mathrm{d} \mu_{\hat{g}}=\mathrm{d} \mu_{g^{\prime} \hat{g} g^{\prime-1}}$ for infinitesimal \hat{g}, i.e. $\hat{g}=g(\delta \hat{\vec{\theta}}), \delta \hat{\vec{\theta}}=\inf$. $\tilde{g}=g^{\prime} \hat{g} g^{\prime-1}=\inf$. with $\tilde{g}=g(\delta \tilde{\vec{\theta}})$ and $\delta \tilde{\vec{\theta}}=M \delta \hat{\vec{\theta}}$ with some matrix M.
\hookrightarrow Consider $\tilde{g}^{(m)}=\left(g^{\prime}\right)^{m} \hat{g}\left(g^{\prime-1}\right)^{m}=g\left(\delta \tilde{\vec{\theta}}(m)\right.$, where $\delta \tilde{\vec{\theta}}(m)=M^{m} \delta \hat{\vec{\theta}}$:
If G is compact, there are two possibilities:
(i) \tilde{g} has finite order N, then $M^{N}=\mathbb{1}$.
(ii) \tilde{g} has infinite order, then $\lim _{m \rightarrow \infty} \tilde{g}^{(m)}=\tilde{g}^{(\infty)}$ and thus M^{∞} have to exist.
\Rightarrow In either case $\operatorname{det} M=1$ and thus $\mathrm{d}^{n} \tilde{\vec{\theta}}=\mathrm{d}^{n} \hat{\vec{\theta}}$, so that

$$
\begin{equation*}
\mathrm{d} \mu_{\hat{g}}=\mathrm{d}^{n} \hat{\vec{\theta}} \rho(\overrightarrow{0})=\mathrm{d}^{n} \tilde{\vec{\theta}} \rho(\overrightarrow{0})=\mathrm{d} \mu_{\tilde{g}}=\mathrm{d} \mu_{g^{\prime} \hat{g} g^{\prime-1}} \quad \forall g^{\prime} \in G . \tag{5.42}
\end{equation*}
$$

2. Generalization of $\mathrm{d} \mu_{g}=\mathrm{d} \mu_{g^{\prime} g g^{\prime-1}}$ to any g :

Let \hat{g} be inf. and $g=\bar{g} \hat{g}$, then using (5.42) for \hat{g} and left invariance of $\mathrm{d} \mu_{g}$:

$$
\begin{equation*}
\mathrm{d} \mu_{g}=\mathrm{d} \mu_{\hat{g} \hat{g}}=\mathrm{d} \mu_{\hat{g}} \underset{(5.42)}{=} \mathrm{d} \mu_{g^{\prime} \hat{g} g^{\prime-1}}=\mathrm{d} \mu_{\hat{g} g^{\prime-1}}=\mathrm{d} \mu_{\hat{g} \hat{g} g^{\prime-1}}=\mathrm{d} \mu_{g g^{\prime-1}}=\mathrm{d} \mu_{g^{\prime} g g^{\prime-1}} . \tag{5.43}
\end{equation*}
$$

3. Proof of right invariance of $\mathrm{d} \mu_{g}: \quad \mathrm{d} \mu_{g g^{\prime}}=\mathrm{d} \mu_{g^{\prime}-1 g g^{\prime}} \underset{(5.43)}{=} \mathrm{d} \mu_{g}$.

Example: Haar measures of $\mathrm{SU}(2)$ ans $\mathrm{SO}(3)$
A suitable parametrization of $\mathrm{SU}(2)$ matrices:

$$
U(\vec{x})=x_{0} \mathbb{1}-\mathrm{i} \vec{x} \cdot \vec{\sigma}=\left(\begin{array}{cc}
x_{0}-\mathrm{i} x_{3} & -\mathrm{i} x_{1}-x_{2} \tag{5.44}\\
-\mathrm{i} x_{1}+x_{2} & x_{0}+\mathrm{i} x_{3}
\end{array}\right), \quad x_{0}= \pm \sqrt{1-\vec{x}^{2}}
$$

Relation to the form (3.18) with "rotation vector" $\vec{\theta}=\theta \vec{e} \quad\left(\vec{e}^{2}=1\right)$:

$$
\begin{equation*}
x_{0}=\cos \frac{\theta}{2}, \quad \vec{x}=\sin \frac{\theta}{2} \vec{e} . \tag{5.45}
\end{equation*}
$$

Variations of U before and after translation to $U(\vec{x})$:

$$
\begin{align*}
U(\delta \vec{x}) & =\left(\begin{array}{cc}
-\mathrm{i} \delta x_{3} & -\mathrm{i} \delta x_{1}-\delta x_{2} \\
-\mathrm{i} \delta x_{1}+\delta x_{2} & \mathrm{i} \delta x_{3}
\end{array}\right), \\
U\left(\vec{x}^{\prime}+\delta \vec{x}^{\prime}\right) & =\left(\begin{array}{cc}
x_{0}^{\prime}-\mathrm{i} x_{3}^{\prime}+\delta x_{0}^{\prime}-\mathrm{i} \delta x_{3}^{\prime} & -\mathrm{i} x_{1}^{\prime}-x_{2}^{\prime}-\mathrm{i} \delta x_{1}^{\prime}-\delta x_{2}^{\prime} \\
-\mathrm{i} x_{1}^{\prime}+x_{2}^{\prime}-\mathrm{i} \delta x_{1}^{\prime}+\delta x_{2}^{\prime} & x_{0}^{\prime}+\mathrm{i} x_{3}^{\prime}+\delta x_{0}^{\prime}+\mathrm{i} \delta x_{3}^{\prime}
\end{array}\right), \quad \delta x_{0}^{\prime}=-x_{n}^{\prime} \delta x_{n}^{\prime} . \tag{5.46}
\end{align*}
$$

Transformation of differentials and volume element from $U\left(\vec{x}^{\prime}+\delta \vec{x}^{\prime}\right)=U\left(\vec{x}^{\prime}\right) U(\delta \vec{x})$:

$$
\delta \vec{x}=\left(\begin{array}{ccc}
x_{0}^{\prime} & -x_{3}^{\prime} & x_{2}^{\prime} \tag{5.47}\\
x_{3}^{\prime} & x_{0}^{\prime} & -x_{1}^{\prime} \\
-x_{2}^{\prime} & x_{1}^{\prime} & x_{0}^{\prime}
\end{array}\right) \delta \vec{x}^{\prime} \quad \Rightarrow \quad \mathrm{d}^{3} \vec{x}=\left|x_{0}\left(x_{0}^{2}+x_{n} x_{n}\right)\right| \mathrm{d}^{3} \vec{x}^{\prime}=\underbrace{\sqrt{1-\vec{x}^{\prime 2}}}_{=J\left(\vec{x}^{\prime}\right)} \mathrm{d}^{3} \vec{x}^{\prime}
$$

\Rightarrow Haar measure of $\mathrm{SU}(2)$:

$$
\begin{align*}
\int_{\mathrm{SU}(2)} \mathrm{d} \mu_{U} & =\frac{1}{2 \pi^{2}} \int_{|\vec{x}| \leq 1} \frac{\mathrm{~d}^{3} \vec{x}}{\sqrt{1-\vec{x}^{2}}} \sum_{x_{0}= \pm \sqrt{1-\vec{x}^{2}}}=\frac{1}{\pi^{2}} \int \mathrm{~d}^{4} x \delta\left(1-x_{0}^{2}-\vec{x}^{2}\right) \\
& =\frac{1}{8 \pi^{2}} \int \mathrm{~d} \Omega \int_{0}^{2 \pi} \mathrm{~d} \theta(1-\cos \theta), \quad \Omega=\text { solid angle of } \vec{e} . \tag{5.48}
\end{align*}
$$

\Rightarrow Haar measure of $\mathrm{SO}(3): \quad\left(\right.$ only $x_{0}=+\sqrt{1-\vec{x}^{2}}$, i.e. $\left.0 \leq \theta \leq \pi\right)$

$$
\begin{equation*}
\int_{\mathrm{SO}(3)} \mathrm{d} \mu_{U}=\left.\frac{1}{\pi^{2}} \int_{|\vec{x}| \leq 1} \frac{\mathrm{~d}^{3} \vec{x}}{\sqrt{1-\vec{x}^{2}}}\right|_{x_{0}=\sqrt{1-\vec{x}^{2}}}=\frac{1}{4 \pi^{2}} \int \mathrm{~d} \Omega \int_{0}^{\pi} \mathrm{d} \theta(1-\cos \theta) . \tag{5.49}
\end{equation*}
$$

Reparametrization in terms of Euler angles:

$$
\left.\begin{array}{c}
x_{1}=\sin \frac{\beta}{2} \sin \phi, \quad x_{2}=\sin \frac{\beta}{2} \cos \phi, \quad x_{3}=\sin \frac{\beta}{2} \sin \chi, \quad x_{0}=\cos \frac{\beta}{2} \cos \chi, \\
0 \leq \phi=\frac{1}{2}(\gamma-\alpha) \leq 2 \pi \\
0 \leq \chi=\frac{1}{2}(\gamma+\alpha) \leq 2 \pi
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
0 \leq \alpha \leq 2 \pi \\
0 \leq \beta \leq \pi, \quad x_{0}<0 \text { included. } \\
0 \leq 4 \pi
\end{array} \quad \begin{array}{l}
\frac{\mathrm{d}^{3} \vec{x}}{\sqrt{1-\vec{x}^{2}}}=\frac{\mathrm{d} \phi \mathrm{~d} \sin \frac{\beta}{2} \sin \frac{\beta}{2} \mathrm{~d} \sin \chi \cos \frac{\beta}{2}}{\cos \frac{\beta}{2} \cos \chi}=\mathrm{d} \phi \mathrm{~d} \sin \frac{\beta}{2} \sin \frac{\beta}{2} \mathrm{~d} \chi=\frac{1}{8} \mathrm{~d} \alpha \mathrm{~d} \cos \beta \mathrm{~d} \gamma . \\
\Rightarrow \int_{\mathrm{SU}(2)} \mathrm{d} \mu_{U}=\frac{1}{16 \pi^{2}} \int_{0}^{2 \pi} \mathrm{~d} \alpha \int_{-1}^{1} \mathrm{~d} \cos \beta \int_{0}^{4 \pi} \mathrm{~d} \gamma, \tag{5.53}\\
\int_{\mathrm{SO}(3)} \mathrm{d} \mu_{U}=\frac{1}{8 \pi^{2}} \int_{0}^{2 \pi} \mathrm{~d} \alpha \int_{-1}^{1} \mathrm{~d} \cos \beta \int_{0}^{2 \pi} \mathrm{~d} \gamma .
\end{array}\right.
$$

Implications for compact groups: (similarity to finite groups!)

- All finite-dimimensional representations can be taken unitary, and all irreducible representations are finite dimensional.
- Orthogonality relations of (unitary) irreducible representations $D^{(j)}$:

$$
\begin{equation*}
\int_{G} \mathrm{~d} \mu_{g} D_{a b}^{(j)}(g)^{*} D_{c d}^{(k)}(g)=\delta_{j k} \delta_{a c} \delta_{b d} \frac{V_{G}}{n_{j}}, \quad n_{j}=\operatorname{dim} D^{(j)} \tag{5.54}
\end{equation*}
$$

- Completeness relation ("Peter-Weyl theorem"):

$$
\begin{equation*}
\sum_{j} n_{j} \operatorname{Tr}\left\{D^{(j)}(g)^{\dagger} D^{(j)}\left(g^{\prime}\right)\right\}=\delta\left(g-g^{\prime}\right) \equiv \frac{\delta\left(\vec{\theta}-\vec{\theta}^{\prime}\right)}{\rho(\vec{\theta})} \tag{5.55}
\end{equation*}
$$

where $\sum_{j} n_{j}$ runs over all inequivalent irreducible unitary representations.
\Rightarrow Any (square-integrable) function $F(g)$ on G can be expanded:

$$
\begin{equation*}
F(g)=\sum_{j, a, b} f_{a b}^{(j)} D_{a b}^{(j)}(g), \quad f_{a b}^{(j)}=\frac{n_{j}}{V_{G}} \int_{G} \mathrm{~d} \mu_{g} F(g) D_{a b}^{(j)}(g)^{*} . \tag{5.56}
\end{equation*}
$$

5.4 Lie algebras

Definitions: (more abstract algebraic versions)

- "Algebra" $\mathcal{A} \equiv$ vector space with a bilinear product operation:

$$
\begin{align*}
& a, b \in \mathcal{A} \quad \Rightarrow \quad a \circ b \in \mathcal{A} \tag{5.57}\\
& a, \ldots, d \in \mathcal{A} ; \alpha, \ldots, \delta \in \mathbb{K}=\mathbb{R}, \mathbb{C} \\
& \quad \Rightarrow \quad(\alpha a+\beta b) \circ(\gamma c+\delta d)=\alpha \gamma(a \circ b)+\alpha \delta(a \circ d)+\beta \gamma(b \circ c)+\beta \delta(b \circ d) . \tag{5.58}
\end{align*}
$$

- "Lie algebra" $\mathcal{L} \equiv$ finite-dimensional algebra with a "Lie product" [., .] as product operation:

$$
\begin{align*}
& {[x, x]=0 \forall x \in \mathcal{L} \Rightarrow[x, y]=-[y, x] \forall x, y \in \mathcal{L}} \tag{5.59}\\
& \text { Jacobi identity: } \quad[x,[y, z]]+\text { cyclic }=0 \quad \forall x, y, z \in \mathcal{L} . \tag{5.60}
\end{align*}
$$

$d_{\mathcal{L}}=\operatorname{dim} \mathcal{L} \equiv$ dimension of \mathcal{L} as vector space.
Example: $\quad[x, y]=x \circ y-y \circ x$ for an associative product \circ.
In a given basis $\left\{T^{A}\right\}_{A=1}^{\operatorname{dim} \mathcal{L}}$ of \mathcal{L}, each $x \in \mathcal{L}$ can be written as $x=x_{A} T^{A}$, and the closure of \mathcal{L} under [.,.] implies

$$
\begin{equation*}
\left[T^{A}, T^{B}\right] \equiv \mathrm{i} f^{A B}{ }_{C} T^{C}, \quad f^{A B}{ }_{C}=-f^{B A}{ }_{C}, \tag{5.61}
\end{equation*}
$$

and the Jacobi identity implies $f^{A B}{ }_{C} f^{D C}{ }_{E}+$ cyclic $=0$.

- A "complexification" $\mathcal{L}_{\mathbb{C}}$ of a real Lie algebra \mathcal{L} is spanned by complex linear combinations of a basis of generators $\left\{T^{A}\right\}$ of \mathcal{L}.

Adjoint representation and Killing form:

- "Adjoint representation" $\left(T_{\text {ad }}^{A}\right)^{B}{ }_{C} \equiv-\mathrm{i} f^{A B}{ }_{C}, \quad \operatorname{ad}_{x}=x_{A} T_{\text {ad }}^{A}$.
$\hookrightarrow\left[T_{\text {ad }}^{A}, T_{\text {ad }}^{B}\right]=\mathrm{i} f{ }_{C}^{A B} T_{\text {ad }}^{C}$ by Jacobi identity.
Note: $\left\{\operatorname{ad}_{x}\right\}$ provide a representation with \mathcal{L} as representation space itself:

$$
\begin{align*}
\operatorname{ad}_{x}(y) & =[x, y], \tag{5.62}\\
\operatorname{ad}_{[x, y]}(z) & =\left[\operatorname{ad}_{x}, \operatorname{ad}_{y}\right](z) . \tag{5.63}
\end{align*}
$$

- "Cartan-Killing form" g :

$$
\begin{equation*}
g^{A B} \equiv \operatorname{Tr}\left(T_{\mathrm{ad}}^{A} T_{\mathrm{ad}}^{B}\right)=-f^{A C}{ }_{D} f^{B D}{ }_{C}=g^{B A} . \tag{5.64}
\end{equation*}
$$

Notation:

$$
\begin{equation*}
(x, y) \equiv \operatorname{Tr}\left(\operatorname{ad}_{x}, \operatorname{ad}_{y}\right)=x_{A} y_{B} \operatorname{Tr}\left(T_{\mathrm{ad}}^{A} T_{\mathrm{ad}}^{B}\right)=x_{A} y_{B} g^{A B} . \tag{5.65}
\end{equation*}
$$

- \mathcal{L} decomposes into a "direct sum" of two Lie algebras, $\mathcal{L}=\mathcal{L}_{1} \oplus \mathcal{L}_{2}$, if $\left[x_{1}, x_{2}\right]=0 \forall x_{1} \in \mathcal{L}_{1}, x_{2} \in \mathcal{L}_{2}$. This implies:

$$
\begin{array}{rll}
f^{A B}{ }_{C}=0 & \text { if } & T^{A} \in \mathcal{L}_{1}, T^{B} \in \mathcal{L}_{2} \text { or vice versa, } \\
\left(x_{1}, x_{2}\right)=0 & \text { if } & x_{1} \in \mathcal{L}_{1}, x_{2} \in \mathcal{L}_{2} . \tag{5.67}
\end{array}
$$

Extension of some group properties to Lie algebras:

- "Invariant Lie subalgebra" (="ideal") $\mathcal{H} \equiv$ subalgebra with $[\mathcal{H}, \mathcal{L}] \subseteq \mathcal{H}$.
- "Simple Lie algebra" \equiv Lie algebra with dim > 1 without a proper ideal (i.e. $\neq\{0\}, \mathcal{L})$.
- "Semisimple Lie algebra" \equiv Lie algebra with $\operatorname{dim}>1$ without a proper abelian ideal.
- "Compact Lie algebra" \equiv real Lie algebra corresponding to a compact Lie group G.

$$
\begin{gathered}
-G=\text { compact. } \Rightarrow \text { finite-dim. representations can be chosen unitary: } \\
\\
u=\exp \left\{\mathrm{i} \theta_{A} T^{A}\right\}=\text { unitary. } \\
\\
u^{\dagger}=u^{-1} \quad \Rightarrow\left(T^{A}\right)^{\dagger}=T^{A}=\text { hermitian. } \\
-\left(T_{\text {ad }}^{A}\right)^{\dagger}=T_{\text {ad }}^{A} \quad \Rightarrow \\
f^{A B}{ }_{C}=\text { real and } \quad f^{A B}{ }_{C}=-f^{A C}{ }_{B} .
\end{gathered}
$$

Some facts about (semi)simplicity: (some proofs beyond the scope of this lecture)
a) $\mathcal{L}=$ semisimple $\Leftrightarrow\left(g^{A B}\right)=$ non-singular. ("Cartan's criterion")
\Rightarrow Define inverse of $g: \quad g^{A B} g_{B C}=\delta_{C}^{A}$.
$\hookrightarrow g$ acts as metric to raise/lower indices:

$$
\begin{align*}
f^{A B C} & \equiv f^{A B}{ }_{D} g^{D C}=-f^{A B}{ }_{D} f^{C E}{ }_{F} f^{D F}{ }_{E} \\
& =\left(f^{B F}{ }_{D} f^{D A}{ }_{E}+f^{F A}{ }_{D} f^{D B}{ }_{E}\right) f^{C E}{ }_{F} \quad \text { (Jacobi id.) } \\
& =-f^{B F}{ }_{D} f^{A D}{ }_{E} f^{C E}{ }_{F}+f^{A F}{ }_{D} f^{B D}{ }_{E} f^{C E}{ }_{F} \\
& =\mathrm{i} \operatorname{Tr}\left(T_{\mathrm{ad}}^{B} T_{\mathrm{ad}}^{A} T_{\mathrm{ad}}^{C}-T_{\mathrm{ad}}^{A} T_{\mathrm{ad}}^{B} T_{\mathrm{ad}}^{C}\right) \\
& =\operatorname{antisymmetric} \text { in } A, B, C . \tag{5.68}\\
\Rightarrow([x, y], z) & =\operatorname{Tr}\left(T_{\mathrm{ad}}^{A} T_{\mathrm{ad}}^{B} T_{\mathrm{ad}}^{C}-T_{\mathrm{ad}}^{B} T_{\mathrm{ad}}^{A} T_{\mathrm{ad}}^{C}\right) x_{A} y_{B} z_{C}=\mathrm{i} f^{A B C} x_{A} y_{B} z_{C} \\
& =([y, z], x)=([z, x], y) \\
& =(x,[y, z])=\ldots \tag{5.69}
\end{align*}
$$

b) $\mathcal{L}=$ semisimple $\&$ compact $\Leftrightarrow\left(g^{A B}\right)=$ positive definite.

Proof of " \Rightarrow ":
Use compactness: $\quad g^{A B}=-f^{A C}{ }_{D} f^{B D}{ }_{C}=+f^{A C}{ }_{D} f^{B C}{ }_{D}$.
$\hookrightarrow(x, x)=x_{A} x_{B} g^{A B}=\left(x_{A} f^{A C}{ }_{D}\right)\left(x_{B} f^{B C}{ }_{D}\right)=\left(x_{A} f^{A C}{ }_{D}\right)^{2} \geq 0$.
But: $\quad(x, x)>0$ for $x \neq 0$ due to semisimplicity of \mathcal{L}, see a).
c) Every complex semisimple Lie algebra can be obtained as complexification of a (real!) compact semisimple Lie algebra.
d) $\mathcal{L}=$ simple $\quad \Rightarrow$ adjoint representation is faithful $(=$ isomorphic to $\mathcal{L})$.

Proof:
$\operatorname{ker}\left(\operatorname{ad}_{x}\right)=\left\{x \in \mathcal{L} \mid \operatorname{ad}_{x}(y)=[x, y]=0 \forall y \in \mathcal{L}\right.$, i.e. $\left.\operatorname{ad}_{x}=0\right\}$
$=$ centre of $\mathcal{L}(=$ set of commuting elements)
\hookrightarrow defines an ideal \mathcal{I} of \mathcal{L}.
But: $\mathcal{L}=$ simple $\Rightarrow \mathcal{I}=\{0\}$ or $\underbrace{\mathcal{L}}$ impossible, otherwise $\mathcal{L}=$ abelian

$$
\Rightarrow \operatorname{ker}\left(\operatorname{ad}_{x}\right)=\{0\}
$$

e) $\mathcal{L}=$ semisimple $\quad \Leftrightarrow \quad \mathcal{L}=\mathcal{L}_{1} \oplus \cdots \oplus \mathcal{L}_{n}$ with $\mathcal{L}_{k}=$ simple and $\left[\mathcal{L}_{k}, \mathcal{L}\right]=\mathcal{L}_{k}$ (=ideal).
Proof: based on a).
$" \Rightarrow ": \quad-\operatorname{Be} \mathcal{I}$ an ideal of \mathcal{L} (if there is none, there is nothing to show). $\hookrightarrow[\mathcal{I}, \mathcal{L}] \subseteq \mathcal{I}$.

- Def.: $\quad C \equiv$ complement of \mathcal{I} w.r.t. g, i.e. $(C, \mathcal{I})=0$.

$$
\left.\begin{array}{rl}
\Rightarrow & ([C, \mathcal{I}], \mathcal{I}) \underset{a)}{\overline{=}}(\underbrace{[\mathcal{I}, \mathcal{I}]}_{\subseteq \mathcal{I}}, C)=0 \\
(\underbrace{[C, \mathcal{I}]}_{\subseteq \mathcal{I}, \text { ideal! }}, C)=0
\end{array}\right\} \Rightarrow \begin{aligned}
& {[C, \mathcal{I}]=\{0\},} \\
& \text { since } g=\text { non-singular. }
\end{aligned}
$$

$$
\Rightarrow \mathcal{L}=\mathcal{I} \oplus C
$$

$-\mathcal{I}$ and C are semisimple, since the restrictions of g on \mathcal{I} or C are nonsingular:

$$
\begin{aligned}
& x \in \mathcal{L}, x=x_{\mathcal{I}}+x_{C}, x_{\mathcal{I}} \in \mathcal{I}, x_{C} \in C \quad y \text { analogously. } \\
& \hookrightarrow(x, y)=\left(x_{\mathcal{I}}, y_{\mathcal{I}}\right)+\left(x_{C}, y_{C}\right) .
\end{aligned}
$$

- Repeat decomposition of \mathcal{I} and C recursively until only simple subalgebras remain.

$$
" \Leftarrow ": \mathcal{L}=\mathcal{L}_{1} \oplus \cdots \oplus \mathcal{L}_{n}, \quad\left[\mathcal{L}_{k}, \mathcal{L}_{l}\right]=0 \quad \text { for } k \neq l .
$$

Let $x=\sum_{k=1}^{n} x_{k}, x_{k} \in \mathcal{L}_{k}, \quad y=$ analogously.
$\hookrightarrow(x, y)=\sum_{k=1}^{n} \underbrace{\left(x_{k}, y_{k}\right)}_{=\text {non-singular metric on } \mathcal{L}_{k}, \text { since } \mathcal{L}_{k} \text { is simple. }}=$ non-singular. $\quad \Rightarrow \mathcal{L}=$ semi-simple.
Recall: If $T^{A} \in \mathcal{L}_{k}$, then $f{ }^{A B}{ }_{C}=0$ if $T^{B} \notin \mathcal{L}_{k}$.
$\left.\Rightarrow g^{A B}\right|_{\mathcal{L}_{k}}$ yields metric on \mathcal{L}_{k}.
f) $\mathcal{L}=$ semisimple $\Leftrightarrow \mathcal{L}=[\mathcal{L}, \mathcal{L}]$,
i.e. each element can be written as commutator.

Proof of " \Rightarrow ": based on previous property e).
$\mathcal{L}=$ semisimple $=\mathcal{L}_{1} \oplus \cdots \oplus \mathcal{L}_{n}, \quad \mathcal{L}_{k}=$ simple $=$ ideal, $\quad\left[\mathcal{L}_{k}, \mathcal{L}_{l}\right]=0$ for $k \neq l$.
$\hookrightarrow[\mathcal{L}, \mathcal{L}]=\underbrace{\left[\mathcal{L}_{1}, \mathcal{L}_{1}\right]}_{=\mathcal{L}_{1}} \oplus \cdots \oplus \underbrace{\left[\mathcal{L}_{n}, \mathcal{L}_{n}\right]}_{=\mathcal{L}_{n}}=\mathcal{L}$,
since $\left[\mathcal{L}_{k}, \mathcal{L}_{k}\right]$ is an ideal of \mathcal{L}_{k} that must be \mathcal{L}_{k} or $\{0\}$, but $\{0\}$ is not possible.
g) $\mathcal{L}=$ compact $\Rightarrow \mathcal{L}=$ "reductive", i.e. direct sum of an abelian and a semisimple Lie algebra

$$
=\mathcal{L}_{\text {abelian }} \oplus \mathcal{L}_{\text {semisimple }}
$$

Chapter 6

Semisimple Lie algebras

6.1 Cartan subalgebra, root vectors, and Cartan-Weyl basis

Consider complex semisimple Lie algebra \mathcal{L} resulting from complexification of a (real!) compact semisimple Lie algebra. (Always assumed in Chapter 6.)
\hookrightarrow W.l.o.g. we can assume:

- structure constants $f^{A B}{ }_{C}$ real,
- generators hermitian: $T_{\text {ad }}^{A}=\left(T_{\text {ad }}^{A}\right)^{\dagger}$,
- Cartan-Killing form $g=$ positiv definite on real vector space spanned by $\left\{T^{A}\right\}$.

Construction of "Cartan subalgebra" \mathcal{H}

1. Find maximal set $\left\{H^{j}\right\}_{j=1}^{r}$ of linearly independent T_{ad}^{A} that mutually commute:

$$
\begin{align*}
{\left[H^{j}, H^{k}\right]=0, \quad r } & \equiv \text { "rank of } \mathcal{L} "=\text { independent of choice of }\left\{H^{j}\right\}_{j=1}^{r}, \tag{6.1}\\
\mathcal{H} & \equiv \text { subalgebra spanned by }\left\{H^{j}\right\}, r=\operatorname{dim} \mathcal{H}
\end{align*}
$$

2. Simultaneous diagonalization of all H^{j} in adjoint representation:

$$
\begin{align*}
& \left(\operatorname{ad}_{H^{j}}\right)_{B}^{A}=\left(T_{\mathrm{ad}}^{j}\right)_{B}^{A}=-\mathrm{i} f^{j A}{ }_{B} \propto \delta^{A}{ }_{B} \quad \text { for fixed } j . \tag{6.2}\\
& \Rightarrow \operatorname{ad}_{H^{j}}\left(T^{A}\right)=\left[H^{j}, T_{\mathrm{ad}}^{A}\right]=\mathrm{i} f^{j A}{ }_{B} T_{\mathrm{ad}}^{B} \propto T_{\mathrm{ad}}^{A} . \tag{6.3}
\end{align*}
$$

Renaming $X^{a}=T_{\mathrm{ad}}^{A} \notin \mathcal{H}$ in this basis, define

$$
\begin{equation*}
\operatorname{ad}_{H^{j}}\left(X^{a}\right)=\left[H^{j}, X^{a}\right] \equiv \beta^{j}(a) X^{a} . \tag{6.4}
\end{equation*}
$$

\hookrightarrow Each generator $X^{a} \notin \mathcal{H}$ is characterized by a

$$
\begin{align*}
\text { "root vector" } \beta(a) & =\left(\beta^{1}(a), \ldots, \beta^{r}(a)\right) \neq 0 \quad\left(0 \text { would mean } X^{a} \in \mathcal{H}\right), \tag{6.5}\\
\Phi & \equiv \text { set of all root vectors } \beta(a) \neq 0 . \tag{6.6}
\end{align*}
$$

Notation: $\quad E_{\beta}^{(a)} \equiv X^{a}$ with $\beta=\beta(a)$.
Comments:

- The generators X^{a} are not hermitian anymore after the diagonalization of all H^{j}.
- This step requires that the number field of \mathcal{L} is closed.
\hookrightarrow Take field \mathbb{C}, not \mathbb{R} !

3. Inspect general $H=h_{j} H^{j} \in \mathcal{H}$:

$$
\begin{equation*}
\left[H, X^{a}\right]=h_{j}\left[H^{j}, X^{a}\right]=\underbrace{h_{j} \beta^{j}(a)}_{\equiv \beta(H)=\text { "linear form" on } \mathcal{H} \text { (=linear map } \mathcal{H} \rightarrow \mathbb{C})} X^{a}, \tag{6.7}
\end{equation*}
$$

i.e. $\beta \in \mathcal{H}^{*}=$ dual space of \mathcal{H}.

Note: Construction of \mathcal{H} in adjoint representation can be transferred to whole \mathcal{L} if \mathcal{L} is simple, since the adjoint representation is faithful.

Properties of roots:

a) If $\beta(a)$ is a root, then also $-\beta(a) . \quad \Rightarrow d_{\mathcal{L}}-r=$ even.

Proof:

$$
\begin{align*}
{\left[H^{j}, X^{a}\right] } & =\beta^{j}(a) X^{a}, \quad \mid \ldots{ }^{\dagger} \quad \text { and use } \beta(a)=\beta(a)^{*}, H^{j}=\left(H^{j}\right)^{\dagger} \\
{\left[\left(X^{a}\right)^{\dagger}, H^{j}\right] } & =\beta^{j}(a)\left(X^{a}\right)^{\dagger}, \\
{\left[H^{j},\left(X^{a}\right)^{\dagger}\right] } & =-\beta^{j}(a)\left(X^{a}\right)^{\dagger} . \tag{6.8}
\end{align*}
$$

b) If $\beta(a)+\beta(b) \neq 0$, then either $\left[X^{a}, X^{b}\right]=0$,
or $\left[X^{a}, X^{b}\right] \neq 0$ is eigenvector to root $\beta(a)+\beta(b)$.
Proof:

$$
\begin{align*}
{\left[H^{j},\left[X^{a}, X^{b}\right]\right] } & =\left[X^{a},\left[H^{j}, X^{b}\right]\right]+\left[X^{b},\left[X^{a}, H^{j}\right]\right] \quad \text { (Jacobi id.) } \\
& =\beta^{j}(b)\left[X^{a}, X^{b}\right]-\beta^{j}(a)\left[X^{b}, X^{a}\right] \\
& =\underbrace{\left(\beta^{j}(a)+\beta^{j}(b)\right)}_{\neq 0 \text { for some } j \text {-value }}\left[X^{a}, X^{b}\right] . \tag{6.9}
\end{align*}
$$

$$
\Rightarrow \text { If }\left[X^{a}, X^{b}\right] \neq 0, \text { then it is an eigenvector to root } \beta(a)+\beta(b) .
$$

c) $\left(H^{j}, X^{a}\right)=0$.

Proof:

$$
\begin{align*}
0 & =\left(\left[H^{j}, H^{k}\right], X^{a}\right) \quad\left(\text { since }\left[H^{j}, H^{k}\right]=0\right) \\
& =\left(H^{j},\left[H^{k}, X^{a}\right]\right)=\underbrace{\beta^{k}(a)}_{\neq 0 \text { for some } k \text {-value }}\left(H^{j}, X^{a}\right) . \\
\Rightarrow 0 & =\left(H^{j}, X^{a}\right) . \tag{6.10}
\end{align*}
$$

d) $\left(X^{a}, X^{b}\right)=0 \quad$ if $\beta(a)+\beta(b) \neq 0$.

Proof:

$$
\begin{align*}
\left(\left[X^{a}, H^{j}\right], X^{b}\right) & =-\beta^{j}(a)\left(X^{a}, X^{b}\right) \\
=\left(X^{a},\left[H^{j}, X^{b}\right]\right) & =+\beta^{j}(b)\left(X^{a}, X^{b}\right) . \\
\Rightarrow 0 & =\underbrace{\left(\beta^{j}(a)+\beta^{j}(b)\right)}_{\neq 0 \text { for some } j \text {-value }}\left(X^{a}, X^{b}\right) . \\
\Rightarrow 0 & =\left(X^{a}, X^{b}\right) . \tag{6.11}
\end{align*}
$$

e) $g^{i j} \equiv \operatorname{Tr}\left\{H^{i} H^{j}\right\} \quad$ in adjoint representation is non-singular and positive definite (=restriction of Cartan-Killing form to \mathcal{H}).
\hookrightarrow Define:

$$
\begin{align*}
& g^{i j} g_{j k} \equiv \delta^{i}{ }_{k}, \quad \beta_{j} \equiv g_{j k} \beta^{k} \tag{6.12}\\
& \underbrace{(\alpha, \beta)}_{\hookrightarrow \text { positive definite scalar product on the root space } \mathcal{H}^{*}} \equiv g_{j k} \alpha^{j} \beta^{k}=\alpha_{k} \beta^{k} . \tag{6.13}
\end{align*}
$$

Proof:

$$
\begin{aligned}
& g=\left(g^{A B}\right)=\left(g^{i j}\right) \oplus\left(g^{a b}\right), \quad \text { since }\left\{H^{j}\right\} \perp\left\{X^{a}\right\} . \\
& \Rightarrow\left(g^{i j}\right) \text { is non-singular and positive definite, since }\left(g^{A B}\right) \text { is. }
\end{aligned}
$$

f) Restricted Killing form calculable from root vectors:

$$
\begin{equation*}
\left(H, H^{\prime}\right)=\sum_{\alpha \in \Phi} \alpha(H) \alpha\left(H^{\prime}\right) \quad \forall H, H^{\prime} \in \mathcal{H} . \tag{6.14}
\end{equation*}
$$

Proof: Exercise!
g) All roots $\beta(a)$ are different (no degeneracy of X^{a} !),
i.e. exactly one eigenvector $E_{\beta} \equiv E_{\beta}^{(a)}$ corresponds to a root $\beta(a)$.

Proof in 3 steps:

- Step 1:

$$
\begin{align*}
{\left[X^{a}, X^{b}\right] } & \in \mathcal{H} \text { for } \beta(a)+\beta(b)=0, \text { according to proof of b), i.e. } \\
{\left[X^{a}, X^{b}\right] } & =c_{j}(a, b) H^{j} \quad \mid\left(\ldots, H^{k}\right) \\
\Rightarrow\left(H^{k},\left[X^{a}, X^{b}\right]\right) & =c_{j}(a, b)\left(H^{j}, H^{k}\right)=c_{j}(a, b) g^{j k} \equiv c^{k}(a, b) \\
& =\left(\left[H^{k}, X^{a}\right], X^{b}\right)=\beta^{k}(a) \underbrace{\left(X^{a}, X^{b}\right)}_{\equiv d(a, b)} . \tag{6.15}
\end{align*}
$$

Note: $\quad d(a, b) \neq 0$ for at least one pair a, b !
Otherwise $\left(X^{a}, X\right)=0 \forall X \in \mathcal{L}$,
i.e. contradiction to non-singularity of metric.
$\Rightarrow\left[X^{a}, X^{b}\right]=\beta_{j}(a) H^{j} d(a, b) \neq 0 \quad$ for some chosen index pair a, b.

- Step 2: Choose one specific generator $E_{-\alpha}^{(a)}$ and define subspace $\mathcal{A} \subset \mathcal{L}$:

$$
\begin{aligned}
\mathcal{A} \equiv & {\left[E_{-\alpha}^{(a)}, \mathcal{H}, V_{\alpha}, \ldots, V_{k \alpha}\right] } \\
& V_{\alpha}=\text { subspace spanned by all generators } E_{\alpha}^{(b)} \text { with root } \beta(b)=\alpha, \\
& k=\text { largest integer } k, \text { so that } k \alpha \text { is a root. }
\end{aligned}
$$

Observation: \mathcal{A} is invariant under multiplication by all generators in

$$
A=\left\{E_{-\alpha}^{(a)}, \mathcal{H}, V_{\alpha}\right\}, \text { i.e. }[X, \mathcal{A}] \subseteq \mathcal{A} \forall X \in A \text {. }
$$

$$
\hookrightarrow \text { Verification by calculating all commutators! }
$$

- Step 3: Consider (6.16) on subspace \mathcal{A} !

Identify $\alpha=-\beta(a)$, then $\underbrace{X^{a}, X^{b},\left\{H^{j}\right\}}_{\text {of }(6.16)} \in A$.
\Rightarrow (6.16) defined also on restriction \mathcal{A} of \mathcal{L}.
\hookrightarrow Evaluate trace of (6.16) on \mathcal{A} in adjoint representation!
Recall diagonal block structure:

$$
\operatorname{ad}_{H^{j}}=\left(\begin{array}{cccc}
\overbrace{\beta \cdot \mathbb{1}}^{V_{\beta}} & \overbrace{}^{\mathcal{H}} & \overbrace{}^{V_{-\beta}} & \tag{6.18}\\
& 0 \cdot \mathbb{1} & & \\
& & -\beta \cdot \mathbb{1} & \\
& & & \ddots
\end{array}\right),
$$

because

$$
\begin{gather*}
\operatorname{ad}_{H^{j}}\left(H^{k}\right)=\left[H^{j}, H^{k}\right]=0, \\
\operatorname{ad}_{H^{j}}\left(E_{\beta}^{(b)}\right)=\left[H^{j}, E_{\beta}^{(b)}\right]=\beta^{j}(b) E_{\beta}^{(b)} . \tag{6.19}\\
\Rightarrow \operatorname{Tr}_{\mathcal{A}}\{(6.16)\}=\operatorname{Tr}_{\mathcal{A}}\left\{\left[X^{a}, X^{b}\right]\right\}=0 \quad \text { (due to cyclicity!) } \\
=\operatorname{Tr}_{\mathcal{A}}\left\{\beta_{j}(a) H^{j} d(a, b)\right\}=\beta_{j}(a) d(a, b) \cdot \operatorname{Tr}_{\mathcal{A}}\left\{H^{j}\right\} \\
=-\alpha_{j} \cdot d(a, b) \cdot\{\underbrace{-\alpha^{j}}_{\rightarrow E_{-\alpha}^{(a)}}+\underbrace{0}_{\rightarrow \mathcal{H}}+\underbrace{\alpha^{j} \cdot \operatorname{dim} V_{\alpha}}_{\rightarrow V_{\alpha}}+\ldots+\underbrace{k \alpha^{j} \cdot \operatorname{dim} V_{k \alpha}}_{\hookrightarrow V_{k \alpha}}\} \\
=-\underbrace{\alpha_{j} \alpha^{j}}_{=(\alpha, \alpha) \neq 0} \cdot \underbrace{d(a, b)}_{\neq 0} \cdot\{-1+\sum_{l=1}^{k} l \cdot \underbrace{\operatorname{dim} V_{l a}}_{\geq 0}\} . \tag{6.20}
\end{gather*}
$$

\Rightarrow Unique solution: $\quad k=1$ with $\operatorname{dim} V_{\alpha}=1$.

\Rightarrow Standard form of a Lie algebra: "Cartan-Weyl basis":

Generators: $\quad H^{j}, E_{\alpha}, E_{-\alpha}=\left(E_{\alpha}\right)^{\dagger}$

$$
\text { with } \left.H^{\alpha} \equiv \alpha_{j} H^{j} \text { and }\left(E_{\alpha}, E_{-\alpha}\right) \equiv 1 \quad \text { (i.e. } d(a, b) \text { set to } 1\right) .
$$

Commutators:

$$
\begin{align*}
{\left[H^{j}, H^{k}\right]=} & 0 \tag{6.21}\\
{\left[H^{j}, E_{ \pm \alpha}\right]=} & \pm \alpha^{j} E_{ \pm \alpha}, \tag{6.22}\\
{\left[E_{\alpha}, E_{-\alpha}\right]=} & H^{\alpha}, \tag{6.23}\\
{\left[E_{\alpha}, E_{\beta}\right]=} & N_{\alpha \beta} E_{\alpha+\beta} \quad \text { if } \alpha+\beta \neq 0, \tag{6.24}\\
& N_{\alpha \beta}=0 \text { if } \alpha+\beta \text { is not a root. } \tag{6.25}
\end{align*}
$$

6.2 Geometry of the root system

Root strings:

Definition: " β-string through root α "

$$
\begin{align*}
S_{\beta ; \alpha} \equiv & \left\{\text { roots } \alpha+k \beta \mid k=-p,-p+1, \ldots, q ; p, q \in \mathbb{N}_{0}\right. \\
& \text { but } \alpha-(p+1) \beta \text { and } \alpha+(q+1) \beta \text { are not roots }\} . \tag{6.26}
\end{align*}
$$

In root space:

$S_{\beta ; \alpha}$ as $\operatorname{sl}(2, \mathbb{C})$ representation space:
$S_{\beta ; \alpha}=$ representation space of $\operatorname{sl}(2, \mathbb{C})$ spanned by $E_{ \pm \beta}, \beta_{j} H^{j}=H^{\beta}$:

- $\operatorname{sl}(2, \mathbb{C})$ algebra:

$$
\begin{align*}
{\left[E_{+\beta}, E_{-\beta}\right] } & =H^{\beta} \tag{6.27}\\
{\left[H^{\beta}, E_{ \pm \beta}\right] } & = \pm \beta_{j} \beta^{j} E_{ \pm \beta}= \pm(\beta, \beta) E_{ \pm \beta} \tag{6.28}
\end{align*}
$$

- $E_{ \pm \beta}=$ shift operators on $S_{\beta ; \alpha}$ from $\alpha+k \beta$ to $\alpha+(k \pm 1) \beta$:

$$
\begin{equation*}
\left[E_{ \pm \beta}, E_{\alpha+k \beta}\right] \propto E_{\alpha+(k \pm 1) \beta} \tag{6.29}
\end{equation*}
$$

- $E_{\alpha+k \beta}$ are eigenvectors of $\operatorname{ad}_{\beta_{j} H^{j}}$:

$$
\begin{align*}
& {\left[H^{\beta}, E_{\alpha+k \beta}\right]=\beta_{j}(\alpha+k \beta)^{j} E_{\alpha+k \beta}=\underbrace{[(\alpha, \beta)+k(\beta, \beta)]}_{\text {eigenvalues }=\text { "weights" }} E_{\alpha+k \beta .} .} \tag{6.30}\\
& \Rightarrow \quad \text { highest sl }(2, \mathbb{C}) \text { weight }=(\alpha, \beta)+q(\beta, \beta) \\
& \quad=-(\text { lowest weight })=-[(\alpha, \beta)-p(\beta, \beta)] . \tag{6.31}\\
& \Rightarrow \quad 2 \frac{(\alpha, \beta)}{(\beta, \beta)}=p-q \equiv n \in \mathbb{Z} . \tag{6.32}
\end{align*}
$$

Apply the same arguments to $S_{\alpha ; \beta}$ (with p^{\prime}, q^{\prime} instead of p, q):

$$
\begin{equation*}
2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}=p^{\prime}-q^{\prime} \equiv n^{\prime} \in \mathbb{Z} \tag{6.33}
\end{equation*}
$$

\Rightarrow Condition on angle $\theta_{\alpha \beta}$ between roots α, β in root space:

$$
\begin{equation*}
0 \leq \cos ^{2} \theta_{\alpha \beta} \equiv \frac{(\alpha, \beta)^{2}}{(\alpha, \alpha)(\beta, \beta)}=\frac{n n^{\prime}}{4} \leq 1 \tag{6.34}
\end{equation*}
$$

In particular, n and n^{\prime} have the same sign (if both are non-zero)!

Constraints on $S_{\beta ; \alpha}$ and $S_{\alpha ; \beta}$ from (6.32)-(6.34):
a) Assume special case $\beta=c \cdot \alpha, c \in \mathbb{R}$:

$$
\begin{array}{lll}
2 \frac{(\alpha, \beta)}{(\beta, \beta)}=\frac{2}{c}=n \in \mathbb{Z} & \Rightarrow & |c|=2,1, \frac{2}{3}, \frac{1}{2}, \frac{2}{5}, \ldots \\
2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}=2 c=n^{\prime} \in \mathbb{Z} & \Rightarrow & |c|=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \tag{6.36}
\end{array}
$$

$\Rightarrow 2$ possibilities: $\quad($ w.l.o.g. $|c| \leq 1)$
(i) $|c|=1$, i.e. $\beta=+\alpha$ or $\beta=-\alpha$.
\hookrightarrow Nothing new, since $\pm \alpha$ are trivially roots.
(ii) $|c|=\frac{1}{2}$, i.e. $\alpha=+2 \beta$ or $\alpha=-2 \beta$.
\hookrightarrow Contradiction to proof of property g) above!
\Rightarrow With α being a root, $\pm \alpha$ are the only multiples of α being roots!
b) Possibilities for $\beta \neq \pm \alpha\left(0 \leq \cos ^{2} \theta_{\alpha \beta}<1\right)$:
length ratio from (6.32)/(6.33):

n	n^{\prime}	$\theta_{\alpha \beta}$	$\sqrt{\frac{(\beta, \beta)}{(\alpha, \alpha)}}=\sqrt{\frac{n^{\prime}}{n}}$
0	or	0	$\frac{\pi}{2}$
+1	+1	$\frac{\pi}{3}$	not fixed
-1	-1	$\frac{2 \pi}{3}$	1
+1	+2	$\frac{\pi}{4}$	1
-1	-2	$\frac{3 \pi}{4}$	$\sqrt{2}$
+1	+3	$\frac{\pi}{6}$	$\sqrt{2}$
-1	-3	$\frac{5 \pi}{6}$	$\sqrt{3}$
+ cases with $\alpha \leftrightarrow \beta, n \leftrightarrow n^{\prime}$	$\sqrt{3}$		

Determination of $\left|\boldsymbol{N}_{\alpha \beta}\right|: \quad\left(\left[E_{\alpha}, E_{\beta}\right]=N_{\alpha \beta} E_{\alpha+\beta}\right)$

- From definition and $E_{-\alpha}=E_{\alpha}^{\dagger}$:

$$
\begin{equation*}
N_{\alpha \beta}=-N_{\beta \alpha}=+N_{-\beta,-\alpha}^{*}=-N_{-\alpha,-\beta}^{*} . \tag{6.37}
\end{equation*}
$$

- Choose 3 (non-vanishing) roots α, β, γ with $\alpha+\beta+\gamma=0$:

$$
\begin{align*}
& \underbrace{\left[E_{\alpha},\left[E_{\beta}, E_{\gamma}\right]\right]}_{\cdots+\text { cyclic }=0}=[E_{\alpha}, N_{\beta \gamma} \underbrace{E_{\beta+\gamma}}_{=E_{-\alpha}}]=N_{\beta \gamma} \alpha_{j} H^{j} . \\
& \Rightarrow 0=N_{\beta \gamma} \alpha_{j}+N_{\gamma \alpha} \beta_{j}+N_{\alpha \beta} \underbrace{\gamma_{j}}_{=-\alpha_{j}-\beta_{j}}, \quad \text { since }\left\{H^{j}\right\}=\text { independent. } \\
& \Rightarrow 0=\alpha_{j}\left(N_{\beta \gamma}-N_{\alpha \beta}\right)+\beta_{j}\left(N_{\gamma \alpha}-N_{\alpha \beta}\right), \quad \text { but } \alpha, \beta \text { are independent. } \\
& \Rightarrow N_{\alpha \beta}=N_{\beta \gamma}=N_{\gamma \alpha}, \quad \text { i.e. } N_{\alpha \beta}=N_{\beta,-\alpha-\beta}=N_{-\alpha-\beta, \alpha} . \tag{6.38}
\end{align*}
$$

- Jacobi identity on root string $S_{\beta ; \alpha}$:

$$
\begin{aligned}
& 0=[E_{\beta}, \underbrace{}_{=N_{-\beta, \alpha+k \beta} E_{\alpha+(k-1) \beta}\left[E_{-\beta}, E_{\alpha+k \beta}\right]}]+[E_{-\beta}, \underbrace{\left[E_{\alpha+k \beta}, E_{\beta}\right]}_{=N_{\alpha+k \beta, \beta} E_{\alpha+(k+1) \beta}}]+[E_{\alpha+k \beta}, \underbrace{\left[E_{\beta}, E_{-\beta}\right]}_{=\beta_{j} H^{j}}] \\
& 0=\left[N_{-\beta, \alpha+k \beta} N_{\beta, \alpha+(k-1) \beta}+N_{\alpha+k \beta, \beta} N_{-\beta, \alpha+(k+1) \beta}-\beta_{j}(\alpha+k \beta)^{j}\right] \underbrace{E_{\alpha+k \beta}}_{\neq 0}, \\
& \Rightarrow(\alpha, \beta)+k(\beta, \beta)=N_{-\beta, \alpha+k \beta} N_{\beta, \alpha+(k-1) \beta}+N_{\alpha+k \beta, \beta} N_{-\beta, \alpha+(k+1) \beta} .
\end{aligned}
$$

Using

$$
\begin{align*}
& N_{-\beta, \alpha+k \beta} \underset{(6.37)}{=}-N_{\beta,-\alpha-k \beta}^{*} \underset{(6.38)}{=}-N_{\alpha+(k-1) \beta, \beta}^{*} \underset{(6.37)}{=} N_{\beta, \alpha+(k-1) \beta}^{*}, \tag{6.39}\\
& N_{-\beta, \alpha+(k+1) \beta}^{=} N_{-\alpha-k \beta,-\beta}^{=}-N_{\alpha+k \beta, \beta}^{*}, \tag{6.40}
\end{align*}
$$

we get the recursive relation

$$
\begin{equation*}
(\alpha, \beta)+k(\beta, \beta)=F(k-1)-F(k), \quad F(k)=\left|N_{\alpha+k \beta, \beta}\right|^{2} . \tag{6.41}
\end{equation*}
$$

- Boundary of recursion (6.41):

$$
\begin{array}{rlrlr}
{\left[E_{\beta}, E_{\alpha+q \beta}\right]=0} & \Rightarrow \quad N_{\beta, \alpha+q \beta}=0 & \Rightarrow & F(q)=0, \\
{\left[E_{-\beta}, E_{\alpha-p \beta}\right]=0} & \Rightarrow \quad \underbrace{N_{-\beta, \alpha-p \beta}}_{=N_{\beta, \alpha-(p+1) \beta}}=0 & \Rightarrow \quad F(-p-1)=0 . \tag{6.42}
\end{array}
$$

\Rightarrow Unique solution for $F(k)$:

$$
\begin{align*}
F(k) & =(q-k)\left[(\alpha, \beta)+\frac{1}{2}(k+q+1)(\beta, \beta)\right] \\
& =(q-k)\left[\frac{1}{2}(p-q)+\frac{1}{2}(k+q+1)\right](\beta, \beta), \\
F(0) & =\left|N_{\alpha \beta}\right|^{2}=\frac{1}{2} q(p+1)(\beta, \beta) . \tag{6.43}
\end{align*}
$$

Note: $\quad-N_{\alpha \beta}$ can be chosen real. (If needed, redefine phase of E_{α}.)

- Sign determination of $N_{\alpha \beta}$ not so trivial, details see below!

Weyl reflections:

Definition:

$$
\begin{equation*}
\sigma_{\beta}(\alpha) \equiv \alpha-2 \frac{(\alpha, \beta)}{(\beta, \beta)} \beta=\text { "Weyl reflection" of } \alpha \text { w.r.t. the hyperplane } \perp \beta \text {. } \tag{6.44}
\end{equation*}
$$

Check properties: (see (6.35))

- $\sigma_{\beta}(\alpha)=$ root, since $p \leq n=2 \frac{(\alpha, \beta)}{(\beta, \beta)}=p-q$ and $q \geq-n=q-p$.
- Projections:

$$
\begin{align*}
\left(\sigma_{\beta}(\alpha), \beta\right) & =(\alpha, \beta)-n(\beta, \beta)=(\alpha, \beta)-2 \frac{(\alpha, \beta)}{(\beta, \beta)}(\beta, \beta)=-(\alpha, \beta), \\
\left(\sigma_{\beta}(\alpha), \sigma_{\beta}(\alpha)\right) & =(\alpha, \alpha)-2 n(\alpha, \beta)+n^{2}(\beta, \beta)^{2}=(\alpha, \alpha) . \tag{6.45}
\end{align*}
$$

"Weyl group" \equiv group of all Weyl reflections.
\hookrightarrow subgroup of the full symmetry group of the root system (and as such finite).
Note: The finiteness of a reflection group is non-trivial!

Abstract definition of a "root system":

A "(reduced crystallographic) root system" is a finite set Φ of non-zero vectors ("roots") in some finite-dimensional real vector space V with scalar product (.,.), with the following properties:
(i) The roots span V.
(ii) For each $\alpha \in \Phi,-\alpha$ is the only other multiple of α in Φ.
(iii) Φ is closed under Weyl reflections, i.e. $\sigma_{\beta}(\alpha) \in \Phi \forall \alpha, \beta \in \Phi$.
(iv) "Integrality": $\quad 2 \frac{(\alpha, \beta)}{(\beta, \beta)} \in \mathbb{Z} \quad \forall \alpha, \beta \in \Phi$.

The "rank" of the root system Φ is defined to be $\operatorname{dim}(V)$.
$\Phi^{+} \equiv\{\alpha \in \Phi \mid \alpha>0\}=$ set of all positive roots.
Φ is "reducible" if it can be decomposed into a sum of mutually orthogonal parts, i.e. if $\Phi=\Phi_{1}+\Phi_{2}$ with $\Phi_{i} \subset V_{i}$ and $V=V_{1} \oplus V_{2}, V_{1} \perp V_{2}$. Otherwise Φ is "irreducible".

Note $\Phi=$ reducible $\Leftrightarrow \mathcal{L}=$ semisimple, but not simple.

Serre's theorem:

There is a one-to-one correspondence between abstract root systems and complex semisimple Lie algebras.

6.3 Simple roots, Cartan matrix, and Chevalley basis

Chevalley relations:

1. Start from auxiliary identity: (Exercise!)

$$
\begin{equation*}
\frac{(\alpha+\beta, \alpha+\beta)}{(\alpha, \alpha)}=\frac{p+1}{q} \quad \text { for roots } \alpha, \beta \text { if } \alpha+\beta=\text { root. } \tag{6.46}
\end{equation*}
$$

Outline of proof: (Exercise!)
Use $p=2 \frac{(\alpha, \beta)}{(\beta, \beta)}+q$ in auxiliary quantity

$$
\begin{align*}
M & \equiv p-\frac{(\alpha+\beta, \alpha+\beta)}{(\alpha, \alpha)} q+1=\left(1-\frac{(\beta, \beta)}{(\alpha, \alpha)} q\right)\left(1+2 \frac{(\alpha, \beta)}{(\beta, \beta)}\right) \\
& =\left(1-\frac{n^{\prime}}{n} q\right)(1+n) \tag{6.47}
\end{align*}
$$

and show that $M=0$ for all possible cases of $n, n^{\prime} \ldots$
2. Application of (6.46) to $N_{\alpha \beta}$ for $\alpha+\beta=$ root:

$$
\begin{align*}
\left|N_{\alpha \beta}\right|^{2} & =\frac{1}{2} q(p+1)(\beta, \beta) \cdot \frac{p+1}{q} \cdot \frac{(\alpha, \alpha)}{(\alpha+\beta, \alpha+\beta)} \\
& =\frac{1}{2}(p+1)^{2} \frac{(\alpha, \alpha)(\beta, \beta)}{(\alpha+\beta, \alpha+\beta)} . \tag{6.48}
\end{align*}
$$

3. Redefinition of generators:

$$
\begin{equation*}
e_{\alpha} \equiv \sqrt{\frac{2}{(\alpha, \alpha)}} E_{\alpha}, \quad h_{\alpha} \equiv \frac{2}{(\alpha, \alpha)} \alpha_{j} H^{j} . \tag{6.49}
\end{equation*}
$$

\Rightarrow "Chevalley relations":

$$
\begin{align*}
{\left[h_{\alpha}, h_{\beta}\right]=0, } & {\left[h_{\beta}, e_{ \pm \alpha}\right]= \pm 2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} e_{ \pm \alpha}, } \\
{\left[e_{\alpha}, e_{-\alpha}\right]=h_{\alpha}, } & {\left[e_{\alpha}, e_{\beta}\right]= \begin{cases} \pm(p+1) e_{\alpha+\beta} & \text { if } \alpha+\beta=\text { root } \\
0 & \text { otherwise }\end{cases} } \tag{6.50}
\end{align*}
$$

Comments:

- In this basis, all structure constants are integers.
- The sign choice in the last relation is non-trivial.
\hookrightarrow Details clarified below!

"Positive" and "simple" roots:

- A root α is "positive" ("negative") if the first non-vanishing component α^{j} of the root vector in the fixed order of H^{1}, \ldots, H^{r} is positive (negative).
- A root α is "simple" if α is positive and cannot be written as linear combination of other roots with positive coefficients.

Properties of simple roots $\alpha^{(i)}$:

- Differences of simple roots cannot be roots. $\quad\left(p^{(i)}=p^{(j)}=0\right)$

$$
\begin{equation*}
\Rightarrow\left(\alpha^{(i)}, \alpha^{(j)}\right) \leq 0, \quad \text { i.e. } \angle\left(\alpha^{(i)}, \alpha^{(j)}\right)=\frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6} . \tag{6.51}
\end{equation*}
$$

- There are only 4 possible non-trivial chains for two simple roots:

$$
\alpha^{(i)}, \alpha^{(i)}+\alpha^{(j)}, \ldots, \alpha^{(i)}+q \alpha^{(j)}, \quad q=0,1,2,3
$$

- There are exactly $r=\operatorname{rank}(\mathcal{L})$ simple roots, and they span the whole root space.
- Any (positive) root β is a linear combination of simple roots with integer (positive) coefficients:

$$
\begin{equation*}
\beta=b_{i} \alpha^{(i)}, \quad \sum_{i=1}^{r} b_{i} \equiv \operatorname{ht}(\beta)=\text { height of root } \beta \tag{6.52}
\end{equation*}
$$

Two new bases: simple coroots and fundamental weights

\hookrightarrow Particularly relevant in representation theory!

- To each root α define a coroot $\check{\alpha}$:

$$
\begin{equation*}
\check{\alpha} \equiv \frac{2 \alpha}{(\alpha, \alpha)} . \tag{6.53}
\end{equation*}
$$

"Simple coroots":

$$
\begin{equation*}
\check{\alpha}^{(i)} \equiv \frac{2 \alpha^{(i)}}{\left(\alpha^{(i)}, \alpha^{(i)}\right)}, \quad i=1, \ldots, r . \tag{6.54}
\end{equation*}
$$

$\Rightarrow \mathcal{B} \equiv\left\{\check{\alpha}^{(i)}\right\}_{i=1}^{r}$ is a basis of \mathcal{H}^{*}.

- "Dynkin basis" of $\mathcal{H} \equiv$ dual basis to $\mathcal{B} \equiv \mathcal{B}^{*}=\left\{\Lambda_{(i)}\right\}_{i=1}^{r}$.

$$
\begin{equation*}
\left(\check{\alpha}^{(i)}, \Lambda_{(j)}\right)=\delta_{j}^{i}, \quad \Lambda_{(j)}=\text { "fundamental weights". } \tag{6.55}
\end{equation*}
$$

- Some relations:

$$
\begin{align*}
\alpha & =a_{i} \alpha^{(i)}=\check{a}_{i} \check{\alpha}^{(i)}, \quad \check{a}_{i}=\left(\alpha, \Lambda_{(i)}\right)=\frac{a_{i}}{2}\left(\alpha^{(i)}, \alpha^{(i)}\right), \tag{6.56}\\
\lambda & =\lambda^{j} \Lambda_{(j)}, \quad \lambda^{j}=\left(\lambda, \check{\alpha}^{(j)}\right)=2 \frac{\left(\lambda, \alpha^{(j)}\right)}{\left(\alpha^{(j)}, \alpha^{(j)}\right)}=\text { "Dynkin labels" of } \lambda, \tag{6.57}\\
(\alpha, \lambda) & =\check{a}_{i} \lambda^{i}=\sum_{i=1}^{r} \frac{1}{2} a_{i} \lambda^{i}\left(\alpha^{(i)}, \alpha^{(i)}\right) . \tag{6.58}
\end{align*}
$$

Cartan matrix and Chevalley basis:

- "Cartan matrix" A of \mathcal{L}

$$
\begin{align*}
A^{i j} & \equiv 2 \frac{\left(\alpha^{(i)}, \alpha^{(j)}\right)}{\left(\alpha^{(j)}, \alpha^{(j)}\right)}=\left(\alpha^{(i)}, \check{\alpha}^{(j)}\right) . \tag{6.59}\\
\Rightarrow A & =\left(\begin{array}{ccccc}
2 & A^{12} & \ldots & \\
A^{21} & 2 & A^{23} & \ldots \\
\vdots & \vdots & 2 & & \\
& & & \ddots & 2
\end{array}\right) \quad \text { with } A^{i j}=\text { integer } \leq 0 \text { for } i \neq j . \tag{6.60}
\end{align*}
$$

Note: $\quad i$ th row of $A=$ components of $\alpha^{(i)}$ in Dynkin basis.

- "Chevalley basis" $\equiv\left\{h_{\alpha^{(i)}}\right\} \cup\left\{e_{\alpha^{(i)}}\right\}$.

$$
\begin{align*}
{\left[h_{\alpha^{(i)}}, e_{ \pm \alpha^{(j)}}\right] } & = \pm A^{j i} e_{ \pm \alpha^{(j)}} \tag{6.61}\\
{\left[e_{\alpha^{(i)}}, e_{\alpha^{(j)}}\right] } & = \pm e_{\alpha^{(i)}+\alpha^{(j)}} \text { or } 0, \quad \text { if } \alpha^{(i)}+\alpha^{(j)} \text { is root or not. } \tag{6.62}
\end{align*}
$$

\hookrightarrow Signs fixed by convention, e.g. " + " for $\alpha^{(i)}<\alpha^{(j)}$.

Serre relations:

$$
\begin{equation*}
\left(\operatorname{ad}_{e_{ \pm \alpha^{(i)}}}\right)^{1-A^{j i}} e_{ \pm \alpha^{(j)}}=0 \tag{6.63}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& 1-A^{j i}=1-2 \frac{\left(\alpha^{(j)}, \alpha^{(i)}\right)}{\left(\alpha^{(i)}, \alpha^{(i)}\right)}=1-n_{i j}=1+q_{i j}= \text { smallest positive integer } k \\
& \text { so that } \alpha^{(j)}+k \alpha^{(i)} \text { is not a root. }
\end{aligned}
$$

Simple properties of Cartan matrices:
a) $A^{i i}=2$,
b) $A^{i j}=0 \Leftrightarrow A^{j i}=0$,
c) $A^{i j} \in\{0,-1,-2,-3\}$ for $i \neq j$,
d) if $A^{i j} \in\{-2,-3\}$ then $A^{j i}=-1$ for $i \neq j$,
e) $\operatorname{det}(A)>0$.

Proof:

- a) and b) obvious from definition of A.
- c) and d) follow from properties of root strings (see Section 6.2): $n, n^{\prime}<0$, since $p=p^{\prime}=0$ because of simplicity of roots $\alpha^{(i)}, \alpha^{(j)}$.
- To prove e), factorize A into diagonal matrix D and "Gram matrix" S :

$$
\begin{aligned}
& D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right), \quad d_{j}=2 /\left(\alpha^{(j)}, \alpha^{(j)}\right)>0, \quad \operatorname{det}(D)>0 \\
& S=\left(s_{i j}\right), \quad s_{i j}=\left(\alpha^{(i)}, \alpha^{(j)}\right), \quad \operatorname{det}(S)>0, \text { since }\left\{\alpha^{(i)}\right\} \text { are linearly independent. } \\
& \Rightarrow \quad \operatorname{det}(A)=\operatorname{det}(S D)=\operatorname{det}(S) \cdot \operatorname{det}(D)>0 .
\end{aligned}
$$

Examples:

$$
A_{\mathrm{sl}(2)}=(2), \quad A_{\mathrm{sl}(3)}=\left(\begin{array}{rr}
2 & -1 \tag{6.69}\\
-1 & 2
\end{array}\right), \quad A_{\mathrm{sl}(4)}=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Relation between A and (semi)simplicity of \mathcal{L} :

- Isomorphic semisimple Lie algebras have the same matrix A up to some possible renumbering of simple roots (rows/columns).
- \mathcal{L} is not simple: $\mathcal{L}=\mathcal{L}_{1} \oplus \mathcal{L}_{2}$, with $\mathcal{L}_{i}=$ semisimple Lie subalgebras of \mathcal{L}.

$$
\hookrightarrow\left[X_{1}, X_{2}\right]=0 \quad \forall X_{i} \in \mathcal{L}_{i} .
$$

$\Leftrightarrow A$ is "reducible" to the following block form by renumbering of roots

$$
A=\left(\begin{array}{c|c}
A_{1} & 0 \tag{6.70}\\
\hline 0 & A_{2}
\end{array}\right), \quad A_{i}=\text { Cartan matrix of } \mathcal{L}_{i}
$$

Reconstruction of all simple roots from A :

- Ratios of root lengths $l_{i}: \quad \frac{l_{i}}{l_{j}}=\sqrt{\frac{A^{i j}}{A^{j i}}}$.
- Angles $\theta_{i j}$ between roots: $\cos \theta_{i j}=-\frac{1}{2} \sqrt{A^{i j} A^{j i}}$.
\Rightarrow Simple roots determined up to orientation and overall normalization (=convention).
Examples:
а) $\operatorname{sl}(3): \quad A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$.

Known: $\quad l_{1}=l_{2}, \quad \cos \theta_{12}=-\frac{1}{2}$, i.e. $\theta_{12}=\frac{2 \pi}{3}$.
Definable: $\quad l_{1} \equiv 1, \quad \alpha^{(1)} \equiv \overrightarrow{\mathrm{e}}_{1}, \quad \alpha^{(2)} \cdot \overrightarrow{\mathrm{e}}_{2}>0$.
$\hookrightarrow \alpha^{(1)}=\binom{1}{0}, \quad \alpha^{(2)}=\frac{1}{2}\binom{-1}{\sqrt{3}}$.
b) G_{2} : $\quad A=\left(\begin{array}{rr}2 & -3 \\ -1 & 2\end{array}\right)$.

Known: $\quad l_{1}=\sqrt{3} l_{2}, \quad \cos \theta_{12}=-\frac{1}{2} \sqrt{3}, \quad$ i.e. $\theta_{12}=\frac{5 \pi}{6}$.
Definable: $\quad l_{2} \equiv 1, \quad \alpha^{(1)} \equiv \sqrt{3} \overrightarrow{\mathrm{e}}_{2}, \quad \alpha^{(2)} \cdot \overrightarrow{\mathrm{e}}_{1}>0$.

$$
\hookrightarrow \alpha^{(1)}=\binom{0}{\sqrt{3}}, \quad \alpha^{(2)}=\frac{1}{2}\binom{1}{-\sqrt{3}} .
$$

Reconstruction of the full root system from A : ("Serre construction")

Idea:
Each root $\alpha>0$ is a unique combination $\alpha=a_{i} \alpha^{(i)}$ with $a_{i}=$ integer ≥ 0 and corresponds exactly to one shift operator e_{α}, which is an eigenvector of all $\mathrm{ad}_{h_{\alpha^{(j)}}}$:
$\operatorname{ad}_{h_{\alpha^{(j)}}} e_{\alpha}=\frac{2\left(\alpha^{(j)}, \alpha\right)}{\left(\alpha^{(j)}, \alpha^{(j)}\right)} e_{\alpha}=a_{i} A^{i j} e_{\alpha}$.
\hookrightarrow Each $\alpha>0$ can be obtained upon recursively constructing all possible root strings of all simple roots $\alpha^{(i)}$, starting from the simple roots themselves, and characterized by the Dynkin labels $a_{i} A^{i j}$.

Recursive algorithm:

1. Roots of height 1 :

These are the simple roots $\alpha^{(i)}$, which are known to exist.
Recall (6.61): $\quad \operatorname{ad}_{h_{\alpha^{(j)}}} e_{\alpha^{(i)}}=A^{i j} e_{\alpha^{(i)}}$.
\hookrightarrow Simple root $e_{\alpha^{(i)}}$ is eigenvector to $h_{\alpha^{(j)}}$ with eigenvalues $A^{i j}$.
$\hookrightarrow e_{\alpha^{(i)}}$ is represented by its "weight vector" $\left|A^{i 1}, \ldots, A^{i r}\right\rangle$ of Dynkin labels.
2. Roots of height 2 :

Consider all root strings of $e_{\alpha^{(k)}}$ through $e_{\alpha^{(i)}}$:

- $\alpha^{(i)}-\alpha^{(k)}$ is never a root, i.e. $\operatorname{ad}_{e_{-\alpha}(k)} e_{\alpha^{(i)}}=0$,
- Serre relations: $\left(\operatorname{ad}_{e_{\alpha^{(k)}}}\right)^{1-A^{i k}} e_{\alpha^{(i)}}=0$.
\hookrightarrow Root strings start at $\alpha^{(i)}$ and have lengths $1-A^{i k}$ in $\alpha^{(k)}$ direction, and $\alpha^{(i)}+\alpha^{(k)}$ is a root (i.e. $e_{\alpha^{(i)}+\alpha^{(k)}} \neq 0$) exactly if $-A^{i k}>0$.
\Rightarrow All roots of height 2 through $\alpha^{(i)}$ determined and represented by $\left|A^{i 1}+A^{k 1}, \ldots, A^{i r}+A^{k r}\right\rangle$.

3. Roots of height $(n+1)$ from roots of height n (starting with $n=2$):

Consider all root strings of $e_{\alpha^{(k)}}$ through root $\beta=b_{i} \alpha^{(i)}$ with $\mathrm{ht}(\beta)=n$:
$\beta-p \alpha^{(k)}, \ldots, \beta, \ldots, \beta+q \alpha^{(k)}$.

- p can be read from roots of lower weight.
- Recall (6.32): $\quad p-q=2 \frac{\left(\beta, \alpha^{(k)}\right)}{\left(\alpha^{(k)}, \alpha^{(k)}\right)}=b_{i} A^{i k}, \quad q=p-b_{i} A^{i k}$.
$\hookrightarrow \beta+\alpha^{(k)}$ is root if $q>0$.
\Rightarrow All roots of height $(n+1)$ through β determined and represented by $\left|A^{k 1}+b_{i} A^{i 1}, \ldots, A^{k r}+b_{i} A^{i r}\right\rangle$.
Repeat this step until no roots with bigger height are possible.

4. Adding for each positive root α the negative root $-\alpha$ completes the set Φ of roots.

Extension to reconstruct the whole algebra:
Chevalley relations (6.50) fix algebra up to signs in

$$
\left[e_{\alpha}, e_{\beta}\right]= \pm(p+1) e_{\alpha+\beta} \quad \text { if } \alpha+\beta=\operatorname{root} .
$$

Sign choice [3]: Free sign choice for all "extra special pairs" of roots α, β, the others follow from algebra.

- An ordered pair $\{\alpha, \beta\}$ is "special" if $\alpha+\beta=$ root and $\alpha<\beta$;
- a special pair $\{\alpha, \beta\}$ is "extra special" if $\alpha<\alpha^{\prime}$ for all special pairs $\left\{\alpha^{\prime}, \beta^{\prime}\right\}$ with $\alpha^{\prime}+\beta^{\prime}=\alpha+\beta$.

Examples:

а) $\operatorname{sl}(3): \quad A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$.

- Height 1: 2 simple roots: $\quad \alpha^{(1)} \rightarrow|2,-1\rangle, \quad \alpha^{(2)} \rightarrow|-1,2\rangle$.
- Height 2: 2 relevant Serre relations for $i \neq j$:

$$
\begin{aligned}
& \left(\operatorname{ad}_{\alpha_{\alpha^{(1)}}}\right)^{1-A^{21}} e_{\alpha^{(2)}}=\left(\operatorname{ad} e_{\alpha^{(1)}}\right)^{2} e_{\alpha^{(2)}}=\left[e_{\alpha^{(1)}},\left[e_{\alpha^{(1)}}, e_{\alpha^{(2)}}\right]\right]=0 \\
& \quad \Rightarrow \alpha_{3} \equiv \alpha^{(1)}+\alpha^{(2)}=\text { root, } e_{\alpha_{3}} \equiv+\left[e_{\alpha^{(1)}}, e_{\alpha^{(2)}}\right] \\
& \left(\operatorname{ad}_{e_{\alpha^{(2)}}}\right)^{1-A^{12}} e_{\alpha^{(1)}}=\cdots=0 \\
& \quad \Rightarrow \text { no new information. }
\end{aligned}
$$

$$
\Rightarrow \alpha_{3} \rightarrow\left|A^{11}+A^{21}, A^{12}+A^{22}\right\rangle=|1,1\rangle \text { is the only root of height } 2 .
$$

- Height $\geq 3: \quad$ check 2 strings through α_{3} :

$$
\begin{array}{ll}
\alpha^{(1)} \text { string: } & p=1, \quad q=p-\left(A^{11}+A^{12}\right)=0 \\
\alpha^{(2)} \text { string: } & p=1, \quad q=p-\left(A^{21}+A^{22}\right)=0
\end{array}
$$

\Rightarrow No roots of height 3 !

$$
\Phi=\left\{\alpha^{(1)}, \alpha^{(2)}, \alpha_{3},-\alpha^{(1)},-\alpha^{(2)},-\alpha_{3}\right\} .
$$

Graphical illustration: (coordinates of $\alpha^{(k)}$ see above)

$$
|2,-1\rangle
$$

b) $G_{2}: \quad A=\left(\begin{array}{rr}2 & -3 \\ -1 & 2\end{array}\right)$.

Positive roots:

$$
\begin{array}{lll}
|2,-3\rangle: & \alpha^{(1)}, & e_{\alpha^{(1)}}, \\
|-1,2\rangle: & \alpha^{(2)}, & e_{\alpha^{(2)}}, \\
|1,-1\rangle: & \alpha_{3} \equiv \alpha^{(1)}+\alpha^{(2)}, & e_{\alpha_{3}} \equiv+\operatorname{ad}_{e_{\alpha^{(1)}}} e_{\alpha^{(2)}}=-\operatorname{ad}_{e_{\alpha^{(2)}}} e_{\alpha^{(1)}}, \\
|0,1\rangle: & \alpha_{4} \equiv \alpha^{(1)}+2 \alpha^{(2)}, & e_{\alpha_{4}} \equiv+\operatorname{ad}_{e_{\alpha^{(2)}}} e_{\alpha_{3}}, \\
|-1,3\rangle: & \alpha_{5} \equiv \alpha^{(1)}+3 \alpha^{(2)}, & e_{\alpha_{5}} \equiv+\operatorname{ad}_{e_{\alpha^{(2)}} e_{\alpha_{4}},}, \\
|1,0\rangle: & \alpha_{6} \equiv 2 \alpha^{(1)}+3 \alpha^{(2)}, & e_{\alpha_{6}} \equiv+\operatorname{ad}_{e_{\alpha^{(1)}}} e_{\alpha_{5}} .
\end{array}
$$

Note: $\quad \alpha_{3}$ is the only non-simple root corresponding to a special and an extra special pair of roots.
A root with special and extra special pairs correspond to alternative paths for their construction.

The full root system: (coordinates of $\alpha^{(k)}$ see above)

6.4 Classification of complex (semi)simple Lie algebras - Dynkin diagrams

Semisimple complex Lie algebras, root systems, and Cartan matrices:
There is one-to-one correspondences between:

- semisimple complex Lie algebras \mathcal{L},
- abstract root systems Φ with Cartan matrices A.

Similarly, there is one-to-one correspondences between:

- simple complex Lie algebras \mathcal{L},
- irreducible root systems Φ, with irreducible Cartan matrices A.

Decomposition of semisimple complex \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}=\oplus_{i} \mathcal{L}_{i} \quad \mathcal{L}_{i}=\text { simple } . \tag{6.71}
\end{equation*}
$$

Simple components \mathcal{L}_{i} correspond to Φ_{i} and A_{i} :

$$
\begin{array}{lll}
\Phi=\cup_{i} \Phi_{i} & \Phi_{i}=\text { irreducible }, & \Phi_{i} \cap \Phi_{j}=\emptyset \forall i \neq j, \\
A=\oplus_{i} A_{i}, & A_{i}=\text { irreducible } & \tag{6.73}
\end{array}
$$

\Rightarrow Classification of simple complex Lie algebras:

- automatically provides a classification of semisimple complex Lie algebras,
- corresponds to a classification of irreducible root systems, which have irreducible Cartan matrices.

"Dynkin diagrams"

\hookrightarrow graphically illustrate Cartan matrices (and thus the corresponding Φ and \mathcal{L}).
Graphical rules: $\quad r=\operatorname{dim}(A)=\#$ (simple roots).

- Draw a circle \bigcirc for each simple root (labelled by $i=1, \ldots, r$).
- Connect the two circles i and j by max $\left\{\left|A^{i j}\right|,\left|A^{j i}\right|\right\}$ lines.
- If $\left(\alpha^{(i)}, \alpha^{(i)}\right)>\left(\alpha^{(j)}, \alpha^{(j)}\right)$ for the two connected roots i and j, then put the ordering sign $>$ on the line(s) between i and j, e.g.:

Note: Singly-connected roots have identical lengths;
different lengths occur for 2 or 3 connecting lines.
\Rightarrow Connected Dynkin diagrams correspond to simple complex Lie algebras.
Examples:

$$
\underset{\mathrm{sl}(2)}{\bigcirc}
$$

Classification simple complex Lie algebras (connected Dynkin diagrams):

Preparation:

- Deconstruction of root systems / Lie algebras:

Removing a simple root (e.g. number i) from the root system (eliminating row i and column i from A), leads to an allowed simple or semisimple Lie algebra of rank $r-1$.

- Use normalized roots $\hat{\alpha}^{(i)} \equiv \frac{\alpha^{(i)}}{\sqrt{\left(\alpha^{(i)}, \alpha^{(i)}\right)}}$, so that $\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(i)}\right)=1$ and

$$
\begin{align*}
& l_{i j} \equiv 2\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(j)}\right) \leq 0 \\
& l_{i j}^{2}=\#(\text { lines connecting } i \text { and } j) \in\{0,1,2,3\} \quad \text { for } i \neq j . \tag{6.74}
\end{align*}
$$

Restrictions on diagrams:
a) In a set K of k roots, the number L_{K} of connected pairs of roots is at most $k-1$.

Proof: Define $\alpha=\sum_{i \in K} \hat{\alpha}^{(i)}$, so that

$$
\begin{aligned}
& 0<(\alpha, \alpha)=\sum_{i \in K}\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(i)}\right)+\sum_{\substack{i<j \\
i, j \in K}} 2\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(j)}\right)=k+\sum_{\substack{i<j \\
i, j \in K}} l_{i j} . \\
& \Rightarrow k>\sum_{\substack{i<j \\
i, j \in K}}\left(-l_{i j}\right) \geq L_{K} . \Rightarrow L_{K} \leq k-1 .
\end{aligned}
$$

b) There are no Dynkin diagrams with closed cycles (loops).

Proof: This follows directly from a).
c) No more than 3 lines can originate from a single root.

Proof: Let $\hat{\alpha}^{(i)}$ be a normalized root connected to the k roots $\hat{\alpha}^{(j)}$ of the subset K :

$$
\begin{aligned}
& 1=\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(i)}\right)=\left(\hat{\alpha}^{(j)}, \hat{\alpha}^{(j)}\right), \quad\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(j)}\right)<0, \quad j \in K, \\
& 0=\left(\hat{\alpha}^{(j)}, \hat{\alpha}^{(l)}\right), \quad j, l \in K,
\end{aligned}
$$

where the last condition stems from the absense of loops.
The linear independence of the simple roots implies that

$$
\begin{aligned}
& 0 \neq \beta \equiv \hat{\alpha}^{(i)}-\sum_{j \in K}\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(j)}\right) \hat{\alpha}^{(j)}, \\
& 0<(\beta, \beta)=1-\sum_{j \in K}\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(j)}\right)^{2}=1-\sum_{j \in K} l_{i j}^{2} / 4 . \\
\Rightarrow & 4>\sum_{j \in K} l_{i j}^{2}=\#(\text { lines connected to } i) .
\end{aligned}
$$

Implications of property c) for a 3-fold-connected root i :

- Only 1 diagram possible with a triple line:

- 2 possible substructures for a root i with a double and a single line:

- 1 substructure for a root i with 3 single lines:

\hookrightarrow Limitations on lengths of chains indicated by "..." (= one or no line)?
d) "Shrinking rule": Replacing a linear chain of singly-connected roots by one root generates a valid Dynkin diagram.
Sketch of proof: Label the k singly-connected roots $\hat{\alpha}^{(i)}$ by $i=1, \ldots, k$, so that

$$
\begin{aligned}
\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(i+1)}\right) & =-\frac{1}{2}, \quad i=1, \ldots, k-1 \\
\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(j)}\right) & =0, \quad i, j=1, \ldots, k-1, \quad|i-j|>1
\end{aligned}
$$

Define $\hat{\alpha}=\sum_{i=1}^{k-1} \hat{\alpha}^{(i)}$, which is a unit vector,

$$
\begin{equation*}
(\hat{\alpha}, \hat{\alpha})=\sum_{i=1}^{k}\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(i)}\right)+2 \sum_{i=1}^{k-1}\left(\hat{\alpha}^{(i)}, \hat{\alpha}^{(i+1)}\right)=k-(k-1)=1, \tag{6.75}
\end{equation*}
$$

and replace the whole chain $C=\left\{\hat{\alpha}^{(i)}\right\}_{i=1}^{k}$ by $\hat{\alpha}$ to get a new Dynkin diagram.
To show: The set $\{\hat{\alpha}\} \cup\left\{\hat{\alpha}^{(i)}\right\}_{i=k+1}^{r}$ generates a root system Φ^{\prime} of rank $r-k+1$.

- Linear independence of $\{\hat{\alpha}\} \cup\left\{\hat{\alpha}^{(i)}\right\}_{i=k+1}^{r}$ and rank of Φ^{\prime} obviously ok.
- Check angles between simple roots:

Note that any root $\hat{\beta} \in\left\{\hat{\alpha}^{(i)}\right\}_{i=k+1}^{r}$ not in C could be connected to only one root $\hat{\alpha}^{(j)} \in C$, since there is no loop. But $\hat{\beta}$ has the same non-trivial angle (i.e. $\neq \pi / 2$) with $\hat{\alpha}^{(j)}$ and the new root $\hat{\alpha}$:

$$
(\hat{\beta}, \hat{\alpha})=\sum_{i=1}^{k-1}\left(\hat{\beta}, \hat{\alpha}^{(i)}\right)=\left(\hat{\beta}, \hat{\alpha}^{(j)}\right) .
$$

$\hookrightarrow \hat{\alpha}^{(j)}$ can be replaced by $\hat{\alpha}$ in all scalar products with $\hat{\beta}$.
\Rightarrow Integrality and Weyl reflections ok!

- Show non-existence of multiples of roots other than $\pm \alpha$ yourself?
e) A Dynkin diagram contains at most one double line.

Proof: According to c), two roots with double lines could only be linked by a chain of singly-connected roots. Shrinking this chain to a single root as in d), would lead to a root with 4 lines attached. \rightarrow Contradiction!
f) There are only 3 possible structures with a double line:

Proof: Consider 2 singly-connected chains $\left\{\hat{\alpha}^{(j)}\right\}_{j=1}^{n}$ and $\left\{\hat{\beta}^{(k)}\right\}_{k=1}^{m}$ with a double line linking $\hat{\alpha}^{(n)}$ and $\hat{\beta}^{(m)}$, where $\hat{\beta}^{(k)}$ are just some renamed roots $\hat{\alpha}^{(i)}$, so that

$$
\begin{aligned}
\left(\hat{\alpha}^{(j)}, \hat{\alpha}^{(j+1)}\right) & =\left(\hat{\beta}^{(k)}, \hat{\beta}^{(k+1)}\right)=-\frac{1}{2}, \quad j=1, \ldots, n-1, \quad k=1, \ldots, m-1 \\
\left(\hat{\alpha}^{(n)}, \hat{\beta}^{(m)}\right) & =-\frac{1}{\sqrt{2}}, \quad\left(\hat{\alpha}^{(j)}, \hat{\beta}^{(k)}\right)=0, \quad j \neq k, \quad j=1, \ldots, n, \quad k=1, \ldots, m .
\end{aligned}
$$

Analyze the scalar products of the vectors $\alpha \equiv \sum_{j=1}^{n} j \hat{\alpha}^{(j)}$ and $\beta \equiv \sum_{k=1}^{m} k \hat{\beta}^{(k)}$,

$$
\begin{aligned}
& (\alpha, \alpha)=\sum_{j=1}^{n} j^{2}-\sum_{j=1}^{n-1} j(j+1)=\frac{n(n+1)}{2} \\
& (\beta, \beta)=\sum_{k=1}^{m} k^{2}-\sum_{k=1}^{m-1} k(k+1)=\frac{m(m+1)}{2} \\
& (\alpha, \beta)=\left(\alpha^{(n)}, \beta^{(m)}\right)=-\frac{m n}{\sqrt{2}}
\end{aligned}
$$

Schwartz's inequality implies a condition on n and m :

$$
\begin{aligned}
& 0<(\alpha, \alpha)(\beta, \beta)-(\alpha, \beta)^{2}=\frac{m n(m+1)(n+1)}{4}-\frac{m^{2} n^{2}}{2}=\frac{m n(1+m+n-m n)}{4} . \\
& \Rightarrow(m-1)(n-1)<2 .
\end{aligned}
$$

Note that equality is ruled out, because α and β are linearly independent.
The 3 different types of solutions for $n, m \geq 1$ correspond to the above diagrams, assuming that the $\alpha^{(i)}$ are longer than $\beta^{(j)}$ (unnormalized roots):

- $m=n=2$: diagram on the right.
- $m=1, n \in \mathbb{N}$: diagram on the left.
- $n=1, m \in \mathbb{N}$: diagram in the middle.
g) There are only 4 different types of diagrams with a root connected to 3 other roots:

Proof: Consider 3 singly-connected chains $\left\{\hat{\alpha}^{(j)}\right\}_{j=1}^{n-1},\left\{\hat{\beta}^{(k)}\right\}_{k=1}^{m-1}$, and $\left\{\hat{\gamma}^{(l)}\right\}_{l=1}^{p-1}$ which are linked to the root $\hat{\delta}$ by $\hat{\alpha}^{(n-1)}, \hat{\beta}^{(m-1)}$, and $\hat{\gamma}^{(p-1)}$.
As in f), analyze the scalar products of the vectors $\alpha \equiv \sum_{j=1}^{n-1} j \hat{\alpha}^{(j)}, \beta \equiv \sum_{k=1}^{m-1} k \hat{\beta}^{(k)}$, and $\gamma \equiv \sum_{l=1}^{p-1} l \hat{\gamma}^{(l)}$:

$$
\begin{array}{ll}
(\alpha, \alpha)=\frac{n(n-1)}{2}, & (\hat{\delta}, \alpha)=(n-1)\left(\hat{\delta}, \alpha^{(n-1)}\right)=-\frac{n-1}{2} \\
(\beta, \beta)=\frac{m(m-1)}{2}, & (\hat{\delta}, \beta)=(m-1)\left(\hat{\delta}, \beta^{(m-1)}\right)=-\frac{m-1}{2} \\
(\gamma, \gamma)=\frac{p(p-1)}{2}, & (\hat{\delta}, \gamma)=(p-1)\left(\hat{\delta}, \gamma^{(p-1)}\right)=-\frac{p-1}{2}
\end{array}
$$

Calculate the norm of the vector

$$
\epsilon \equiv \hat{\delta}-\frac{(\hat{\delta}, \alpha)}{(\alpha, \alpha)} \alpha-\frac{(\hat{\delta}, \beta)}{(\beta, \beta)} \beta-\frac{(\hat{\delta}, \gamma)}{(\gamma, \gamma)} \gamma \neq 0
$$

which is orthogonal to α, β, γ,

$$
\begin{aligned}
& 0<(\epsilon, \epsilon)=1-\frac{(\hat{\delta}, \alpha)^{2}}{(\alpha, \alpha)}-\frac{(\hat{\delta}, \beta)^{2}}{(\beta, \beta)}-\frac{(\hat{\delta}, \gamma)^{2}}{(\gamma, \gamma)}=\frac{1}{2}\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-1\right) . \\
\Rightarrow & 1<\frac{1}{m}+\frac{1}{n}+\frac{1}{p} .
\end{aligned}
$$

The 4 different types of solutions for $n, m, p>1$ correspond to the above diagrams:

- $m=n=2, \quad 1<p \in \mathbb{N}$: upper left diagram.
- $m=2, n=3, p=5$: upper right diagram.
- $m=2, n=3, p=4$: lower right diagram.
- $m=2, n=3, p=3$: lower left diagram.
h) Finally, there is no restriction on diagrams with only one singly-connected chain without bifurcations.

Survey of all finite-dimensional simple complex Lie algebras

$\hookrightarrow 4$ infinite series of "classical Lie algebras" ($r=$ rank)

- $A_{r} \equiv \operatorname{sl}(r+1, \mathbb{C}), \quad r \geq 1$,
- $B_{r} \equiv \mathrm{so}(2 r+1, \mathbb{C}), r \geq 3$,
- $C_{r} \equiv \operatorname{sp}(2 r, \mathbb{C}), \quad r \geq 2$,
- $D_{r} \equiv \operatorname{so}(2 r, \mathbb{C}), \quad r \geq 4$,
and 5 "exceptional Lie algebras" (subscript $=$ rank)

$$
E_{6}, \quad E_{7}, \quad E_{8}, \quad F_{4}, \quad G_{2}
$$

Some comments:

- Including all $r \geq 1$, leads to redundancies:

$$
\begin{equation*}
A_{1} \simeq B_{1} \simeq C_{1} \simeq D_{1}, \quad B_{2} \simeq C_{2}, \quad D_{2} \simeq A_{1} \oplus A_{1}, \quad A_{3} \simeq D_{3} . \tag{6.76}
\end{equation*}
$$

- These Lie algebras, classified as complex Lie algebras over \mathbb{C}, have many different real forms over \mathbb{R}.

Particularly important are the compact real forms in which

$$
\begin{equation*}
H^{j}=\left(H^{j}\right)^{\dagger}, \quad E_{-\alpha}=\left(E_{\alpha}\right)^{\dagger} \tag{6.77}
\end{equation*}
$$

\hookrightarrow Relevant for the exponentiation to associated compact Lie groups!

Series of classical Lie algebras:

a) $A_{r} \equiv \operatorname{sl}(r+1, \mathbb{C}), \quad r \geq 1$

- Cartan matrix:

$$
A=\left(\begin{array}{ccccc}
2 & -1 & & & \tag{6.78}\\
-1 & 2 & -1 & & \\
& -1 & 2 & & \\
& & & \ddots & -1 \\
& & & -1 & 2
\end{array}\right)
$$

- compact real form:

$$
A_{r} \rightarrow \operatorname{su}(\mathrm{r}+1), \quad r \geq 1
$$

b) $B_{r} \equiv \operatorname{so}(2 r+1, \mathbb{C}), \quad r \geq 3$

- Cartan matrix:

$$
A=\left(\begin{array}{ccccc}
2 & -1 & & & \tag{6.79}\\
-1 & 2 & -1 & & \\
& -1 & 2 & & \\
& & & \ddots & -2 \\
& & & -1 & 2
\end{array}\right)
$$

- compact real form:

$$
B_{r} \rightarrow \mathrm{so}(2 \mathrm{r}+1), \quad r \geq 3
$$

c) $C_{r} \equiv \operatorname{sp}(r, \mathbb{C}), \quad r \geq 2$

- Cartan matrix:

$$
A=\left(\begin{array}{ccccc}
2 & -1 & & & \tag{6.80}\\
-1 & 2 & -1 & & \\
& -1 & 2 & & \\
& & \ddots & -1 \\
& & & -2 & 2
\end{array}\right)
$$

- compact real form: $\quad C_{r} \rightarrow \operatorname{usp}(2 \mathrm{r}), \quad r \geq 2$.
d) $D_{r} \equiv \operatorname{so}(2 r, \mathbb{C}), \quad r \geq 4$

- Cartan matrix:

$$
A=\left(\begin{array}{cccccc}
2 & -1 & & & & \tag{6.81}\\
-1 & 2 & & & & \\
& \ddots & -1 & & \\
& -1 & 2 & -1 & -1 \\
& & & -1 & 2 & \\
& & & -1 & & 2
\end{array}\right)
$$

- compact real form: $\quad D_{r} \rightarrow \mathrm{so}(2 \mathrm{r}), r \geq 4$.

Series of classical Lie algebras:
a) E_{6}

- Cartan matrix:

$$
A=\left(\begin{array}{cccccc}
2 & -1 & & & & \tag{6.82}\\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & -1 & \\
& & -1 & 2 & & \\
& & -1 & & 2 & -1 \\
& & & & -1 & 2
\end{array}\right)
$$

b) E_{7}

- Cartan matrix:

$$
A=\left(\begin{array}{cccccc}
2 & -1 & & & & \tag{6.83}\\
-1 & \ddots & -1 & & & \\
& -1 & 2 & -1 & -1 & \\
& & -1 & 2 & & \\
& & -1 & & 2 & -1 \\
& & & & -1 & 2
\end{array}\right)
$$

c) E_{8}

- Cartan matrix:

$$
A=\left(\begin{array}{cccccc}
2 & -1 & & & & \tag{6.84}\\
-1 & \ddots & -1 & & & \\
& -1 & 2 & -1 & -1 & \\
& & -1 & 2 & & \\
& & -1 & & 2 & -1 \\
& & & & -1 & 2
\end{array}\right)
$$

d) F_{4}

- Cartan matrix:

$$
A=\left(\begin{array}{cccc}
2 & -1 & & \tag{6.85}\\
-1 & 2 & -2 & \\
& -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right)
$$

e) G_{2}

- Cartan matrix:

$$
A=\left(\begin{array}{cc}
2 & -3 \tag{6.86}\\
-1 & 2
\end{array}\right)
$$

6.5 Finite-dimensional representations of complex simple Lie algebras

6.5.1 Construction of irreducible weight systems

Preliminary considerations:

- $\mathcal{L}=$ complex simple Lie algebra with basis $\left\{H^{i}\right\}_{i=1}^{r} \cup\left\{E_{\alpha}\right\}_{\alpha \in \Phi}$ obeying $\left(H^{i}\right)^{\dagger}=H^{i}, E_{-\alpha}=\left(E_{\alpha}\right)^{\dagger}$.
Recall: (compact real form of $\mathcal{L})=\mathcal{L}_{\mathrm{c}}=\left\{X=X^{\dagger} \mid X \in \mathcal{L}\right\}$.
\hookrightarrow Representations of \mathcal{L}_{c} exponentiate to unitary representations of corresponding compact Lie group G.
\Rightarrow Finite-dim. representations of \mathcal{L} determine finite-dim. unitary repr. of G.
- $\mathcal{L}=$ overlay of $\operatorname{sl}(2, \mathbb{C})$ algebras.
\hookrightarrow Each representation R of \mathcal{L} decomposes into several $\operatorname{sl}(2, \mathbb{C})$ representations.
\hookrightarrow Make use of construction and properties of $\mathrm{sl}(2, \mathbb{C})$ representations!

Properties of finite-dim. representations R of \mathcal{L} :

- The repr. space V of R is spanned an orthonormal basis $\left\{v_{k}\right\}_{k=1}^{d_{R}}, \quad d_{R}=\operatorname{dim} V<\infty$.
- All $R\left(H^{i}\right)$ are simultaneously diagonalizable.
\exists orthogonal subspaces $V_{(\lambda)}$ spanning $V=\oplus_{\lambda} V_{(\lambda)}$ with

$$
\begin{equation*}
R\left(H^{i}\right) v_{(\lambda)}=\lambda^{i} v_{(\lambda)} \quad \forall v_{(\lambda)} \in V_{(\lambda)}, \quad(\lambda) \equiv\left(\lambda^{1}, \ldots, \lambda^{r}\right) \tag{6.87}
\end{equation*}
$$

Each set $(\lambda) \neq 0$ defines a "weight" λ of R :

$$
\begin{equation*}
\lambda \equiv \lambda^{i} \Lambda_{(i)} \in \mathcal{H}^{*} . \tag{6.88}
\end{equation*}
$$

Notation for a generic "weight vector" $v_{(\lambda)} \in V_{(\lambda)}$:

$$
\begin{align*}
|\lambda\rangle & \equiv\left|\lambda^{1}, \ldots, \lambda^{r}\right\rangle \equiv v_{(\lambda)} . \tag{6.89}\\
\Rightarrow R\left(H^{\alpha}\right)|\lambda\rangle & =R\left(\alpha_{i} H^{i}\right) v_{(\lambda)}=\alpha_{i} \lambda^{i} v_{(\lambda)}=(\alpha, \lambda)|\lambda\rangle \quad \forall|\lambda\rangle=v_{(\lambda)} \in V_{(\lambda)} . \tag{6.90}
\end{align*}
$$

- Transition between different $V_{(\lambda)}$ via shift operators $E_{ \pm \alpha}$:

$$
\begin{align*}
R\left(H^{\alpha}\right)\left(R\left(E_{ \pm \alpha}\right)|\lambda\rangle\right) & =\left[R\left(H^{\alpha}\right), R\left(E_{ \pm \alpha}\right)\right]|\lambda\rangle+R\left(E_{ \pm \alpha}\right) R\left(H^{\alpha}\right)|\lambda\rangle \\
& =R\left(\left[H^{\alpha}, E_{ \pm \alpha}\right]\right)|\lambda\rangle+R\left(E_{ \pm \alpha}\right)(\alpha, \lambda)|\lambda\rangle \\
& = \pm(\alpha, \alpha) R\left(E_{ \pm \alpha}\right)|\lambda\rangle+(\alpha, \lambda) R\left(E_{ \pm \alpha}\right)|\lambda\rangle \\
& =(\alpha, \lambda \pm \alpha)\left(R\left(E_{ \pm \alpha}\right)|\lambda\rangle\right) . \tag{6.91}
\end{align*}
$$

\Rightarrow For each weight λ, the states $R\left(E_{ \pm \alpha}\right)|\lambda\rangle$ are weight vectors $|\lambda \pm \alpha\rangle$ or zero.

- Each $\alpha \in \Phi$ defines some finite weight string through $|\lambda\rangle: \quad\left(p, q \in \mathbb{N}_{0}\right)$

$$
\begin{array}{llll}
|\lambda-p \alpha\rangle,|\lambda-(p-1) \alpha\rangle, & \ldots, & |\lambda\rangle, & \ldots, \quad|\lambda+q \alpha\rangle \\
0=R\left(E_{-\alpha}\right)|\lambda-p \alpha\rangle, & & R\left(E_{\alpha}\right)|\lambda+q \alpha\rangle=0 \tag{6.93}
\end{array}
$$

From $\operatorname{sl}(2, \mathbb{C})$ representation theory:

$$
\begin{equation*}
(\alpha, \lambda-p \alpha)=-(\alpha, \lambda+q \alpha) \quad \Rightarrow p-q=2 \frac{(\alpha, \lambda)}{(\alpha, \alpha)}=(\check{\alpha}, \lambda) \in \mathbb{Z} \tag{6.94}
\end{equation*}
$$

- Implications on components λ^{i} :

Special case: $\quad \alpha=\alpha^{(i)}=$ simple root.

$$
\begin{equation*}
\mathbb{Z} \ni\left(\check{\alpha}^{(i)}, \lambda\right)=\lambda^{i} . \tag{6.95}
\end{equation*}
$$

\Rightarrow Weights $\lambda=\lambda^{i} \Lambda_{(i)}$ have integer components in Dynkin basis.
Weights λ with $\lambda^{i} \geq 0$ are called "dominant".

- $R=$ finite-dim. $\quad \Rightarrow \exists$ highest weight Λ, i.e.

$$
\begin{equation*}
R\left(E_{\alpha}\right)|\Lambda\rangle=0 \quad \forall \alpha \in \Phi^{+}, \quad(\Lambda)=\left(\Lambda^{1}, \ldots, \Lambda^{r}\right), \quad \Lambda^{i} \in \mathbb{N}_{0} \tag{6.96}
\end{equation*}
$$

\Rightarrow All $|\lambda\rangle$ can be obtained from some Λ according to

$$
\begin{equation*}
|\lambda\rangle=|\Lambda-\alpha-\beta \ldots\rangle=R\left(E_{-\alpha}\right) R\left(E_{-\beta}\right) \ldots|\Lambda\rangle . \tag{6.97}
\end{equation*}
$$

Note: $\quad|\lambda\rangle=\mid \Lambda-($ some rows of $A)\rangle$, because components of $\alpha^{(i)}=i$ th row of A.

Highest-weight theorem:

For each dominant weight Λ there is a unique, irreducible, finite-dim. representation R_{Λ} of \mathcal{L}, and each irreducible, finite-dim. representation corresponds to a dominant weight.

Algorithm for determining all weights of R_{Λ} :

1. Weight of "level 0 " $=$ given highest weight Λ with integer $\Lambda^{i} \geq 0$.
2. Weights of "level 1 ":
a) Apply $R\left(E_{-\alpha^{(i)}}\right)$ for all pos. simple roots $\alpha^{(i)} \in \Phi^{+}$to $|\Lambda\rangle$.
b) Calculate the new potential root $|\lambda\rangle=\mid \Lambda-(i$ th row of $A)\rangle$.
c) Check $p=q+\Lambda^{i}>0$ with (6.94), i.e. whether $\left|\lambda-\alpha^{(i)}\right\rangle$ is still in the weight string. (At this level, $q=0 \forall i$.)
3. Weights of "level 2" and higher: Iterate step 2!
a) Subtract each row of A from each $|\lambda\rangle$ of the previous level.
b) Check $p=q+\lambda^{i}>0$ with (6.94), i.e. whether each new potential weight $\left|\lambda-\alpha^{(i)}\right\rangle$ is still in the weight string. (q is the largest integer with $\left|\lambda+q \alpha^{(i)}\right\rangle$ being a weight of lower level.)

Repeat this step until no more weights are obtained.
Comment: The algorithm does not determine the multiplicity of weight vectors $|\lambda\rangle$. \hookrightarrow Done later (see Section 6.5.3)!

Specific representations:

- "Fundamental representations" $=$ representations with the fundamental weights $\Lambda_{(i)}$ as highest weight, i.e. in components $(\Lambda)=(1,0, \ldots),(0,1,0, \ldots), \ldots$.
- Adjoint representation $R_{\text {ad }}$: roots \equiv weights of $R_{\text {ad }}$.

Highest weight $\Lambda_{\mathrm{ad}}=$ maximal root $\theta=$ unique, and all $\Lambda_{\mathrm{ad}}^{i}>0$.

Examples:

- Fundamental representations of $\operatorname{sl}(3, \mathbb{C})=A_{2}, \quad A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$.

- Fundamental representation of G_{2} for $|\Lambda\rangle=|1,0\rangle, \quad A=\left(\begin{array}{rr}2 & -3 \\ -1 & 2\end{array}\right)$.

Note: This representation coincides with the adjoint representation (see Section 6.4).

6.5.2 Quadratic Casimir operator and index of a representation

Recall:

- Def.: $\quad \mathcal{C}=$ Casimir operator in some representation R of \mathcal{L}.
$\Leftrightarrow[\mathcal{C}, R(x)]=0 \quad \forall x \in \mathcal{L}$.
- Schur's lemma: $\quad R=$ irreducible $\Rightarrow \mathcal{C}=C_{R} \cdot \mathbb{1}_{d_{R}}$.
\Rightarrow Casimir operators characterize representations.

Quadratic Casimir operator:

If \mathcal{L} is a semisimple Lie algebra generated by $\left\{T^{A}\right\}_{A=1}^{d_{\mathcal{L}}}$, then

$$
\begin{equation*}
\mathcal{C}=g_{A B} T^{A} T^{B} \tag{6.98}
\end{equation*}
$$

is a Casimir operator.
Note: Evaluating \mathcal{C} actually requires to go into some representation, because $T^{A} T^{B}$ in general is undefined in \mathcal{L}.
Proof:

$$
\begin{aligned}
{\left[T^{C}, \mathcal{C}\right] } & =g_{A B}\left[T^{C}, T^{A} T^{B}\right]=g_{A B}(\underbrace{\left[T^{C}, T^{A}\right]}_{=\mathrm{i} f^{C A}{ }_{D} T^{D}} T^{B}+T^{A} \underbrace{\left[T^{C}, T^{B}\right]}_{=\mathrm{i} f C^{C B}{ }_{D} T^{D}}) \\
& =\mathrm{i} g_{A B} f^{C A}{ }_{D}\left(T^{D} T^{B}+T^{B} T^{D}\right) \quad \text { using symmetry } A \leftrightarrow B \text { in 2nd term } \\
& =\mathrm{i} g_{A B} g_{D E} f^{C A E}\left(T^{D} T^{B}+T^{B} T^{D}\right) \\
& =\frac{\mathrm{i}}{2}\left(g_{A B} g_{D E}+g_{A D} g_{B E}\right) f^{C A E}\left(T^{D} T^{B}+T^{B} T^{D}\right) \quad \text { using symmetry } B \leftrightarrow D \\
& =\frac{\mathrm{i}}{2} g_{A B} g_{D E}(\underbrace{f^{C A E}+f^{C E A}}_{=0 \text { due to antisymmetry of } f^{C A E}, \text { cf. (5.68) }})\left(T^{D} T^{B}+T^{B} T^{D}\right) \quad \text { renaming } A \leftrightarrow E \\
& =0 .
\end{aligned}
$$

\mathcal{C} in Cartan-Weyl basis $\left\{H^{i}\right\}_{i=1}^{r} \cup\left\{E_{\alpha}\right\}_{\alpha \in \Phi}$:

$$
\begin{equation*}
\mathcal{C}=g_{i j} H^{i} H^{j}+\sum_{\alpha \in \Phi} E_{\alpha} E_{-\alpha}, \quad \text { if }\left(E_{\alpha}, E_{-\alpha}\right)=1 \tag{6.99}
\end{equation*}
$$

Proof:
This is a consequence of the block structure of the Killing form $\left(g^{A B}\right)$:

$$
\left(g^{A B}\right)=\left(\begin{array}{c|ccc}
\left(g^{i j}\right) & & 0 & \\
\hline 0 & \sigma_{1} & & \\
& \sigma_{1} & \\
& & & \ddots
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Calculation of C_{R} is representation R_{Λ} : Use $E_{\alpha}|\Lambda\rangle=0 \forall \alpha \in \Phi^{+}$.

$$
\begin{aligned}
\mathcal{C}|\Lambda\rangle & =\left(g_{i j} H^{i} H^{j}+\sum_{\alpha \in \Phi} E_{\alpha} E_{-\alpha}\right)|\Lambda\rangle=(g_{i j} \Lambda^{i} \Lambda^{j}+\sum_{\alpha \in \Phi^{+}} \underbrace{\left[E_{\alpha}, E_{-\alpha}\right]}_{=H^{\alpha}})|\Lambda\rangle \\
& =\left((\Lambda, \Lambda)+\sum_{\alpha \in \Phi^{+}}(\Lambda, \alpha)\right)|\Lambda\rangle .
\end{aligned}
$$

Defining

$$
\begin{equation*}
\rho \equiv \frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha=\text { "Weyl vector", } \tag{6.100}
\end{equation*}
$$

this yields

$$
\begin{equation*}
\mathcal{C}|\Lambda\rangle=(\Lambda, \Lambda+2 \rho)|\Lambda\rangle, \quad C_{R}=(\Lambda, \Lambda+2 \rho) / d_{R} \tag{6.101}
\end{equation*}
$$

Index of a representation R :

A statement about invariant bilinear forms on \mathcal{L} :
For a simple Lie algebra \mathcal{L}, any invariant bilinear form $(x, y)^{\prime}$ differs by the Killing form $(x, y)=\operatorname{Tr}\left(\operatorname{ad}_{x}, \mathrm{ad}_{y}\right)$ only by a constant factor.
Proof: Exercise?! (See also Ref. [1].)
\hookrightarrow Definition: The "index" I_{R} of a repr. R with generators $\left\{T_{R}^{A}\right\}_{A=1}^{d_{\mathcal{L}}}$ is defined by

$$
\begin{equation*}
\operatorname{Tr}\left(T_{R}^{A} T_{R}^{B}\right)=I_{R} \cdot g^{A B} \tag{6.102}
\end{equation*}
$$

Connection between I_{R} and C_{R} :

$$
\begin{align*}
\operatorname{Tr}_{\mathrm{ad}}(\mathcal{C}) & =g_{A B} \operatorname{Tr}\left(T_{\mathrm{ad}}^{A} T_{\mathrm{ad}}^{B}\right)=g_{A B} g^{A B}=d_{\mathcal{L}}, \\
\operatorname{Tr}_{R}(\mathcal{C}) & =g_{A B} \operatorname{Tr}\left(T_{R}^{A} T_{R}^{B}\right)=I_{R} \cdot g_{A B} g^{A B}=I_{R} d_{\mathcal{L}}, \\
& =C_{R} d_{R} . \tag{6.103}\\
\Rightarrow I_{R} & =\frac{d_{R}}{d_{\mathcal{L}}} C_{R}=\frac{d_{R}}{d_{\mathcal{L}}}(\Lambda, \Lambda+2 \rho) . \tag{6.104}
\end{align*}
$$

6.5.3 Multiplets of irreducible representations - Freudenthal's formula

Goal: Complete algorithm of Section 6.5 .1 by determining the multiplicity $n_{\lambda}=\operatorname{dim} V_{(\lambda)}$ of each weight vector $|\lambda\rangle$.
Idea: Calculate $\operatorname{Tr}(\mathcal{C})$ restricted to subspace $V_{(\lambda)}$ in two different ways.
\hookrightarrow Recursion relation for n_{λ}.

1. Use result for C_{R} :

$$
\begin{equation*}
\left.\operatorname{Tr}_{R}(\mathcal{C})\right|_{V_{(\lambda)}}=C_{R} n_{\lambda}=(\Lambda, \Lambda+2 \rho) n_{\lambda} \tag{6.105}
\end{equation*}
$$

2. Use general form of \mathcal{C} :

$$
\begin{equation*}
\left.\operatorname{Tr}_{R}(\mathcal{C})\right|_{V_{(\lambda)}}=\left.\operatorname{Tr}_{R}\left(g_{i j} H^{i} H^{j}+\sum_{\alpha \in \Phi} E_{\alpha} E_{-\alpha}\right)\right|_{V_{(\lambda)}} \tag{6.106}
\end{equation*}
$$

Evaluation of 1st part with basis $\{|\lambda ; l\rangle\}_{l=1}^{n_{\lambda}}$ of $V_{(\lambda)}$:

$$
\begin{align*}
\left.\operatorname{Tr}_{R}\left(g_{i j} H^{i} H^{j}\right)\right|_{V_{(\lambda)}} & =\sum_{l=1}^{n_{\lambda}} g_{i j}\langle\lambda ; l| H^{i} H^{j}|\lambda ; l\rangle=\sum_{l=1}^{n_{\lambda}} g_{i j} \lambda^{i} \lambda^{j} \underbrace{\langle\lambda ; l \mid \lambda ; l\rangle}_{=1} \\
& =n_{\lambda}(\lambda, \lambda) . \tag{6.107}
\end{align*}
$$

3. Evaluation of 2 nd part of (6.106) via $\mathrm{sl}(2, \mathbb{C})$ weight strings:

Each α-string corresponds to a multiplet of eigenstates $\left|t, t_{3}\right\rangle$ with $t=$ fixed and

$$
\begin{align*}
\vec{T}^{2}\left|t, t_{3}\right\rangle & =t(t+1)\left|t, t_{3}\right\rangle, \\
T_{3}\left|t, t_{3}\right\rangle & =t_{3}\left|t, t_{3}\right\rangle, \quad t_{3}=-t,-t+1, \ldots, t \tag{6.108}
\end{align*}
$$

Relation between \vec{T}^{2}, T_{a} and $H^{\alpha}, E_{ \pm \alpha}(\alpha>0)$, cf. (6.49):

$$
\begin{align*}
& T_{3}=\frac{1}{2} h_{\alpha}=\frac{H^{\alpha}}{(\alpha, \alpha)}, \quad T_{ \pm}=e_{ \pm \alpha}=\sqrt{\frac{2}{(\alpha, \alpha)}} E_{ \pm \alpha} \\
& {\left[T_{3}, T_{ \pm}\right]=\frac{1}{2}\left[h_{\alpha}, e_{ \pm \alpha}\right]= \pm e_{ \pm \alpha}= \pm T_{ \pm}, \quad\left[T_{+}, T_{-}\right]=\left[e_{\alpha}, e_{-\alpha}\right]=h_{\alpha}=2 T_{3}} \\
& \Rightarrow \vec{T}^{2}=T_{3}^{2}+\frac{1}{2}\left(T_{+} T_{-}+T_{-} T_{+}\right)=\frac{\left(H^{\alpha}\right)^{2}}{(\alpha, \alpha)^{2}}+\frac{E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha}}{(\alpha, \alpha)} \tag{6.109}
\end{align*}
$$

Since $\vec{T}^{2}=t(t+1)$ on the weight string, we get

$$
\begin{equation*}
E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha}=t(t+1)(\alpha, \alpha)-\frac{\left(H^{\alpha}\right)^{2}}{(\alpha, \alpha)} \tag{6.110}
\end{equation*}
$$

Identify the state $\left|t, t_{3}=t\right\rangle$ with the highest-weight state $|\lambda+k \alpha\rangle$ of the string:

$$
t|t, t\rangle=T_{3}|t, t\rangle=\frac{H^{\alpha}}{(\alpha, \alpha)}|\lambda+k \alpha\rangle=\frac{(\alpha, \lambda+k \alpha)}{(\alpha, \alpha)}|\lambda+k \alpha\rangle . \quad \Rightarrow t=\frac{(\alpha, \lambda+k \alpha)}{(\alpha, \alpha)} .
$$

\Rightarrow Application of $E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha}$ to basis state $|\lambda ; l\rangle \in V_{(\lambda)}$:

$$
\begin{align*}
\left(E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha}\right)|\lambda ; l\rangle & =\left(t(t+1)(\alpha, \alpha)-\frac{\left(H^{\alpha}\right)^{2}}{(\alpha, \alpha)}\right)|\lambda ; l\rangle \\
& =\left(t(t+1)(\alpha, \alpha)-\frac{(\alpha, \lambda)^{2}}{(\alpha, \alpha)}\right)|\lambda ; l\rangle \\
& =(k(k+1)(\alpha, \alpha)+(2 k+1)(\alpha, \lambda))|\lambda ; l\rangle \tag{6.111}
\end{align*}
$$

Note: $\quad k$-value depends on $l, k=k_{l}$, i.e. k differs for different $|\lambda ; l\rangle$:

- $n_{\lambda}=(\#$ states $|\lambda ; l\rangle$ with arbitrary $k)$,
- $n_{\lambda}-n_{\lambda+\alpha}=(\#$ states $|\lambda ; l\rangle$ with $k=0)$,
- $n_{\lambda+k \alpha}-n_{\lambda+(k+1) \alpha}=\left(\#\right.$ states $|\lambda ; l\rangle$ for given $\left.k=k_{l}\right)$,
- $n_{\lambda+k \alpha}=0$ for sufficiently large k.
$\Rightarrow \sum_{l=1}^{n_{\lambda}} f\left(k_{l}\right)=\sum_{k=0}^{\infty}\left(n_{\lambda+k \alpha}-n_{\lambda+(k+1) \alpha}\right) f(k)$
Evaluation of remaining part of $\left.\operatorname{Tr}_{R}(\mathcal{C})\right|_{V_{(\lambda)}}$:

$$
\begin{align*}
\left.\operatorname{Tr}_{R}\left(\sum_{\alpha \in \Phi} E_{\alpha} E_{-\alpha}\right)\right|_{V_{(\lambda)}}= & \left.\sum_{\alpha \in \Phi^{+}} \operatorname{Tr}_{R}\left(E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha}\right)\right|_{V_{(\lambda)}} \\
= & \sum_{\alpha \in \Phi^{+}} \sum_{l=1}^{n_{\lambda}}\langle\lambda ; l| E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha}|\lambda ; l\rangle \\
= & \sum_{\alpha \in \Phi^{+}} \sum_{k=0}^{\infty}\left(n_{\lambda+k \alpha}-n_{\lambda+(k+1) \alpha}\right)(k(k+1)(\alpha, \alpha)+(2 k+1)(\alpha, \lambda)) \\
= & \sum_{\alpha \in \Phi^{+}} \sum_{k=0}^{\infty} n_{\lambda+k \alpha}(k(k+1)(\alpha, \alpha)+(2 k+1)(\alpha, \lambda)) \\
& -\sum_{\alpha \in \Phi^{+}} \sum_{k=1}^{\infty} n_{\lambda+(k+1) \alpha}((k-1) k(\alpha, \alpha)+(2 k-1)(\alpha, \lambda)) \\
= & n_{\lambda} \sum_{\alpha \in \Phi^{+}}(\alpha, \lambda)+\sum_{\alpha \in \Phi^{+}} \sum_{k=1}^{\infty} n_{\lambda+k \alpha}(2 k(\alpha, \alpha)+2(\alpha, \lambda)) \\
= & n_{\lambda}(2 \rho, \lambda)+2 \sum_{\alpha \in \Phi^{+}} \sum_{k=1}^{\infty} n_{\lambda+k \alpha}(\alpha, \lambda+k \alpha) . \tag{6.112}
\end{align*}
$$

4. Final relation upon combining (6.105), (6.107), and (6.112):

$$
\begin{equation*}
n_{\lambda}=\frac{2 \sum_{\alpha \in \Phi^{+}} \sum_{k=1}^{\infty} n_{\lambda+k \alpha}(\alpha, \lambda+k \alpha)}{(\Lambda-\lambda, \Lambda+\lambda+2 \rho)} . \quad \text { ("Freudenthal's formula") } \tag{6.113}
\end{equation*}
$$

Algorithm to determine n_{λ} for known weights λ :

- Proceed recursively in increasing level of λ, starting with level $0: \quad n_{\Lambda}=1$. \hookrightarrow R.h.s. of (6.113) can be assumed to be known.
- Evaluation of denominator of (6.113):
- Expand $(\Lambda-\lambda)$ in terms of simple roots: $\quad \Lambda-\lambda=c_{i} \alpha^{(i)}$.
- Represent $(\Lambda+\lambda+2 \rho)$ in Dynkin basis: $\Lambda+\lambda+2 \rho=d^{i} \Lambda_{(i)}$. Use non-trivial relation for $\rho: \quad \rho=\Lambda_{(i)}$.

$$
\Rightarrow(\Lambda-\lambda, \Lambda+\lambda+2 \rho)=c_{i} d^{j} \underbrace{\left(\alpha^{(i)}, \Lambda_{(j)}\right)}_{=\frac{1}{2}\left(\alpha^{(i)}, \alpha^{(i)}\right) \delta_{j}^{i}}=\frac{1}{2} \sum_{i=1}^{r} c_{i} d_{i}\left(\alpha^{(i)}, \alpha^{(i)}\right) \text {. }
$$

- Evaluation of numerator of (6.113):
- $n_{\lambda+k \alpha}$ known from previous steps.
$-(\alpha, \lambda+k \alpha)$ calculable via (6.94):
$(\alpha, \lambda+k \alpha)=k(\alpha, \alpha)+(\alpha, \lambda)=\left(k+\frac{1}{2}(p-q)\right)(\alpha, \alpha)$, after reading p, q from weight diagram.
- Simple cases:
$n_{\lambda}=1$ if there is only one possibility to come to $|\lambda\rangle$ via $E_{-\alpha} E_{-\beta} \cdots|\Lambda\rangle$ with $\alpha, \beta>0$ (or via $E_{\alpha} E_{\beta} \cdots\left|\Lambda_{\min }\right\rangle$).

Example of Section 6.5.1 reloaded: $\quad G_{2}$ representation with $|\Lambda\rangle=|1,0\rangle$.

$$
A=\left(\begin{array}{rr}
2 & -3 \\
-1 & 2
\end{array}\right), \quad\left(\alpha^{(1)}, \alpha^{(1)}\right)=3, \quad\left(\alpha^{(2)}, \alpha^{(2)}\right) \equiv 1, \quad\left(\alpha^{(1)}, \alpha^{(2)}\right)=-\frac{3}{2} .
$$

- $n_{\lambda}=1$ obvious for all $|\lambda\rangle \neq|0,0\rangle$.
- $|\lambda\rangle=|0,0\rangle$:

Denominator:

$$
\begin{aligned}
\Lambda-\lambda & =\Lambda=2 \alpha^{(1)}+3 \alpha^{(2)} \\
(\Lambda+\lambda+2 \rho) & =(1,0)+(0,0)+2 \cdot(1,1)=(3,2), \\
\Rightarrow(\Lambda-\lambda, \Lambda+\lambda+2 \rho) & =\frac{1}{2}(2 \cdot 3 \cdot 3+2 \cdot 3)\left(\alpha^{(2)}, \alpha^{(2)}\right)=12 .
\end{aligned}
$$

6 numerator contributions from 6 positive roots α :

$k \alpha$	k	p	q	(α, α)	$2 n_{\lambda+k \alpha}(\alpha, \lambda+k \alpha)$
$\alpha^{(1)}$	1	1	1	3	6
$\alpha^{(2)}$	1	1	1	1	2
$\alpha^{(1)}+\alpha^{(2)}$	1	1	1	1	2
$\alpha^{(1)}+2 \alpha^{(2)}$	1	1	1	1	2
$\alpha^{(1)}+3 \alpha^{(2)}$	1	1	1	3	6
$2 \alpha^{(1)}+3 \alpha^{(2)}$	1	1	1	3	6
sum:					24

$$
\Rightarrow n_{(0,0)}=\frac{24}{12}=2 .
$$

Bibliography

[1] R.N. Cahn, "Semi-Simple Lie Algebras ann Their Representations", Dover Publications.
[2] R. Campoamor-Stursberg, M. Rausch de Traubenberg, "Group Theory in Physics", World Scientific.
[3] R.W. Carter, "Finite Groups of Lie Type: Conjugacy Classes and Complex Characters", Wiley Classics Library, Wiley.
[4] J. Fuchs, C. Schweigert, "Symmetries, Lie Algebras \& Represen: A Graduate Course for Physicists", Cambridge University Press.
[5] R. Gilmore, "Lie Groups, Lie Algebras, and Some of Their Applications", Dover Books on Mathematics.
[6] B.C. Hall, "Lie Groups, Lie Algebras, and Representations", Springer.
[7] M. Hamermesh: "Group Theory and Its Application to Physical Problems", Dover Publications.
[8] P. Ramond, "Group Theory: A Physicist's Survey", Cambridge University Press.
[9] W.-K. Tung: "Group Theory in Physics", World Scientific.
[10] B.G. Wybourne, "Classical groups for physicists", Wiley.
[11] A. Zee, "Group Theory in a Nutshell for Physicists", Princeton University Press.

