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“The universe is an enormous direct product of representations of symmetry groups.”
Hermann Weyl
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Chapter 1

Basic concepts and group theory in
quantum mechanics

1.1 Symmetry transformations in quantum mechanics

Classification of symmetry transformations:

• “Space–time symmetries”:
Changes of position or orientation of the observer by translations, reflections, rota-
tions, changing the state of motion, leaving the laws of physics invariant.

• “Internal symmetries”:
Other changes in the qm. states (e.g. interchanging states or particles), leading to
physically equivalent systems.

Actions on states and observables

by symmetry operator U on states in Hilbert space H:

states |ψ〉 ∈ H
U

−−−−→ |ψ′〉 = U |ψ〉 ∈ H,

expectation value 〈A〉ψ = 〈ψ|A|ψ〉
U

−−−−→ 〈A′〉ψ′ = 〈ψ|U †A′U |ψ〉 !
= 〈A〉ψ, ∀|ψ〉 ∈ H,

observable (=operator) A
U

−−−−→ A′ = (U †)−1AU−1,

i.e. A′ = UAU † if U = unitary,

pφψ = |〈φ|ψ〉|2
= probability to find |φ〉 in |ψ〉 in
a measurement (‖ψ‖ = ‖φ‖ = 1)

U

−−−−→ p′φ′ψ′ = |〈φ′|ψ′〉|2 !
= pφψ.

⇒ U obeys

|〈φ|ψ〉| = |〈φ|U †U |ψ〉| ∀|φ〉, |ψ〉 ∈ H, ‖ψ‖ = ‖φ‖ = 1. (1.1)

5



6 1. Basic concepts and group theory in QM

Wigner’s theorem (non-trivial!)

A symmetry operator U is unitary or antiunitary,

i.e. U †U = 1 and U = linear or antilinear.

Examples:

• U = unitary: spatial translation T , rotation R, time evolution
U(t1, t0), space inversion P, etc.

• U = antiunitary: time reversal T .

Properties of unitary symmetries:

• Symmetry trafos U form a math. “group” G.

→֒ Groups are “discrete” (P, etc.) or “continuous” (“Lie groups”, e.g. T , R, etc.).

• Operator trafo: A → A′ = UAU † = similiarity trafo,
leaving eigenvalues of A invariant.

Symmetry: A′ = UAU † !
= A, U−1 = U †,

i.e. UA = AU , [A,U ] = 0.

⇒ If |a〉 = eigenstate of A with eigenvalue a: A|a〉 = a|a〉,
then all U |a〉 with U ∈ G as well:

A
(
U |a〉

)
= UA|a〉 = a

(
U |a〉

)
. (1.2)

⇒ Action of sym. ops. characterise eigenvalue spectra of observables,
in particular degeneracies.

• Lie group G: U = U(θ1, . . . , θn) = differentiable function of n ≡ dimG real
“group parameters” θa.

Infinitesimal parameters: (U(0, . . . , 0) = 1 by convention)

U(δθ1, . . . , δθn) = 1− iδθaX
a +O(δθ2a), (1.3)

U(δθ1, . . . , δθn)
† = 1+ iδθa(X

a)† + . . . , (1.4)

!
= U(δθ1, . . . , δθn)

−1 = 1+ iδθaX
a + . . . , unitarity! (1.5)

⇒ Xa = (Xa)†, a = 1, . . . , n. (1.6)

→֒ n hermitian operators, i.e. observables characterising the symmetry!

Summation convention: δθaX
a ≡∑a δθaX

a, i.e. summation over repeatedly
appearing indices in products is implicitly assumed.
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1.2 Group-theoretical definitions

Definition:

A “group” G is defined by a set of elements {g1, . . . , gn} with a mapping ◦ : G×G 7→ G
(“group multiplication”) obeying:

(i) g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 (associativity),

(ii) ∃ e ∈ G with g ◦ e = g ∀g ∈ G (unit element),

(iii) ∀g ∈ G ∃ g−1 ∈ G with g ◦ g−1 = e (inverse element).

Consequences:

• g1 ◦ g = g2 ◦ g ⇒ g1 = g2 (cancellation law),

• g ∈ G: e ◦ g = g, g−1 ◦ g = e,
(
g−1)−1 = g.

Further notions:

• G is “abelian” if g1 ◦ g2 = g2 ◦ g1 ∀g1, g2 ∈ G.

• A “group homomorphism” is a mapping f : G 7→ G′ from a group G to a group G′

that respects the group multiplication law, i.e.

f(g1 ◦ g2︸ ︷︷ ︸
∈G

) = f(g1)︸ ︷︷ ︸
∈G′

◦ f(g2)︸ ︷︷ ︸
∈G′

∀g1, g2 ∈ G. (1.7)

The set ker(f) = {g ∈ G | f(g) = e′ = unit element of G′} is called “kernel” of f .

• A bijective (injective and surjective) group homomorphism is called “isomorphism”.
Two groups G,G′ connected by an isomorphism are called “isomorphic” (G ≃ G′).

• The “direct product group” G×G′ of two group G,G′ is the set of all (g, g′), g ∈ G,
g′ ∈ G′ with the multiplication

(g1, g
′
1) ◦ (g2, g′2) = (g1 ◦ g2, g′1 ◦ g′2). (1.8)

• A group is called “discrete” if its (#elements) ≡ |G| ≡ ord(G) ≡ “order of G” is
finite or countably infinite.
→֒ Elements can be enumerated: g1 ≡ e, g2, g3, . . .

• In a “Lie group” G all elements U(θ1, . . . , θn) are differentiable functions of n real
“group parameters” θa, n = dimG = dimension of G.
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Examples:

• “Symmetric groups” Sn of all permutations of (12 · · · n)
= group of order n! which is non-abelian if n > 2.

Elements P ∈ Sn: P ≡
(

1 2 · · · n
π1π2 · · · πn

)
maps (12 · · · n) → (π1π2 · · · πn).

→֒ All P ’s can be written as products of “transpositions” Pij
where πi = j, πj = i and πk = k for k 6= i, j.

sgn(P ) ≡ (−1)p = “signature of P ” = +1 (“even”) or −1 (“odd”).

→֒ p = (# transpositions) mod 2 needed to achieve P

“Cayley’s theorem”: Every finite group is isomorphic to a subgroup of Sn.

• “Alternating group” An = subgroup of Sn (order n!/2) of all even permutations.

• “Cyclic group” Cn = abelian group of order n generated by one element g:

Cn = {e ≡ g0 ≡ gn, g1, g2, . . . , gn−1}.
Cn realised, e.g., by rotations with angles k · 2π

n
, k = 0, 1, . . . , n − 1, about a fixed

axis.

C∞ realised by translations with vectors n · ~a, n ∈ Z, with ~a = fixed.

• GL(N,K) = “general linear group” over K = R,C
= group of invertible N ×N matrices ∈ K2.

→֒ Non-abelian Lie group of dimension N2(R) or 2N2(C) for N > 1.
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1.3 Substructures of groups

1.3.1 Classes

Definition:

Two elements a, b ∈ G of a group G are called “equivalent” (a ∼ b) if ∃g ∈ G with
b = gag−1. The sets Cl(a) = {b ∈ G | b = gag−1} are called “(equivalence) classes” for the
“(representative) element” a ∈ G.

Some properties:

• “Equivalence” of group elements as in any set of elements:

– “reflexivity”: a ∼ a,

– “symmetry”: a ∼ b ⇒ b ∼ a,

– “transitivity”: a ∼ b ∧ b ∼ c ⇒ a ∼ c.

• Cl(a) = Cl(b) ⇔ a ∼ b.

• The classes Ci form a “partitioning” of G: G =
⋃
i

Ci, Ci ∩ Cj = ∅ for i 6= j.

Convention: C1 = {e} = class formed by unit element alone.

• In an abelian group each element defines its own class.

• Interpretation: Two elements are equivalent if they have essentially the
same multiplication properties.

Example: Group of linear, invertible mappings in R3.

Two matrices A,A′ are equivalent if they correspond to the same mapping A de-
scribed w.r.t. to two different bases {~ei}, {~e ′

i} with ~ej = ~e ′
iSij :

~x = ~eixi = ~e ′
jx

′
j , i.e. x′i = Sijxj

A~x = ~ei(A~x)i = ~eiAijxj = ~e ′
i(SAS

−1)ijx
′
j = ~e ′

iA
′
ijx

′
j i.e. A′ = SAS−1. (1.9)

In particular, rotations about the same angle, but any rotation axis are equivalent.

Example:

Group D4 = symmetry group of a square (edges A,B,C,D), generated by

ρ = rotation about 90◦: A→ B → C → D → A,
σ = reflection about a symmetry axis: A↔ B, C ↔ D.

⇒ 8 elements {e, ρ, ρ2, ρ3, σ, ρσ, ρ2σ, ρ3σ} with relations ρ4 = σ2 = (ρσ)2 = e.

⇒ 5 classes: C1 = {e}, C2 = {ρ, ρ3}, C3 = {ρ2}, C4 = {σ, ρ2σ}, C5 = {ρσ, ρ3σ}.
Note: D4 (order 8) is a subgroup (conserving neighbouring objects) of S4 (order 24):

e = (ABCD), ρ = (BCDA), σ = (BADC), ρ2 = (CDAB), . . .
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1.3.2 Subgroups, cosets and Lagrange’s theorem

Definition:

A subset H ⊆ G of a group G is a “subgroup” if H is a group with the same product ◦
as G. The sets gH = {g′ | g′ = gh, h ∈ H}, g ∈ G, are called “(left) cosets” of H .
“Right cosets” Hg are defined analogously.

Some properties:

• g1H = g2H ⇔ g−1
1 g2 ∈ H .

Proof: “⇒” : ∃h1, h2 ∈ H : g1h1 = g2h2 ⇒ g−1
1 g2 = h1h

−1
2 ∈ H

“⇐” : g−1
1 g2 ∈ H ⇒ g−1

1 g2H = H ⇒ g1H = g2H. #

• Only the coset hH = H , h ∈ H , is a subgroup, since e /∈ gH if g /∈ H . (If e ∈ gH ,
then g is the inverse of some h ∈ H and hence g ∈ H .)

• All cosets have the same number of elements: |gH| = |H|.
Proof: ∀g1, g2 ∈ H we have gg1 = gg2 ⇔ g1 = g2.

⇒ The mapping g◦ : H 7→ gH is injective. #

• Two left (right) cosets are either equal or disjoint.

• Corollary: “Lagrange’s theorem”

The order of any subgroup H of a finite group G divides the order of G.

The natural number [G : H ] = |G| : |H| is called the “index of H in G”.

1.3.3 Invariant subgroups and factor group

Definition:

A subgroup N of a group G is called “invariant” (or “normal”) if N = gNg−1 ∀g ∈ G,
written as N ⊳ G.

Comments:

• Equivalent definition: A subgroup is normal if the set of its left cosets equals the
set of its right cosets.
Proof: If aN = Nb for some b ∈ G, then a ∈ Nb.
Since a ∈ Na, Nb ∩Na 6= ∅ ⇒ Na = Nb ⇒ aN = Na.
Other direction: aN = Na ⇒ the sets of left and right cosets are equal. #

• A subgroup N is normal if it contains all g ∈ G being equivalent to some h ∈ N .

Definition:

Given a normal subgroup N of a group G, then the group of all gN is called the “factor
group” G/N .
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Note: gN = Ng is essential that all gN form a group:

(g1N) (g2N) = g1Ng2N = g1g2NN = (g1g2)N. (1.10)

Some properties:

• For a finite group G the order of a factor group G/N is equal to the index of the
normal subgroup N :

ord(G) = ord(N)× [G : N ] = ord(N)× ord(G/N). (1.11)

• The mapping f : G 7→ G/N defined by f(g) = gN is a group homomorphism with
N = ker(f).

• “First isomorphism theorem”:

The kernel ker(f) of a group homomorphism f : G 7→ G′ is a normal subgroup, and
f(G) ≃ G/ ker(f).

Proof:

a) H = ker(f) is normal subgroup, since ∀h ∈ H and ∀g ∈ G we get

f(ghg−1) = f(g) f(h)︸︷︷︸
=e′

f(g−1) = f(g)f(g−1) = f(gg−1) = f(e) = e′.

⇒ gHg−1 ⊆ H .

gHg−1 = H follows, since ψg : H 7→ gHg−1 with ψg(h) = ghg−1 is injective:

gh1g
−1 = gh2g

−1 ⇔ h1 = h2.

b) To show f(G) ≃ G/H , define mapping F : G/H 7→ f(G) via F (gH) = f(g).
Such an F exists, because if g1H = g2H , ∃h1, h2 ∈ H with
g1h1 = g2h2, g2 = g1 h1h

−1
2︸ ︷︷ ︸

∈H

⇒ f(g2) = f(g1h1h
−1
2 ) = f(g1) f(h1h

−1
2 )︸ ︷︷ ︸

e′

= f(g1).

Show that F is an isomorphism:

Surjectivity: For each g′ ∈ f(G) ∃g ∈ G with g′ = f(g) = F (gH),
i.e. also some gH ∈ G/H with F (gH) = g′.

Injectivity: If g′1 = g′2 for g′1 = F (g1H), g′2 = F (g2H), we have
e′ = (g′1)

−1g′2 = F (g1H)−1F (g2H) = f(g1)
−1f(g2)

= f(g−1
1 )f(g2) = f(g−1

1 g2), i.e. g−1
1 g2 ∈ H = ker(f).

⇒ g1H = g2H. #
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1.4 Group representations

Motivation:

Abstract symmetry trafo g ∈ G
represented as

−−−−−−−−−→ operator U(g) acting on states |ψ〉 ∈ H.

⇒ Issues:

• Which states |ψ〉 are symmetry connected,
i.e. how are the subspaces Uψ = {U(g)|ψ〉, g ∈ G} characterised?

• Which types of Uψ do exist for given G?

• What are appropriate basis states |φk〉 making the action of U(g) transparent?

→֒ Answered by “representation theory of groups”!

Definition:

A “representationD of a groupG on a vector space V ” is a homomorphismD : G 7→ GL(V ),
where GL(V ) = “general linear group on V ” = group of invertible linear mappings on V ,
with

D(g1 ◦ g2) = D(g1)D(g2) ∀g1, g2 ∈ D, (1.12)

⇒ In particular: D(e) = 1 = unit operator and D(g−1) = D(g)−1.

Types of representations:

• dimD ≡ dimV <∞: D(g) = matrices with the usual matrix multiplication.

• dimD = ∞, but countable: D(g) = infinitely large matrices,

D =



D11 D12 · · ·
D21 D22 · · ·
...

...
. . .


 . (1.13)

• dimD = ∞, not countable:
typical of “extended Hilbert spaces H” with improper states.

Example: functions ψ(x) of x ∈ R, T (a) = translation by a constant a,

T (a)ψ(x) = ψ(x− a) =

∞∑

n=0

1

n!

(
−a ∂

∂x

)n

︸ ︷︷ ︸
ψ(x). (1.14)

→֒ trafo represented by a differential operator



1.4. Group representations 13

Further notions:

• D is called “unitary” if D(g) = unitary ∀g ∈ G and V is a unitary vector space.

• D is called “faithful” if g1 6= g2 implies D(g1) 6= D(g2).
→֒ D carries the full information of G.

Note: If D 6= faithful, D(g) = 1 for some g 6= e.
Extreme case: D(g) = 1 ∀g ∈ G, “trivial representation”.

• D1 and D2 are “equivalent” (D1 ≃ D2) if ∃ linear mapping S with

S D1(g)S
−1 = D2(g) ∀g ∈ G (common similiarity trafo for all g!) (1.15)

• “Direct sum representation” D1 ⊕D2 on V1 ⊕ V2 for two representations Di on Vi:

D1⊕D2(g)
(
|ψ1〉, |ψ2〉

)
=
(
D1(g)|ψ1〉, D2(g)|ψ2〉

)
, |ψi〉 ∈ Vi,(

D1(g) 0

0 D2(g)

) (
|ψ1〉
|ψ2〉

)
=

(
D1(g)|ψ1〉
D2(g)|ψ2〉

)
, (1.16)

i.e. actions of D1, D2 “blockwise independent”.

• D is called “reducible” if ∃ non-trivial invariant subspace V1 ⊂ V (V1 6= V ), i.e.

D(g)v1 ∈ V1 ∀g ∈ G, v1 ∈ V1. (1.17)

Otherwise D is called “irreducible”.

In detail:

– D = reducible ⇔ ∃ linear mapping S with

D(g) = S

(
D1(g) X(g)

0 Y (g)

)
S−1 ∀g ∈ G.

S can be determined by a basis change in V so that{
|φ1〉, . . . , |φn1〉︸ ︷︷ ︸

basis of V1

, |φn1+1〉, , . . . , |φn〉
}
= basis of V .

– D = irreducible ⇔ Vψ =
[
D(g)|ψ〉, g ∈ G

]
= V ∀|ψ〉 ∈ V with |ψ〉 6= 0.

The symmetry-connected vectors D(g)|ψ〉 of any |ψ〉 6= 0 span the full repre-
sentation space V , i.e. symmetry trafos transform all basis vectors |φk〉 of V
non-trivially into each other.

Basis of V = {|φ1〉, . . . , |φn〉} = “symmetry multiplet”.
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• Finite-dimensional unitary representations are “fully reducible”, i.e. ∃S with

D(g) = S




D(1)(g) 0 . . .

0 D(2)(g) . . .
...

. . .

D(I)(g)



S−1 ∀g ∈ G, D(i) = irreducible.

(1.18)

Proof:

a) If D = irreducible, there is nothing to prove.

b) D = reducible. ⇒ ∃ invariant subspace V1 ⊂ V (V1 6= V ).

D = unitary, i.e. ∃ scalar product in V .

→֒ Decompose V = V1 ⊕ V ⊥
1 ,

|ψ〉 = |ψ1〉︸︷︷︸
∈V1

+ |ψ⊥
1 〉︸︷︷︸

∈V ⊥
1

, 〈ψ1|ψ⊥
1 〉 = 0.

c) Show that V ⊥
1 = invariant subspace:

〈ψ1|D(g)|ψ⊥
1 〉 = 〈D(g)†ψ1︸ ︷︷ ︸

∈V1

| ψ⊥
1︸︷︷︸

∈V ⊥
1

〉 = 0 ∀ |ψ1〉 ∈ V1, |ψ⊥
1 〉 ∈ V ⊥

1 .

⇒ D(g)|ψ⊥
1 〉 ∈ V ⊥

1 .

⇒ D(g) =

(
D1(g) 0

0 D2(g)

)
in basis

{
|φ1〉, . . . , |φn1〉︸ ︷︷ ︸

basis of V1

, |φn1+1〉, , . . . , |φn〉︸ ︷︷ ︸
basis of V ⊥

1

}
.

d) Repeat procedure for D1 and D2 if D1 or D2 is reducible.
#

• “Product representation” D1 ⊗D2 on V1 ⊗ V2 for two representations Di on Vi:

D1⊗D2(g)
(
|ψ1〉 ⊗ |ψ2〉︸ ︷︷ ︸

∈V1⊗V2, dimV1 ⊗ V2 = dimV1 · dimV2

)
= D1(g)|ψ1〉 ⊗D2(g)|ψ2〉, |ψi〉 ∈ Vi. (1.19)

Note: D1 ⊗D2 in general is reducible even if Di are irreducible.

But: D1 ⊗D2 is fully reducible if D1, D2 are unitary!

⇒ ∃ “Clebsch–Gordan decomposition”

D1 ⊗D2 = D(1) ⊕D(2) ⊕ · · · ⊕D(I), (1.20)

by decomposing the matrices D1⊗D2(g) into irreducible building blocks D(i)(g) by
an appropriate similiarity trafo:

D1⊗D2(g) = S



D(1)(g) 0 · · ·

0 D(2)(g) · · ·
...

. . .


S−1. (1.21)
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Definition: “Group characters”

The “character” χD(g) of a representation matrix D(g) of a representation of an element
g of a group G is defined by the trace of D(g):

χD(g) = tr{D(g)} =
dimD∑

i=1

Dii(g). (1.22)

Some properties:

• Characters depend on the group G and on the representation D(G).

• Characters are functions of classes, i.e. if g1, g2 ∈ Ck then χD(g1) = χD(g2) ≡ χD(Ck).
Proof: ∃g ∈ G with g1 = gg2g

−1.

⇒ χD(g1) = tr{D(g1)} = tr{D(gg2g
−1)} = tr{D(g)D(g2)D(g−1)}

= tr{D(g−1)D(g)D(g2)} = tr{D(g)−1D(g)D(g2)} = tr{D(g2)}
= χD(g2). #

• Special case unit element: χD(C1) = tr{D(e)} = tr{1} = dimD.

• Note: Characters in general do not form representations,
since in general tr{AB} 6= tr{A} · tr{B}.

But: Determinants of D(g) form another (one-dimensional) representation:

det{D(g1)D(g2)} = det{D(g1)} · det{D(g2)}. (1.23)

• Characters of outer product matrices are products of characters of individual factors:

χD1⊗D2(g) = tr{(D1 ⊗D2)(g)} =

dimD1⊗D2∑

a=1

(D1 ⊗D2)aa(g)

=

dimD1∑

i=1

dimD2∑

j=1

D1,ii(g)D2,jj(g) =

(
dimD1∑

i=1

D1,ii(g)

)(
dimD2∑

j=1

D2,jj(g)

)

= χD1(g) · χD2(g). (1.24)



16 1. Basic concepts and group theory in QM

1.5 Implications for quantum-mechanical systems

Consider qm. system with Hamiltonian Ĥ with the symmetry group G:

[Ĥ, U(g)] = 0, g ∈ G, U(g) = symmetry operator on H,
= unitary (antiunitarity only for time reversal).

(1.25)

⇒ U = {U(g) | g ∈ G} forms a unitary representation of G on H.

⇒ U is fully reducible, i.e. can be brought to block-diagonal form by an appropriate
choice of basis in H:

U(g) =



U (1)(g) 0 · · ·

0 U (2)(g) · · ·
...

. . .


 , U (r) = irreducible representation of G

(which can be the same for various r values),

(1.26)

dimU (r) = nr. (1.27)

Consider an arbitray energy eigenstate |E, a〉, a = 1, . . . , nE,
nE = degree of degeneracy of E.

⇒ All U(g)|E, a〉 are energy eigenstates to energy E:

Ĥ
(
U(g)|E, a〉

)
= U(g)Ĥ|E, a〉 = E

(
U(g)|E, a〉

)
, a = 1, . . . , nE . (1.28)

⇒ U(g)|E, a〉 is linear combination of |E, b〉, b = 1, . . . , nE :

U(g)|E, a〉 =

nE∑

b=1

|E, b〉Dba(g), normalisation: 〈E, a|E, b〉 = δab. (1.29)

⇒ D = {D(g) | g ∈ G} = nE-dim. unitary representation of G
on the “degeneracy space” spanned by {|E, a〉}nE

a=1.

⇒ 2 possible cases:

a) D is one of the irreducible representations U (r) of U .

⇒ Degeneracy of states |E, a〉 is a consequence of the sym. group G of the system.

b) D is some direct-sum representation U (r1) ⊕ U (r2) ⊕ · · · ⊕ U (rE) with dimension
nE = nr1 + nr2 + · · ·+ nrE .

⇒ Degeneracy between basis states (multiplets) of different U (ri) blocks is
“accidental”, i.e. not implied by group G.

Note: Most likely G does not exhaust the full symmetry of the system.
→֒ Find larger symmetry group until no accidental symmetries remain.

⇒ Block form of Ĥ:

Ĥ =



E1 · 1n1 0 · · ·

0 E2 · 1n2 · · ·
...

. . .


 , (1.30)

with Er = Er′ (r 6= r′) only for accidental symmetries.
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Reduction of symmetries

Typical case: Ĥ ′
︸︷︷︸

new Hamiltonian

= Ĥ︸︷︷︸
as above

+ δĤ︸︷︷︸
new contribution,
e.g., by switching on elmg. fields

Suppose δĤ does not respect the full symmetry group G.

→֒ Ĥ ′ has symmetry group G′ ⊂ G (G′ 6= G).

⇒ Relation between irreducible representations of G′ and G?

• Representations of G automatically deliver representations of G′:

U(G) → U(G′) by subset of trafos.

• But: U(G′) in general is reducible, even if U(G) is irreducible.

Multiplet of U :

g′ ∈ G′ only mix
subsets of |ψk〉
in a non-trivial
way.

��

��




|ψ1〉
...

|ψn′〉
|ψn′+1〉

...

|ψn′〉




��

��

����

g ∈ G mix all
|ψk〉 in a non-
trivial way.

Less states |ψk〉 are symmetry connected, i.e. degrees of degeneracy between energy
eigenstates can be reduced.
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Example: 2-dim. qm. harmonic oscillator

Hamiltonian for particle of mass m:

Ĥ =
p̂2x + p̂2y
2m

+
m

2

(
ω2
1x̂

2 + ω2
2ŷ

2
)
=
∑

k=1,2

~ωk

(
a†kak +

1
2

)
. (1.31)

Energy eigensystem:

|n1, n2〉 = |n1〉|n2〉, |nk〉 =
(
a†k
)nk |0〉, n1, n2 ∈ N0, (1.32)

Ĥ|n1, n2〉 = En1,n2|n1, n2〉, En1,n2 = ~ω1

(
n1 +

1
2

)
+ ~ω2

(
n2 +

1
2

)
. (1.33)

Symmetry and degeneracy:

• Symmetric case, ω1 = ω2 ≡ ω:

En1,n2 = En = ~ω(n+1) with n = n1+n2 is (n+1)-fold degenerate due to symmetry:

Û :
( a1

a2

)
→ U

( a1

a2

)
, [Ĥ, Û ] = 0, (1.34)

U(φ0, φ1, φ2, φ3) = e−iφ0 exp {−iφkσk} = unitary 2×2 matrix, φk ∈ [0, 2π).

Û comprises:

– rotations about ~ez axis: exp{−iφ2σ2},
– reflections x→ −x, y → −y,
– phase transformations of ak: ak → ei(φ3±φ0) ak,

– complex transformations mixing coordinates and momenta.

Classification of states |n1, n2〉 by a maximal set of commuting symmetry operators:

E.g. take rotations about ~ez axis.

→֒ Basis change {|n1, n2〉} → {|n;m〉′} to eigenstates of Ĥ and L̂3:

Ĥ |n;m〉′ = En |n;m〉′, L̂3 |n;m〉′ = ~m |n;m〉′. (1.35)

• Unsymmetric case, ω1 6= ω2:

Symmetry reduced to two independent (commuting) phase transformations:

ak → e−iφk ak, φk ∈ [0, 2π). (1.36)

→֒ Only “accidental” degeneracy for ω1

ω2
= rational.
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1.6 Schur’s lemmas

→֒ Mathematical statements on irreducible representations D(G) on V :

(i) If there is a linear mapping S : V 7→ V with D(g)S = S D(g), i.e. [D(g), S] = 0,
∀g ∈ G, and if D is irreducible, then S = λ · 1.

(ii) If there is a linear mapping S : V1 7→ V2 with D1(g)S = S D2(g) ∀g ∈ G and if D1,
D2 are irreducible, then either S = 0 or S = invertible (i.e. D1 ≃ D2).

Note: Schur’s lemmas hold for vector spaces with dim < ∞, and also for dim = ∞ if
the representations are unitary.

Proof:

(i) ∃ eigenvalue λ ∈ C with eigenvector |ψ〉 6= 0: S|ψ〉 = λ|ψ〉.
(This step requires the unitarity of D for dim V = ∞.)

⇒ (S − λ · 1)D(g)|ψ〉 = D(g) (S − λ · 1)|ψ〉︸ ︷︷ ︸
=0

= 0 ∀g ∈ G.

⇒ D(g)|ψ〉 are all eigenstates of S with eigenvalue λ.

But the eigenspace of λ ≡ Vλ
!
= V , since D = irreducible.

⇒ S = λ · 1.

(ii) K1 ≡ { |φ〉 ∈ V1 | S|φ〉 = 0 } = kernel of S

is invariant under D1: ∀|φ〉 ∈ K1 : S D1(g)|φ〉 = D2(g)S|φ〉 = 0 ⇒ D1(g)|φ〉 ∈ K1.

W2 ≡ { |ψ〉 ∈ V2 | |ψ〉 = S|φ〉, |φ〉 ∈ V1 } = range of S

is invariant under D2: ∀|ψ〉 ∈ W2 : D2(g)|ψ〉 = D2(g)S|φ〉 = S D1(g)|φ〉 ∈ W2.

D1, D2 = irreducible. ⇒ K1 = V1 or {0}, W2 = V2 or {0}.

a) K1 = V1. ⇒ W2 = 0, i.e. S = 0.

b) K1 = {0}. ⇒ S = invertible, i.e. W2 6= {0}. ⇒ W2 = V2,
i.e. dimV1 = dimV2, S D1(g)S

−1 = D2(g) ∀g ∈ G.
#



20 1. Basic concepts and group theory in QM

“Inverse statement” to (i):

Let D(G) be a unitary representation of the group G. If [D(g), S] = 0 ∀g ∈ G implies
that S = λ · 1, then D is irreducible.

Proof: (indirect!)

If D = reducible, then D = fully reducible (since unitary) and ∃ basis of V so that

D(g) =




D(1)(g) 0 . . . . . .

0 D(2)(g) . . . . . .
...

...
. . .

...
... D(I)(g)




∀g ∈ G.

⇒ S =



λ1 · 1n1 0 . . .

0 λ2 · 1n2

...
. . .


 , λ1 6= λ2, obeys [D(g), S] = 0.

#

Consequences for abelian groups:

All irreducible representations of abelians groups are 1-dimensional.

Proof:

[D(g), D(g′)] = 0 ∀g, g′ ∈ G (= abelian).

⇒ All D(g) = d(g)︸︷︷︸
∈C

·1 if D = irreducible (Schur’s lemma).

But D(g) =



d(g) 0 · · ·
0 d(g) · · ·
...

...
. . .


 = irreducible only if dimD = 1.

#
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Example: 3-dim. representation of S3 (=non-abelian group of lowest order)

6 permutations of 3 objects ABC: g123 = e, g231, g312, g132, g321, g213.

Unitary representation via permutation matrices:

D(e) = 13, D(g231) =



0 0 1

1 0 0

0 1 0


 , etc. (1.37)

Obviously an invariant subspace [~n1] is spanned by ~n1 =
1√
3




1

1

1


,

i.e. D is reducible.

→֒ Choose new basis of V = R3: ~n1, ~n2 =
1√
2




1

−1

0


 , ~n3 =

1√
6




1

1

−2


.

S D(g)S−1 =



1 0 0

0

0
D′(g)


 , S = (~n1, ~n2, ~n3) = unitary. (1.38)

This defines a new 2-dim. representation D′:

D′(e) = 12, D′(g231/g312) =

(
−1

2
∓

√
3
2

±
√
3
2

−1
2

)
,

D′(g132/g321) =

(
+1

2
±

√
3
2

±
√
3
2

−1
2

)
, D′(g213) =

(
−1 0

0 +1

)
. (1.39)

Check (ir)reducibility of D′ via inverse of Schur’s lemma:

Ansatz: T =

(
t11 t12

t21 t22

)
.

[T,D′(g213)]
!
= 0 ⇒ t12 = t21 = 0.

[T,D′(g231)]
!
= 0 ⇒ t11 = t22.



 ⇒ T ∝ 12. (1.40)

⇒ D′ = irreducible.
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1.7 Real, pseudoreal, and complex representations

Let D(G) be a representation of some group G.

⇒ The set D(G)∗ of complex conjugate matrices forms another representation.

→֒ Question: Is D(G)∗ equivalent to D(G) or not?

Definition:

Let D(G) be a unitary, irreducible representation of the group G.

(i) D(G) is “complex” if D(G) and D(G)∗ are not equivalent.

(ii) D(G) is “real” or “pseudoreal” if D(G) and D(G)∗ are equivalent:

∃S with D(g)∗ = S D(g)S−1 ∀ g ∈ G. (1.41)

D(G) is real/pseudoreal if ST = ±S.

Some important properties:

a) D(G) is complex. ⇔ Not all characters are real.

→֒ This obviously identifies complex representations, and χD∗(g) = χ∗
D(g).

b) If (1.41) holds, then ST = ±S.

Proof:

Use unitarity of D(g), so that D(g)∗ = D(g−1)T:

D(g) = D(g−1)† =
(
D(g−1)∗

)T
=
(
S D(g−1)S−1

)T
, (1.41) for g−1

= (S−1)TD(g−1)T ST = (S−1)TD(g)∗ ST, unitarity of D(g)

= (S−1)T S D(g)S−1 ST

=
(
S−1 ST

)−1
D(g)S−1 ST =M−1D(g)M, M ≡ S−1 ST.

⇒ [M,D(g)] = 0 ∀g ∈ G and thus M = λ · 1 according to Schur’s lemma.

⇒ ST = λS = λ2ST, λ2 = 1, λ = ±1. #

c) If D(G) is real/pseudoreal, S can be chosen unitary.

Proof:

Again based on unitarity of D(g):

S = D(g−1)∗ S D(g), S† = D(g)† S†D(g−1)T

⇒ D(g)S†S = D(g)D(g)†︸ ︷︷ ︸
=1

S† D(g−1)TD(g−1)∗︸ ︷︷ ︸
=1

S D(g) = S†S D(g).

⇒ [S†S,D(g)] = 0 ∀g ∈ G and thus S†S = σ · 1 according to Schur’s lemma.

→֒ Redefine S → S/
√
σ, so that S†S = 1 and S−1 → S−1/

√
σ,

i.e. (1.41) stays intact. #



1.7. Real, pseudoreal, and complex representations 23

d) If the representation D(G) is real, then all D(g) can be chosen real.

Sketch of proof:

According to b) and c), (1.41) holds with some symmetric and unitary S.

→֒ ∃ symmetric and unitary matrix T with S = T 2 (proof → linear algebra).

Define new representation D′(g) = T D(g) T−1, so that (T = TT, T † = T ∗)

D′(g)∗ =
(
T D(g) T−1

)∗
= T ∗D(g)∗ T = T ∗ S D(g)S−1 T

= T ∗ T︸︷︷︸
=1

T D(g) T ∗
︸ ︷︷ ︸

=D′(g)

T ∗ T︸︷︷︸
=1

= D′(g),

i.e. D′(g) = real ∀g ∈ G. #

e) For real/pseudoreal D(G), there is a bilinear invariant product ( . , . ):

(x, y) ≡ xT S y, x, y ∈ V, (1.42)

(x, y) = (D(g)x,D(g)y) ∀g ∈ G. (1.43)

Proof:

Use unitarity of D(g), so that D(g)T = D(g−1)∗:

(D(g)x,D(g)y) = xTD(g)T S D(g) y = xT D(g−1)∗︸ ︷︷ ︸
= SD(g−1)S−1

S D(g) y

= xT S D(g)−1D(g) y = xT S y = (x, y). #
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Chapter 2

Finite groups

2.1 Multiplication tables

Recall the cancellation law: If a, b, p ∈ G and pa = pb (or ap = bp), the a = b. Proof:
multiply by p−1 from the left (from the right). This implies the “rearrangement lemma”:

• If {g1, g2, . . . , gnG
} are the elements of a finite group G of order nG, then ∀p ∈ G,

{pg1, pg2, . . . , pgnG
} = {gσp(1), gσp(2), . . . , gσp(nG)} is a permutation σp of the elements.

• If a 6= e, σa(k) 6= k∀k.
⇒ the permutation leaves no element invariant.

All possible products of two elements can be written as an nG × nG table:

g1 = e · · · gj · · · gnG

g1 = e e · · · gj · · · gnG

...
...

. . .
...

gi gi gigj gignG

...
...

. . .
...

gnG
gnG

· · · gnG
gj · · · gnG

gnG

• The multiplication table characterises the group completely.

• In each row and in each column, every group element appears exactly once, i.e. each
row and each column is a permutation of the elements of the group (rearrangement
lemma).
⇒ Cayley’s theorem: every finite group of nG elements is isomorphic to a subgroup
of the permutation group SnG

.

Examples:

In the case of groups with 2 rsp. 3 elements, the multiplication tables are unique (we leave
out the redundant first row and column):

25
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C2 ≃ S2:
e A

A e
rsp. C3:

e A B

A B e

B e A

In the case of 4 elements, there are two possibilities:

C2 ⊗ C2:

e A B C

A e C B

B C e A

C B A e

and C4:

e A B C

A B C e

B C e A

C e A B

Choosing AA = B fixes the table immediately. The case AA = C is redundant, because
relabelling B and C shows that this is the same case as AA = B. Choosing AA = e still
leaves the options BB = e and BB = A. But BB = A is equivalent to the case AA = B
upon relabelling A and B.

A compact way to characterise a finite group is to define its generating elements, i.e.
the elements from which all other elements can be constructed by multiplication.

Examples:

• C4: All elements are generated by a single element A: 〈A|A4 = e〉,

• C2 ⊗ C2: 〈A,B|A2 = B2 = e, AB = BA〉.

This is called a presentation. General form: 〈generating elements|relations〉.

2.2 Unitarity theorem

Theorem: All representations of finite groups are equivalent to unitary representations.

Let D(g) be a representation on a vector space V and define H ≡∑gD
†(g)D(g). Prop-

erties:

• D†(g′)HD(g′) =
∑

gD
†(g′)D†(g)D(g)D(g′) =

∑
gD

†(gg′)D(gg′) = H

(rearrangement lemma),

• H is hermitian, H = H†,

• ∀ eigenvectors |hi〉, 〈hi|hi〉 = 1, with eigenvalue hi, i = 1, . . . :

hi = 〈hi|H|hi〉 =
∑

g

〈hi|D†(g)D(g)|hi〉 =
∑

g

‖D(g)|hi〉‖2 > 0. (2.1)

⇒ All eigenvalues hi of H are positive.

• ∃ unitary P such that H = P † diag(h1, . . . )P
⇒ H = S†S with S = diag(

√
h1, . . . )P .



2.3. Orthogonality relations 27

The representation U(g) = SD(g)S−1 is unitary and U ≃ D:

〈x|U †(g)U(g)|y〉 = 〈x|(S−1)†D†(g) S†S︸︷︷︸
H

D(g)S−1|y〉

= 〈x|(S−1)†HS−1|y〉
= 〈x| (S−1)†S†

︸ ︷︷ ︸
=(SS−1)†=1

SS−1|y〉 = 〈x|y〉 ∀|x〉, |y〉 ∈ V. (2.2)

Note that this theorem is not limited to irreducible representations.

2.3 Orthogonality relations

2.3.1 Orthogonality of irreducible representations

Theorem: Given two irreducible representations Dµ(g) and Dν(g) of dimensions dµ and
dν, the representation matrices fulfil the relation

∑

g

D†
µ(g)

i

j
Dν(g)kl =

nG
dµ

δνµδ
i
lδ
k
j (D†

µ ≡ (Dµ)
†). (2.3)

Proof: For an arbitrary dµ × dν matrix X, define

A =
∑

g

D†
µ(g)XD

ν(g). (2.4)

Then (→ rearrangement lemma),

D†
µ(g)AD

ν(g) = D†
µ(g)

(∑

g′

D†
µ(g

′)XDν(g′)
)
Dν(g) =

∑

g′

D†
µ(g

′g)XDν(g′g) = A. (2.5)

Since G is a finite group, the representation matrices can be chosen unitary, D†
µ(g) =

(Dµ)
−1(g). According to Schur’s lemma, we need to distinguish two cases,

• µ = ν (i.e. if the representations are equivalent): A = λ1, λ ∈ C, or

• µ 6= ν: A = 0.

Choose the matrix X as (Xk
j )
m

n
= δmj δ

k
n for fixed j = 1, . . . , dµ and k = 1, . . . , dν ,

(Akj )
i

l
=
∑

g

D†
µ(g)

i

m
(Xk

j )
m

n
Dν(g)nl =

∑

g

D†
µ(g)

i

j
Dν(g)kl. (2.6)

Since (Akj )
i

l
= 0 in the case µ 6= ν, this proves (2.3) for µ 6= ν. If µ = ν, taking the trace

of

(Akj )
i

l
= λkj δ

i
l =

∑

g

D†
µ(g)

i

j
Dµ(g)kl.



28 2. Finite groups

gives

λkjdµ =
∑

g

(Dµ(g)D†
µ(g))

k

j
=
∑

g

δkj = nGδ
k
j ⇒ (Akj )

i

l
=
nG
dµ

δkj δ
i
l , (2.7)

which proves (2.3) for µ = ν. #
{Dµ(g1)

i
j , . . . , D

µ(gnG
)ij} can be regarded as a vector with nG components. For each

irreducible representation µ there are d2µ such vectors labelled by i, j = 1, . . . , dµ. In total,
summing over all irreducible representations, there are

∑
µ d

2
µ vectors. According to (2.3),

these vectors are orthogonal and, hence,

∑

µ

d2µ ≤ nG, (2.8)

because there can be no more than nG orthogonal vectors with nG components. In Section
2.3.3 we will show that this is actually an equality.

2.3.2 Orthogonality of characters

Representations are only unique up to similarity transformations (=̂ basis choice).
⇒ Take traces of the representation matrices to obtain relations for characters which are
basis independent.

Set i = j, k = l in (2.3) and sum over i, k:

∑

g

D†
µ(g)

i

i
Dν(g)kk =

nG
dµ

δνµδ
i
kδ
k
i

∑

i,k

⇒
∑

g

χ∗
µ(g)χ

ν(g) = nGδ
ν
µ

⇔
∑

C
nCχ

∗
µ(C)χν(C) = nGδ

ν
µ, (2.9)

where nC is the number of group elements in the class C.

Application: Calculate to which irreducible representations a given (reducible) repre-
sentation reduces.

The characters χ(C) of a reducible representaion are given by

χ(C) =
∑

µ

nµχ
µ(C), (2.10)

where nµ is the number of times the irreducible representation µ appears in the reducible
representation.

Calculate nµ for a given representation:

∑

C
nCχ

∗
µ(C)χ(C) =

∑

C
nC
∑

ν

nνχ
∗
µ(C)χν(C) =

∑

ν

nνnGδ
ν
µ = nGnµ. (2.11)



2.3. Orthogonality relations 29

⇒ Check whether a representation is reducible:

∑

C
nCχ

∗(C)χ(C) =
∑

C
nC
∑

µ,ν

nµnνχ
∗
µ(C)χν(C) =

∑

µ,ν

nµnνnGδ
ν
µ = nG

∑

µ

n2
µ. (2.12)

If this evaluates to nG, the representation is irreducible, because
∑

µ n
2
µ = 1 if all irrede-

ducible representations except one do not appear and one appears once.

2.3.3 Regular representation

The group multiplication can be written as

agi = gai = gmδ
m
ai
, a, gi, gai ∈ G. (2.13)

gmδ
m
ai

is an element of the group ring C[G].

C[G] is the set of all complex linear combinations of group elements
∑

g zgg, zg ∈ C,
g ∈ G. (new structure beyond the group structure!) with product structure derived from
the group multiplication (multiplication is distributive wrt. addition).

For ab = c, a, b, c ∈ G:

abgi = cgi ⇔ gkδ
k
am
δmbi = gkδ

k
ci

⇒ δkamδ
m
bi
= δkci, (2.14)

which means that the matrices

Dreg(g)ij = δigj (2.15)

form a representation of G, namely the regular representation.

• For g 6= e, Dreg(g) permutes the group elements in a way that leaves no element
invariant (rearrangement lemma),

• Dreg(g) is an element of the defining representation of the symmetric group SnG
.

• Characters of the regular representation: χreg(e) = nG, χreg(g 6= e) = 0.

• ∑µ n
2
µ = nG. Proof:

∑

C
nCχ

∗
reg(C)χreg(C) = (χreg(e))2 = n2

G. (2.16)

On the other hand, (2.12) gives

∑

C
nCχ

∗
reg(C)χreg(C) = nG

∑

µ

n2
µ ⇒

∑

µ

n2
µ = nG. # (2.17)
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• Each irreducible representation µ appears nµ = dµ times in the regular representa-
tion. Proof:

∑

C
nCχ

∗
µ(C)χreg(C) = χ∗

µ(e)χ
reg(e) = dµnG. (2.18)

On the other hand, (2.11) gives

∑

C
nCχ

∗
µ(C)χreg(C) = nGnµ ⇒ nµ = dµ. # (2.19)

This also proofs the equality
∑

µ d
2
µ = nG (cf. Eq. (2.8)), i.e. according to (2.3) there are

nG orthogonal non-vanishing vectors {Dµ(g1)
i
j, . . . , D

µ(gnG
)ij} with nG elements. This is

only possible if the set of vectors is complete, hence,

∑

µ

dµ∑

i,j=1

dµD
µ(g)ijD

†
µ(g

′)j
i
= nGδg,g′. (2.20)

The sum of all representation matrices in a class (“class sum”) is proportional to 1:

Dµ(C) = nC
dµ
χµ(C)1, where Dµ(C) =

∑

h∈C
Dµ(h). (2.21)

Proof:

Dµ(g)Dµ(C)Dµ(g)−1 =
∑

h∈C
Dµ(ghg−1

︸ ︷︷ ︸
h′∈C

) =
∑

h′∈C
Dµ(h′) = Dµ(C) ∀g ∈ G. (2.22)

According to Schur’s lemma, Dµ(C) = λµ1. Take the trace to determine λµ:

Tr{Dµ(C)} = λµTr{1} ⇔ nCχ
µ(C) = λµdµ, (2.23)

which proofs (2.21). #
Summing (2.20) over group elements g ∈ C and g′ ∈ C′ of classes C, C′ proves the

completeness of characters:

∑

g∈C

∑

g′∈C′

∑

µ

dµ∑

i,j=1

dµD
µ(g)ijD

†
µ(g

′)j
i
=
∑

g∈C

∑

g′∈C′

nGδg,g′

⇔
∑

µ

dµ∑

i,j=1

dµDµ(C)D†
µ(C′) = nGnCδC,C′

⇔
∑

µ

dµ∑

i,j=1

dµ
nC
dµ
χµ(C)δij

nC′

dµ
χ∗
µ(C′)δji = nGnCδC,C′

⇔ nC
∑

µ

χµ(C)χ∗
µ(C′) = nGδC,C′. # (2.24)
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2.3.4 Character table

The character table lists the characters of all classes Ci, i = 1, . . . , Nc (Nc = number of
classes) for all irreducible representations µr, r = 1, . . . , NR (NR = number of irreducible
representations) of a group G.

G C1 = {e} C2 . . . CNc

µ1 χµ1(C1) χµ1(C2) . . . χµ1(CNc)

µ2 χµ2(C1) χµ2(C2) . . . χµ2(CNc)
...

...
...

. . .
...

µNR
χµNR (C1) χµNR (C2) . . . χµNR (CNc)

Regard all classes as a vector of Nc elements:
The NR vectors of Nc elements {χ̃µ(C1), . . . , χ̃µ(CNc)} of the normalised characters

χ̃µ(C) =
√

nC

nG
χµ(C) are orthogonal (2.9) and complete (2.24)

⇒ NR = Nc, (2.25)

i.e. the character table is square. In other words, there are always as many inequivalent
irreducible representations as there are classes.

Further properties of characters:

• If χµ(e) ≡ dµ = 1, then |χµ(C)| = 1 for all classes C.
Proof: χµ(e) = 1 means that the corresponding representationDµ(g) is 1-dimensional
⇒ (Dµ(g))∗Dµ(g) = 1 ⇒ |χµ(g)| = |Dµ(g)| = 1. #

• χµ(g−1) = (χµ(g))∗. In particular, if g, g−1 ∈ G, χµ(g) is real.
Proof: Dµ(g) is unitary ⇒ ∀ eigenvalues λk, k = 1, . . . , dµ, of Dµ(g): |λk| = 1.
χµ(g) = Tr{Dµ(g)} =

∑
k λk,

χµ(g−1) = Tr{D−1
µ (g)} =

∑
k 1/λk =

∑
k λ

∗
k = (χµ(g))∗. #

Example: Character table of the quaternionic group Q

The quaternionic group Q is defined by the presentation

Q = 〈i, j|i4 = e, i2 = j2, jij−1 = i−1〉. (2.26)

It consists of the 8 elements

{e, ē, i, ī ≡ kj, j, j̄ ≡ ik, k, k̄ ≡ ji}

that satisfy i2 = j2 = k2 = ijk = ē, and ē commutes with all elements (derive this from
the presentation!).

The regular representation decomposes as

nG = 8 =
∑

µ

d2µ = 1 + 1 + 1 + 1 + 4 (2.27)



32 2. Finite groups

into four 1-dimensional and one 2-dimensional irreducible representation. The decom-
position 8 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 is not possible, because Q is not abelian:
ijk = ē⇒ ij = k 6= k̄ = ji.

⇒ e and ē are the only elements that commute with all others and ē2 = e.
⇒ C1 = {e}, C2 = {ē}, and C3, C4, C5 must have 2 elements each.
k̄ik = jiik = ēi = i−1 = ī ⇒ C3 = {i, ī}, analogously C4 = {j, j̄}, C5 = {k, k̄}.
So far we can tell that the character table has the form

Q C1 = {e} C2 = {ē} C3 = {i, ī} C4 = {j, j̄} C5 = {k, k̄}
µ = 1 1 1 1 1 1

µ = 2 1 χ2,2 χ2,3 χ2,4 χ2,5

µ = 3 1 χ3,2 χ3,3 χ3,4 χ3,5

µ = 4 1 χ4,2 χ4,3 χ4,4 χ4,5

µ = 5 2 χ5,2 χ5,3 χ5,4 χ5,5

Character completeness for C3:

nC3
∑

µ

χµ(C3)χ†
µ(C3) = 2(1 + |χ2,3|2 + |χ3,3|2 + |χ4,3|2 + |χ5,3|2) !

= nG = 8. (2.28)

For µ = 2, 3, 4, |χµ,3| = 1, because χµ(e) = 1 ⇒ χ5,3 = 0.
Analogousy, χ5,4 = χ5,5 = 0.

Character orthogonality between µ = 1 and µ = 5:

∑

C
nCχ

∗
1(C)χ5(C) = 2 + χ5,2

!
= 0 ⇒ χ5,2 = −2. (2.29)

Character orthogonality between µ = 2, 3, 4 and µ = 5 ⇒ χ2,2 = χ3,2 = χ4,2 = 1.

The remaining characters have |χµ,c| = 1, µ = 2, 3, 4, c = 3, 4, 5, because χµ,1 = 1, and
must be real, because each class contains the inverses of its elements, hence χr,c = ±1.

Character orthogonality
⇒ for each µ = 2, 3, 4, two of the remaining characters must be −1, one +1.

The complete character table is thus

Q {e} {ē} {i, ī} {j, j̄} {k, k̄}
µ = 1 1 1 1 1 1

µ = 2 1 1 1 −1 −1

µ = 3 1 1 −1 1 −1

µ = 4 1 1 −1 −1 1

µ = 5 2 −2 0 0 0
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Example: Degeneracies in coupled classical harmonic oscillators

System of N point particles of masses mi, i = 1, . . . , N at positions ~xi in d dimensions,
coupled by springs of spring constants kij, i, j = 1, . . . , N , i > j.

Lagrangian: L =
1

2

∑

i

mi~̇x
2
i −

1

2

∑

i>j

kij(~xi − ~xj)
2.

Equation of motion can be written as

ẍa = −Kabxb, a = 1, . . . , Nd running over all coordinates. (2.30)

Ansatz: xa(t) = Xae
iωt.

⇒ Squared eigenfrequencies are given by the eigenvalues of the matrix K.

Symmetry: let the system by invariant under x→ x′ = D(g)x,
where D(g) is an Nd-dimensional representation of a group G, g ∈ G.
⇒ x′ also solves the EOM (2.30) ⇒ D(g)K = KD(g).

Use Schur’s lemma:

• G has irreducible representations µ of dimension dµ, µ = 1, . . . .

• If the (in general reducible) representation D(g) reduces to n1 times µ = 1, n2 times
µ = 2, . . . , then K has the diagonalised form

Kdiag = diag
(
(ω

(1)
1 )21d1 , . . . , (ω

(n1)
1 )21d1 , (ω

(1)
2 )21d2), . . . , (ω

(n2)
2 )21d2 , . . .

)
. (2.31)

Special case:
N = 3 particles of identical mass in d = 3 dimensions, coupled by identical springs.
⇒ Symmetry transforms the coordinates under a Nd = 9-dimensional representation
D(g) of the symmetric group S3 (rsp. D3, because S3 ≃ D3). Need the character table of
S3 (prove this!) and the characters of the representation D(g):

S3 ≃ D3 C1 = {e} C2 = {(123), (132)} C3 = {(12), (23), (31)}
nC 1 2 3

µ = 1 1 1 1

µ = 1′ 1 1 −1

µ = 2 2 −1 0

D(g) 9 0 3

The characters of D(g) are easy to find:

• χ(e) = dim(D(g)) = Nd = 9,

• χ(C2) = 0, because the elements of C2 leave no coordinate invariant,

• χ(C3) = d = 3, because the elements of C3 leave the coordinates of one particle
invariant and permutes all others.
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Use (2.11) to calculate how often each irreducible representation appears in D(g):

nµ =
1

nG

∑

C
nCχ

∗
µ(C)χ(C) ⇒ n1 =

1

6
(1 · 1 · 9 + 2 · 1 · 0 + 3 · 1 · 3) = 3,

n1′ =
1

6
(1 · 1 · 9 + 2 · 1 · 0 + 3 · (−1) · 3) = 0, (2.32)

n2 =
1

6
(1 · 2 · 9 + 2 · (−1) · 0 + 3 · 0 · 3) = 3

We expect three 2-fold degeneracies and three non-degenerate modes.
But: This includes the “zero modes”, i.e. modes with ω = 0. These are not all symmetry
connected by S3, hence, there are accidental degeneracies (→ space-time symmetries).
With some physical intuition, we can identify the modes.

Zero modes (ω = 0):

• 1-dim: translation orthogonal to the plane spanned by the particles,

• 2-dim: translation within the plane,

• 1-dim: rotation around the symmetry axis,

• 2-dim: rotation around the two other axes.

Oscillation modes:

• 1-dim: “breathing mode”

• 2-dim: two degenerate oscillation modes



Chapter 3

SO(3) and SU(2)

3.1 The rotation group SO(3)

Definition:

SO(3) ≡ Lie group of all rotations in 3-dim. space.

Defining representation R in 3-dim. vector space V = R3: ~v → ~v ′ = R~v, ~v ∈ R3,
with the two requirements:

~v 2 !
= ~v ′2 = ~v ′T ~v ′ = ~vTRTR~v, RTR

!
= 1 (detR = ±1), (3.1)

~u ′ · (~v × ~w)
!
= ~u · (~v ′ × ~w ′) = (R~u) · (R~v × R~w) = detR · ~u · (~v × ~w), detR = +1,

i.e. R preserves orientation of 3 vectors. (3.2)

⇒ SO(3) =
{

3×3 matrices R | R real, RTR = 1, detR = +1
}
.

Infinitesimal rotations:

R = 1+ δR, 1
!
= (1+ δR)T(1+ δR) = 1+ δR + δRT +O(δR2),

i.e. δRT = −δR, antisymmetry.

Note: No restruction on δR from detR = 1, since real orthogonal R with
detR = −1 cannot be obtained from 1 by continuous deformations.

⇒ R(δ~θ ) ≡ 1+ δR =



1 δR12 δR13

1 δR23

antisym. 1


 ≡



1 −δθ3 δθ2

1 −δθ1
antisym. 1


 (3.3)

= 1+ δ~θ×, δθa = angle for infinitesimal rotation around ~ea axis

= 1− iδ~θ · ~J (R), dimSO(3) = 3 = # group parameters θa.

~J (R) = generators of SO(3), spanning the Lie algebra so(3)

≡ “angular momentum operator”.

35
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→֒ 3-dim. “defining representation” R of ~J :

J
(R)
1 =



0 0 0

0 0 −i

0 i 0


 , J

(R)
2 =




0 0 i

0 0 0

−i 0 0


 , J

(R)
3 =



0 −i 0

i 0 0

0 0 0


 . (3.4)

Basic commutators of Ja (“Lie algebra”) by identifying Ja ≡ J
(R)
a in defining repr.:

[Ja, Jb] = i
∑

c

ǫabcJc, verified by explicit calculation,
but valid in all representations!

(3.5)

Specifically, (J
(R)
a )bc = −iǫabc is given by the structure constants ǫabc of so(3) and therefore

called “adjoint representation”.

Finite rotations:

R(~θ ) ≡ exp
{
−i~θ · ~J (R)

}
, ~θ ≡



θ1

θ2

θ3


 = θ~e = rotation by angle θ aroung ~e, ~e 2 = 1.

(3.6)Properties:

• R(0) = 1, identity.

• R(~θ ) with 0 < θ < π are different for different axes ~e, ~e ′.

• R(~θ ) with ~θ = π~e, π~e ′ are different iff ~e ′ 6= ±~e, i.e. π~e and −π~e are identical.

→֒ group parameter space of SO(3)

= sphere of radius π with antipodal points on its surface identified

≡ RP 3 (“real 3-dim. projective space”).

Note: RP 3 is “doubly connected”, i.e. ∃ two inequivalent classes of closed curves,
where two curves are equivalent (“homotopic”) if they can be continuously
deformed into each other.

2 examples of inequivalent closed curves ~θ(s) ⊥ ~e3 (0 ≤ s ≤ 1):

π

π

θ1

θ2

0

R
(
~θ(s)

)
∼ R(~0) = 1

~θ(s) can be deformed into R(~0) = 1.

π

π

θ1

θ2

0

R
(
~θ(s)

)
≁ R(~0) = 1

~θ(s) cannot be deformed into R(~0) = 1.
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Explicit form of R(~θ ): (straightforward exercise!)

R(~θ ) = cos θ · 1+ (1− cos θ) ~e · ~eT︸ ︷︷ ︸
=~e⊗~e

+ sin θ ~e× , (3.7)
→֒ cross product

R(~θ )ab = cos θ δab + (1− cos θ) eaeb − sin θ
∑

c

ǫabcec. (3.8)

Alternative parametrization via “Euler angles”:

→֒ Decomposition of rotation around ~θ into 3 standard rotations:

R(α, β, γ) ≡ R3(α)R2(β)R3(γ)︸ ︷︷ ︸
Rj(ϕ) ≡ R(ϕ~ej) = rotation by angle ϕ around ~ej

(3.9)

=



cosα − sinα 0

sinα cosα 0

0 0 1







cos β 0 sin β

0 1 0

− sin β 0 cos β






cos γ − sin γ 0

sin γ cos γ 0

0 0 1


 ,

0 ≤ α < 2π, 0 ≤ β < π, 0 ≤ γ < 2π.

Relation between α, β, γ and ~θ: (straightforward exercise)

cos θ = cos β cos2
(
α + γ

2

)
− sin2

(
α + γ

2

)
, (3.10)

e3 =
cos2(β/2) sin(α+ γ)

sin θ
, e1 =

sin β (sin γ − sinα)

2 sin θ
, e2 =

sin β (cosα + cos γ)

2 sin θ
.
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3.2 The group SU(2)

Definition:

SU(2) =
{

2×2 matrices U | U complex, U †U = 1, detU = +1
}
.

Transformations, generators, Lie algebra:

Parametrization of U(~θ ) by real group parameters ~θ = (θ1, . . . , θn)
T and generators ~T :

U(~θ ) = exp{−i~θ · ~T} = 1− i~θ · ~T + . . . , (3.11)

U(~θ )† = exp{i~θ · ~T †} = 1+ i~θ · ~T † + . . . , (3.12)

U(~θ )−1 = exp{i~θ · ~T}. = 1+ i~θ · ~T + . . .
!
= 1+ i~θ · ~T † + . . . , (3.13)

detU(~θ ) = exp{−i~θ · Tr(~T )} = 1 + i~θ · Tr(~T ) + . . .
!
= 1. (3.14)

⇒ Conditions on 2× 2 generators ~T = (T1, . . . , Tn):

Ta = T †
a , Tr(Ta) = 0. (3.15)

⇒ n = 3 independent Ta’s, usually chosen as Ta =
1
2
σa:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, “Pauli matrices” . (3.16)

Lie algebra su(2) = so(3) (by explicit calculation):

[Ta, Tb] = i
∑

c

ǫabcTc, (3.17)

Note: su(2) = so(3) ≡ {∑a caTa | ca ∈ R} = 3-dim. Lie algebra over R,

sl(2) ≡ {∑a caTa | ca ∈ C}, = 3-dim. Lie algebra over C.

Finite group transformations:

U(~θ ) = cos θ
2
· 1− i sin θ

2
(~e · ~σ), ~θ = θ ~e, (3.18)

SU(2) =
{
U(~θ ) | 0 ≤ θ ≤ 2π, ~e ∈ S2 = unit sphere in R3

}
. (3.19)

→֒ Group parameter space = compact ball B2π of radius 2π in R3 (singly connected).
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Relation between SU(2) and SO(3):

• su(2) = so(3) ⇒ SU(2) and SO(3) are locally isomorphic.

• But: SU(2) and SO(3) are not fully isomorphic, since group parameter spaces are
not isomorphic (connectedness!).

• Precise relation obtained by inspecting the group homomorphism

f : SU(2) → SO(3), f
(
U(~θ )

)
= R(~θ ), ~θ ∈ B2π. (3.20)

Determine kernel of f : R(~θ ) = 13 ⇔ θ = 0 ∨ 2π ⇔ U = ±1.

→֒ ker(f) = {±1} ≃ Z2.

⇒ SO(3) ≃ SU(2)/Z2 according to first isomorphism theorem (Section 1.3.3).

Correspondence: R ↔ {U,−U},
i.e. SO(3) is multivalued on B2π and SU(2) doubly covers SO(3).

SU(2) = “universal covering group” (simply connected) of SO(3).

• Implication on representations:

– Each representation of SO(3) defines a repr. of SU(2), where D(2π~e) = 1.

– Only representations of SU(2) with D(2π~e) = 1 define reprs. of SO(3).

– Representations of SU(2) with D(2π~e) = −1 define “ray (or projective) repre-
sentations” of SO(3), which define D(g) for g ∈ G only up to some constant:

D(g)D(g′) ∝ D(gg′).

Comment: Ray representations are “good enough” to describe symmetries in QM,
because qm. states are “rays” (=states with arbitrary normalization and
phases) in some Hilbert space.

SO(3): group of rotations in classical physics,
SU(2): group describing rotations in QM.
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3.3 Irreducible representations of SU(2) and SO(3)

Irred. representations of su(2) and so(3):

→֒ known from eigenvalue problem of angular momentum in QM:

For each j = 0, 1
2
, 1, 3

2
, . . . ∃ (2j + 1) simultaneous eigenstates {|j,m〉 |m = −j, . . . , j} of

J3 and ~J 2, which span some (2j + 1)-dim. vector space V (j):

J3 |j,m〉 = m |j,m〉,
~J 2 |j,m〉 = j(j + 1) |j,m〉,
J+ |j,m〉 =

√
j(j + 1)−m(m+ 1) |j,m+ 1〉,

J− |j,m〉 =
√
j(j + 1)−m(m− 1) |j,m− 1〉, (3.21)

with the “shift operators” J± = J1 ± iJ2 obeying

[J3, J±] = ±J±, [J+, J−] = 2J3. (3.22)

Note: ~J 2 = “Casimir operator”, i.e. [ ~J 2, Ja] = 0, but ~J 2 /∈ su(2).

⇒ Each j defines a (2j + 1)-dim. representation D(j):

|j, j〉 =




1
0
...


 , |j, j − 1〉 =




0
1
...


 , . . . |j,−j〉 =




...
0
1


 ,

J
(j)
3 = diag(j, j − 1, . . . ,−j),

(
~J (j)
)2

= j(j + 1) 1,

J
(j)
+ =




0 ∗ 0 . . . 0
0 ∗

... 0
. . .

...
. . . ∗

0 . . . 0



, J

(j)
− =

(
J
(j)
+

)†
=




0 . . . 0
∗ 0

0 ∗ 0
. . .

...
...

. . .
0 . . . ∗ 0



. (3.23)

Features of D(j):

• Consider su(2) as vector space spanned by basis {J3, J+, J−}.
→֒ Brackets [Ja, X ] ∈ su(2) act as linear operator (matrices!) on X ∈ su(2).

→֒ The matrices adJa ≡ [Ja, . ] define a 3-dim. repr. of su(2) on the vector
space su(2), which is identical with the adjoint prepresentation:

[adJa , adJb] =
∑

c

iǫabc adJc (3.24)

Note: The basis {J3, J+, J−} is very special:

– J3 is diagonal: adJ3(X) = [J3, X ] = f(X)X.

– J± are nilpotent: ad3
J±
(X) = [J±, [J±, [J±, X ]]] = 0.
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• Irreducibility:

|j, j〉

J3

��
J−

""
|j, j − 1〉

J3

��

J+

bb

J−
$$

|j, j − 2〉

J3

��

J+

dd

J−

##· · ·
J+

ee

J−
$$
|j,−j〉

J3

��

J+

cc

All basis states |j,m〉 can be obtained from a single state upon applying (J±)
n, e.g.

|j,m〉︸ ︷︷ ︸
state of “weight” m

∝
(
J
(j)
−
)m−j |j, j〉︸︷︷︸
state of “maximal weight”

,
(
J
(j)
+

)
|j, j〉 = 0. (3.25)

Example: j = 1.

• Generators:

J
(1)
3 = diag(1, 0,−1),

(
~J (1)
)2

= 2 · 1,

J
(1)
+ =

√
2



0 1 0
0 0 1
0 0 0


 , J

(1)
− =

√
2



0 0 0
1 0 0
0 1 0


 ,

J
(1)
1 =

1√
2



0 1 0
1 0 1
0 1 0


 , J

(1)
2 =

1√
2



0 −i 0
i 0 −i
0 i 0


 . (3.26)

• Relation to 3-dim. defining representation R of so(3):

J
(R)
1 =



0 0 0

0 0 −i

0 i 0


 , J

(R)
2 =




0 0 i

0 0 0

−i 0 0


 , J

(R)
3 =



0 −i 0

i 0 0

0 0 0


 . (3.27)

Check whether D(1) and R are equivalent:

J (R)
a

?
= S J (1)

a S−1. (3.28)

1. Diagonalize J
(R)
3 .

→֒ S = (~n1, ~n2, ~n3), ~na = eigenvectors of J
(R)
3 ,

~n1 =
eiδ1√
2




1

i

0


 , ~n2 = eiδ2




0

0

1


 , ~n3 =

eiδ3√
2




1

−i

0


 . (3.29)

2. Check whether phases δa can be chosen so that (3.28) is valid for a = 1, 2.

→֒ Answer: yes! 1 = −eiδ1 = eiδ2 = eiδ3 .

⇒ S =



−1/

√
2 0 1/

√
2

−i/
√
2 0 −i/

√
2

0 1 0


 . (3.30)

⇒ (3.28) holds, i.e. R ≃ D(1).
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Irred. representations of SU(2) and SO(3):

→֒ obtained from D(j) representation of the generators Ja:

D(j)(~θ ) ≡ exp
{
−i~θ ~J (j)

}
= (2j + 1)× (2j + 1) matrix (3.31)

D(j)(~θ )m′m = 〈j,m′| exp
{
−i~θ ~J

}
|j,m〉. (3.32)

Here Euler angles are particularly convenient:

D(j)(α, β, γ)m′m = 〈j,m′| exp
{
−iα J

(j)
3

}
exp
{
−iβ J

(j)
2

}
exp
{
−iγ J

(j)
3

}
|j,m〉

= e−im′α−imγ 〈j,m′| exp
{
−iβ J2

}
|j,m〉︸ ︷︷ ︸

≡ d
(j)

m′m
(β), “Wigner’s d-functions

. (3.33)

Properties:

• Irreducibility of D(j) follows from irreducibility of J
(j)
a .

• Explicit closed form:

d
(j)
m′m(β) =

∑

k

(−1)k−m+m′

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

(j +m− k)!k!(j − k −m′)!(k −m+m′)!

↑ ×
(
cos β

2

)2j−2k+m−m′ (
sin β

2

)2k−m+m′

, (3.34)

all k ∈ N0 with k ≤ j +m, k ≤ j −m′, k ≥ m−m′.

Possible proofs are based on:

– d(β) as normalizable solutions of the differential eq.

[
d2

dβ2
+ cot β

d

dβ
− m2 +m′2 − 2mm′ cos β

sin2 β
+ j(j + 1)

]
d(β) = 0, (3.35)

which is related to the Jacobi differential eq.

– Analysis of “Schwinger’s oscillator model” of angular momentum.

• D(j)(α, β, γ) = unitary matrix,

d
(j)
m′m(β) = real orthogonal matrix (clever choice of Euler rotations!).

• Symmetries: d
(j)
m′m(β) = (−1)m−m′

d
(j)
mm′(β) = (−1)m−m′

d
(j)
−m′,−m(β).

• Orthogonality:

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ

︸ ︷︷ ︸
Haar measure of SU(2)

D
(j1)
m′

1m1
(α, β, γ)∗D

(j2)
m′

2m2
(α, β, γ)

=
8π2

2j1 + 1
δj1j2 δm1m2 δm′

1m
′
2
. (3.36)
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• Global properties and action on states |ψ〉 ∈ V (j):

representation for j = 0, 1, 2, . . . j = 1
2
, 3
2
, . . .

D(j)(~θ ) in SO(3) single valued double valued

D(j)(~θ ) in SU(2) single valued single valued

D(j)(2π~e) |ψ〉 = +|ψ〉 −|ψ〉
D(j)(4π~e) |ψ〉 = +|ψ〉 +|ψ〉
state = bosonic fermionic
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3.4 Product representations and Clebsch–Gordan de-

composition

Qm. problem of addition of angular momenta:

Consider a qm. system of 2 independent components (e.g. 2 particles) with angular mo-

menta ~Jk (k = 1, 2) each, i.e.

~J 2
k |jk, mk〉 = jk(jk + 1) |jk, mk〉, jk = 0, 1

2
, 1, · · · = fixed!

Jk,3 |jk, mk〉 = mk |jk, mk〉, mk = −jk,−jk + 1, . . . , jk,

[J1,a, J2,b] = 0, independence of 2 components! (3.37)

⇒ Product basis of Hilbert space H: |j1, j2;m1, m2〉 ≡ |j1, m1〉 ⊗ |j2, m2〉.
→֒ (2j1 + 1)(2j2 + 1) states

Problem:
Express eigenstates |j,m〉 of total angular momentum ~J = ~J1 + ~J2(≡ ~J1 ⊗ 1+ 1⊗ ~J2)

~J 2 |j,m〉 = j(j + 1) |j,m〉, j =?

J3 |j,m〉 = m |j,m〉, m = −j,−j + 1, . . . , j (3.38)

in terms of |j1, j2;m1, m2〉!
Commutators:

[Ja, Jb] = i
∑

c

ǫabc Jc, since ~J = ~J1 + ~J2, [J1,a, J2,b] = 0. (3.39)

→֒ ~J = indeed angular momentum operator.

[J3, Jk,3] = 0, [J3, ~J
2
k] = 0,

[ ~J 2, Jk,3] 6= 0, [ ~J 2, ~J 2
k] = 0,

}
Simultaneously diagonalizable: ~J 2

1,
~J 2
2,
~J 2, J3.

→֒ Eigenstates: |j,m〉 ≡ |j1, j2, j,m〉. (3.40)

Basis change:

|j,m〉 =
∑

j′1,j
′
2,

m1,2

|j′1, j′2;m1, m2〉 〈j′1, j′2;m1, m2|j,m〉︸ ︷︷ ︸
“Clebsch–Gordan coefficients”

6= 0 only if j′1 = j1, j
′
2 = j2,

because 0 = 〈j′1, j′2;m1,m2| ~J 2
k − ~J 2

k |j1, j2, j,m〉
= [j′k(j

′
k + 1)− jk(jk + 1)]︸ ︷︷ ︸
6=0 for j′

k
6=jk

〈j′1, j′2;m1,m2|j1, j2, j,m〉.

(3.41)

⇒ |j,m〉 =
∑

m1,2

|j1, j2;m1, m2〉 〈j1, j2;m1, m2|j,m〉︸ ︷︷ ︸
6= 0 only if m = m1 +m2,

because 0 = 〈j1, j2;m1,m2| J1,3 + J2,3 − J3 |j1, j2, j,m〉
= (m1 +m2 −m) 〈j1, j2;m1,m2|j1, j2, j,m〉.

(3.42)
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Note: Both {|j1, j2;m1, m2〉} and {|j,m〉} are orthonormal bases!

⇒ Orthogonality relations:
∑

j,m

〈j1, j2;m1, m2|j,m〉 〈j,m|j1, j2;m′
1, m

′
2〉 = δm1m

′
1
δm2m

′
2
, (3.43)

∑

m1,m2

〈j,m|j1, j2;m1, m2〉 〈j1, j2;m1, m2|j′, m′〉 = δjj′ δmm′ . (3.44)

Calculation of CG coefficients:

• Step 0: m = mmax.

mmax = max(m1 +m2) = j1 + j2. ⇒ jmax = j1 + j2. (3.45)

|j = j1 + j2, m = j1 + j2〉 ≡ |j1, j2; j1, j2〉, unique up to phase choice! (3.46)

⇒ 〈j1, j2; j1, j2|j1 + j2, j1 + j2〉 = 1. (3.47)

• Step 1: m = mmax − 1.

Application of J− |j,m〉 =
√
j(j + 1)−m(m− 1) |j,m− 1〉:

J− |j1 + j2, j1 + j2〉 =
√

2(j1 + j2) |j1 + j2, j1 + j2 − 1〉
= (J1− + J2−) |j1, j2; j1, j2〉
=
√

2j1 |j1, j2; j1 − 1, j2〉+
√

2j2 |j1, j2; j1, j2 − 1〉, (3.48)

|j1 + j2, j1 + j2 − 1〉 =
√

j1
j1 + j2

|j1, j2; j1 − 1, j2〉+
√

j2
j1 + j2

|j1, j2; j1, j2 − 1〉.

(3.49)

⇒ 〈j1, j2; j1 − 1, j2|j1 + j2, j1 + j2 − 1〉 =
√

j1
j1 + j2

,

〈j1, j2; j1, j2 − 1|j1 + j2, j1 + j2 − 1〉 =
√

j2
j1 + j2

. (3.50)

∃ (2nd state with m = j1 + j2 − 1) ⊥ |j1 + j2, j1 + j2 − 1〉:

|j1 + j2 − 1, j1 + j2 − 1〉︸ ︷︷ ︸
Check eigenvalue of ~J 2 explicitly!

=

√
j2

j1 + j2
|j1, j2; j1 − 1, j2〉 −

√
j1

j1 + j2
|j1, j2; j1, j2 − 1〉.

(3.51)տ
phase choice!

⇒ 〈j1, j2; j1 − 1, j2|j1 + j2 − 1, j1 + j2 − 1〉 =
√

j2
j1 + j2

,

〈j1, j2; j1, j2 − 1|j1 + j2 − 1, j1 + j2 − 1〉 = −
√

j1
j1 + j2

. (3.52)
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• Step 2: m = mmax − 2.

Construct 3 states:

J− |j1 + j2, j1 + j2 − 1〉 ∝ |j1 + j2, j1 + j2 − 2〉 = . . . (3.53)

J− |j1 + j2 − 1, j1 + j2 − 1〉 ∝ |j1 + j2 − 1, j1 + j2 − 2〉 = . . . (3.54)

via orthogonalization: |j1 + j2 − 1, j1 + j2 − 2〉. (3.55)

→֒ Express them in terms of |j1, j2; j1 − 2, j2〉,
|j1, j2; j1 − 1, j2 − 1〉,
|j1, j2; j1, j2 − 2〉.

⇒ 9 CG coefficients with m = j1 + j2 − 2.

Graphical illustration:

m1

m2

m = j1 + j2 in step 0

m = j1 + j2 − 1 in step 1

m = j1 + j2 − 2 in step 2
...

......
...

. . .

. . .

...

J−J−J−

J−J−

J−

j1

j2

• Step k: m = mmax − k.

Construct k + 1 states:

J− |j1 + j2, j1 + j2 − k + 1〉 ∝ |j1 + j2, j1 + j2 − k〉 = . . . (3.56)

...
...

J− |j1 + j2 − k + 1, j1 + j2 − k + 1〉 ∝ |j1 + j2 − k + 1, j1 + j2 − k〉 = . . . (3.57)

via orthogonalization: |j1 + j2 − k, j1 + j2 − k〉. (3.58)

But: m1,2 values: m1 = j1 − k
!
≥ −j1, m2 = j2

...
...

m1 = j1, m2 = j2 − k
!
≥ −j2.

⇒ k ≤ min(2j1, 2j2).

Otherwise there cannot be a new state with j = j1 + j2 − k!

⇒ jmin = j1 + j2 −min(2j1, 2j2) = |j1 − j2|. (3.59)

• Further steps analogously until m = −mmax = mmin, but no new states via orthog-
onalization for m < |j1 − j2|.

# states =

j1+j2∑

j=|j1−j2|
(2j + 1) =

j1+j2∑

j=0

2j −
|j1−j2|−1∑

j=0

2j + j1 + j2 −
(
|j1 − j2| − 1

)

= (j1 + j2)(j1 + j2 − 1)−
(
|j1 − j2| − 1

)
|j1 − j2|+ j1 + j2 −

(
|j1 − j2| − 1

)

= (2j1 + 1)(2j2 + 1). #
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Example: j1 =
1
2
, j2 = 1. ⇒ j = 3

2
, 1
2
.

Bases:

||m1, m2〉〉 ≡ |1
2
, 1;m1, m2〉 : m1 = ±1

2
, m2 = 0,±1,

|j,m〉 : j = 3
2
, m = ±3

2
,±1

2
;

j = 1
2
, m = ±1

2
.

Construction of states:

m = 3
2
: |3

2
, 3
2
〉 = ||1

2
, 1〉〉, highest-weight state. (3.60)

m = 1
2
: J− |3

2
, 3
2
〉 =

√
3 |3

2
, 1
2
〉

= J1− ||1
2
, 1〉〉+ J2− ||1

2
, 1〉〉 = ||−1

2
, 1〉〉+

√
2 ||1

2
, 0〉〉,

⇒ |3
2
, 1
2
〉 =

√
1
3
||−1

2
, 1〉〉+

√
2
3
||1
2
, 0〉〉, (3.61)

⇒ |1
2
, 1
2
〉 =

√
2
3
||−1

2
, 1〉〉 −

√
1
3
||1
2
, 0〉〉. (3.62)

m = − 1
2
: J− |3

2
, 1
2
〉 = 2 |3

2
,−1

2
〉

=
√

1
3
(J1− + J2−) ||−1

2
, 1〉〉+

√
2
3
(J1− + J2−) ||12 , 0〉〉

=
√

2
3
||−1

2
, 0〉〉+

√
2
3
||−1

2
, 0〉〉+

√
4
3
||1
2
,−1〉〉,

⇒ |3
2
,−1

2
〉 =

√
2
3
||−1

2
, 0〉〉+

√
1
3
||1
2
,−1〉〉, (3.63)

J− |1
2
, 1
2
〉 = |1

2
,−1

2
〉

=
√

2
3
(J1− + J2−) ||−1

2
, 1〉〉 −

√
1
3
(J1− + J2−) ||12 , 0〉〉

=
√

4
3
||−1

2
, 0〉〉 −

√
1
3
||−1

2
, 0〉〉 −

√
2
3
||1
2
,−1〉〉.

⇒ |1
2
,−1

2
〉 =

√
1
3
||−1

2
, 0〉〉 −

√
2
3
||1
2
,−1〉〉. (3.64)

m = − 3
2
: J− |3

2
,−1

2
〉 =

√
3 |3

2
,−3

2
〉

=
√

2
3
(J1− + J2−) ||−1

2
, 0〉〉+

√
1
3
(J1− + J2−) ||12 ,−1〉〉

=
√

4
3
||−1

2
,−1〉〉+

√
1
3
||−1

2
,−1〉〉

⇒ |3
2
,−3

2
〉 = ||−1

2
,−1〉〉. (3.65)
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Clebsch–Gordan series:

|j,m〉 =
∑

m1
(m2=m−m1)

|j1, j2;m1, m2〉 〈j1, j2;m1, m2|j,m〉︸ ︷︷ ︸
≡ C

(j)
m1m,

C = C(j1+j2) ⊕ · · · ⊕ C(|j1−j2|) = unitary

. (3.66)

⇒ 〈j,m′|A |j,m〉 =
∑

m1
(m2=m−m1)

〈j,m′|A |j1, j2;m1, m2〉C(j)
m1m

=
∑

m1,m
′
1

(m2=m−m1
m′

2
=m′−m′

1
)

C
(j) ∗
m′

1m
′ 〈j1, j2;m′

1, m
′
2|A |j1, j2;m1, m2〉C(j)

m1m
(3.67)

Matrix notation:

A(j) = C(j) †A(j1⊗j2)C(j), |j, j〉 =




1
0
...


 , |j, j − 1〉 =




0
1
...


 , etc. (3.68)

Block structure of ⊕jA
(j) = ⊕j

(
~J (j)
)2
, ⊕jJ

(j)
3 ,⊕jJ

(j)
± : (jmax = j1+j2, jmin = |j1−j2|)

⊕jmax

j=jmin

(
~J (j)
)2

=




(
~J (jmax)

)2
(
~J (jmax−1)

)2
. . . (

~J (jmin)
)2



,
(
~J (j)
)2

= j(j + 1) · 12j+1,

= diagonal,

⊕jmax

j=jmin
J
(j)
3 =




J
(jmax)
3

J
(jmax−1)
3

. . .

J
(jmin)
3



, J

(j)
3 = diag(j, j − 1, . . . ,−j),

= diagonal,

⊕jmax

j=jmin
J
(j)
± =




J
(jmax)
±

J
(jmax−1)
±

. . .

J
(jmin)
±



, J

(j)
± = (2j + 1)× (2j + 1) matrix,

= block-diagonal. (3.69)

⇒ CG decomposition of D(j1) ⊗D(j2):

C† [D(j1) ⊗D(j2)
]
C = ⊕jmax

j=jmin
D(j), D(j) = irreducible,

D(j1) ⊗D(j2) ≃ D(j1+j2) ⊕ · · · ⊕D(|j1−j2|). (3.70)
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3.5 Irreducible tensors, Wigner–Eckart theorem

Tensor operators in QM: (recap)

Let U(~θ ) be the rotation operator on some Hilbert space H of qm. states |ψ〉:

|ψ〉 −→
R

|ψ′〉 = U(~θ ) |ψ〉, (3.71)

|~x〉 −→
R

|~x ′〉 = U(~θ ) |~x〉 = |R~x〉, R = R(~θ ) = rotation matrix︸ ︷︷ ︸
defines the geometrical meaning of U(~θ )

, (3.72)

⇒ ~̂x ′ = U(~θ ) ~̂x U(~θ )† = U(~θ ) ~̂x U(~θ )†
∫

d3~x |~x〉〈~x|
︸ ︷︷ ︸

=1

=

∫
d3~xU(~θ ) ~̂x |R−1~x〉〈~x| =

∫
d3~xU(~θ )R−1 ~x |R−1~x〉〈~x|

=

∫
d3~xR−1 ~x |~x〉〈~x| = R−1 ~̂x

∫
d3~x |~x〉〈~x| = R−1 ~̂x. (3.73)

Vector and (rank-n) tensor operators defined by analogous behaviour under rotations:

~̂v ′ = U(~θ ) ~̂v U(~θ )† = R−1 ~̂v, (3.74)

T ′
a1...an

= U(~θ ) Ta1...an U(
~θ )† =

∑

a′1,...,a
′
n

(R−1)a1a′1 · · · (R−1)ana′n Ta′1...a′n . (3.75)

Infinitesimal rotations:

U(δ~θ ) = 1 − iδ~θ ~J + . . . , (3.76)

R(δ~θ ) = 1 − iδ~θ ~J (R) + . . . , (J (R)
a )bc = −iǫabc. (3.77)

⇒ Transformation property (3.75) implies commutation relations: (v̂a ≡ Ta)

[Ja, Ta1...an ] = i
∑

a′1

ǫaa1a′1Ta′1...an + · · ·+ i
∑

a′n

ǫaana′nTa1...a′n . (3.78)

Note: Cartesian tensors Ta1...an in general have the flaw of being reducible.

Example: rank-2 tensor Tab.

Tab =
1
3
Tr(T )︸ ︷︷ ︸
≡S0

δab +
1
2
(Tab − Tba)︸ ︷︷ ︸

≡Aab

+
[
1
2
((Tab + Tba)− 1

3
Tr(T ) δab

]
︸ ︷︷ ︸

≡Sab

. (3.79)

The parts S0, Aab, Sab transform independently:

• S0 = Tr(T ) =
∑

a Taa = invariant, i.e. S0 defines a “scalar”.

• Aab = antisymmetric, i.e. Aa ≡
∑

c,b ǫabcAbc defines a (pseudo)vector.

• Sab = traceless symmetric = irreducible rank-2 part of T .
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Irreducible (spherical) tensors:

→֒ Definition via irreducible SU(2) representations D(j):

A set of (2j+1) operators T
(j)
m (m = −j,−j+1, . . . , j) for a fixed j = 0, 1

2
, 1, . . . is called

“irreducible (spherical) tensor operator” of rank j if it behaves as

T (j) ′ = U(~θ ) T (j) U(~θ )† = D(j)(~θ )T T (j), T (j) ≡



T

(j)
+j
...

T
(j)
−j


 . (3.80)

→֒ Irreducibility is implied by the irred. of D(j), i.e. all components T
(j)
m can be obtained

from a single component via symmetry relations (rotations).

Construction of spherical from cartesian tensors:

Recall spherical harmonics Ylm (which transform like spherical tensors!):

Ylm(ϑ, ϕ) = 〈~e|l, m〉, ~e = unit vector with polar coordinates ϑ, ϕ (3.81)

Ylm(ϑ
′, ϕ′) = 〈~e|U(~θ ) |l, m〉 (ϑ′, ϕ′ correspond to ~e ′ = R−1~e.)

=
∑

m′

〈~e|l, m′〉 〈l, m′|U(~θ ) |l, m〉,
∑

m′

|l, m′〉〈l, m′| = 12l+1 on D(l)

=
∑

m′

Ylm′(ϑ, ϕ)D
(l)
m′m(

~θ ) =
∑

m′

D
(l)
mm′(~θ )

T Ylm′(ϑ, ϕ). (3.82)

Note: rlYlm(ϑ, ϕ) = homogeneous polynomial of degree l in coordinates x1, x2, x3,
where ~x = r~e = (x1, x2, x3)

T.

Procedure to construct T
(l)
m out of some given Ta1...al:

Calculate symmetrized version T̄a1...al of Ta1...al and define

T (l)
m =

√
4π

2l + 1︸ ︷︷ ︸
or any other normalization

rl Ylm(ϑ, ϕ)
∣∣∣
xa1 ···xal→T̄a1...al

. (3.83)

(Symmetrization of T necessary to obtain a unique correspondence!)

Proof of irreducibility:

T (l) ′
m = U(~θ ) T (l)

m U(~θ )† =

√
4π

2l + 1
rl Ylm(ϑ, ϕ)

∣∣∣
xa1 ···xal→T̄ ′

a1...al
=
∑

a′
1
,...,a′

l
(R−1)a1a′1

... T̄a1...al

=

√
4π

2l + 1
rl Ylm(ϑ

′, ϕ′)
∣∣∣
xa1 ···xal→T̄a1...al

=

√
4π

2l + 1
rl
∑

m′

D
(l)
mm′(~θ )

T Ylm′(ϑ, ϕ)
∣∣∣
xa1 ···xal→T̄a1...al

=
∑

m′

D
(l)
mm′(~θ )

T T
(l)
m′ . #
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Examples:

• l = 0 : T0 = scalar → T (0),
√
4π r0 Y00 ≡ 1, trivial case!

• l = 1 : ~T = (Ta) = vector → T (1).

√
4π

3
r1 Y1,±1 = ∓(x1 ± ix2)/

√
2 → ∓(T1 ± iT2)/

√
2 ≡ T

(1)
±1 ,

√
4π

3
r1 Y1,0 = x3 → T3 ≡ T

(1)
0 . (3.84)

• l = 2 : Tab = rank-2 tensor → T (2).

√
4π

5
r2 Y2,±2 =

√
3

8
(x21 − x22 ± 2ix1x2) →

√
3

8
[T11 − T22 ± i(T12 + T21)] ≡ T

(2)
±2 ,

√
4π

5
r2 Y2,±1 = ∓

√
3

2
(x1 ± ix2)x3 → ∓

√
3

8
[T13 + T31 ± i(T23 + T32)] ≡ T

(2)
±1 ,

√
4π

5
r2 Y2,0 =

1

2
(2x23 − x21 − x22) → 1

2
(2T33 − T11 − T22) ≡ T

(2)
0 . (3.85)

Commutator relations for T (j) from infinitesimal rotations:

U(δ~θ ) = 1 − iδ~θ ~J + . . . ,

D(j)(δ~θ ) = 1 − iδ~θ ~J (j) + . . . . (3.86)

⇒ [ ~J, T (j)
m ] =

∑

m′

T
(j)
m′

~J
(j)
m′m︸︷︷︸

= 〈j,m′| ~J |j,m〉

,

[J3, T
(j)
m ] = mT (j)

m , [J±, T
(j)
m ] =

√
j(j + 1)−m(m± 1)T

(j)
m±1. (3.87)

Compare with

J3 |j,m〉 = m |j,m〉, J± |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉. (3.88)

⇒ T
(j1)
m1 |j2, m2〉 behaves under rotations like |j1, m1〉 |j2, m2〉:

~J T (j1)
m1

|j2, m2〉 = [ ~J, T (j1)
m1

] |j2, m2〉+ T (j1)
m1

~J |j2, m2〉,
J3 T

(j1)
m1

|j2, m2〉 = (m1 +m2) T
(j1)
m1

|j2, m2〉,
J± T

(j1)
m1

|j2, m2〉 =
√
j1(j1 + 1)−m1(m1 ± 1)T

(j1)
m1±1 |j2, m2〉

+
√
j2(j2 + 1)−m2(m2 ± 1)T (j1)

m1
|j2, m2 ± 1〉. (3.89)
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Wigner–Eckart theorem

The matrix elements of an irreducible tensor operator T
(j)
m between angular momentum

eigenstates |α, j,m〉 obey: (α(′) = remaining quantum numbers)

〈α, j,m| T (j1)
m1

|α′, j2, m2〉 = 〈j,m|j1, j2;m1, m2〉︸ ︷︷ ︸
CG coefficient

· 〈α, j|| T
(j1) ||α′, j2〉√
2j + 1

, (3.90)

〈. . . ||T (j1)|| . . . 〉 = “reduced matrix element”,
independent of m,m1, m2

.

Proof based on the analogy between T
(j1)
m1 |j2, m2〉 and |j1, m1〉 |j2, m2〉:

⇒ Modify recursive calculation of CG coefficients described in Section 3.4:

• Procedure for each j-value:

Construct {|j,m〉}m=j,j−1,...,−j for j = j1 + j2, then j = j1 + j2 − 1, . . . , j = |j1 − j2|.
Previously: |j,m〉 expressed in terms of |j1, m1〉 |j2, m2〉.

Now: |j,m〉 expressed in terms of T
(j1)
m1 |j2, m2〉.

• Highest m-values for fixed j:

Previously: |j,m = j〉 fixed up to phase choice in terms of |j1, m1〉 |j2, m2〉, e.g.
|j1 + j2, j1 + j2〉 ≡ |j1, j2;m1 = j1, m2 = j2〉,
|j1 + j2 − 1, j1 + j2 − 1〉 ⊥ known |j1 + j2, j1 + j2 − 1〉, etc.

Now: |j,m = j〉 fixed by T
(j1)
m1=j1

|j2, m2 = j2〉 up to some constant A(j),

since there is no canonical normalization of T
(j1)
m1 |j2, m2〉

(in contrast to |j1, m1〉 |j2, m2〉).
• Lower m-values for fixed j:

Previously: Evaluate J j−m− |j, j〉 to derive relation:
|j,m〉 =∑m1,m2

|j1, j2;m1, m2〉 〈j1, j2;m1, m2|j,m〉︸ ︷︷ ︸
explicitly constructed

.

Now: The same procedure applied to J j−m− |j, j〉 · A(j) yields

A(j) |j,m〉 =
∑

m1,m2

T (j1)
m1

|j2, m2〉 〈j1, j2;m1, m2|j,m〉. (3.91)

• Solve (3.91) for 〈j,m′| T (j1)
m1 |j2, m2〉 upon evaluating 〈j,m′| · (3.91):

A(j) δmm′ =
∑

m1,m2

〈j,m′| T (j1)
m1

|j2, m2〉 〈j1, j2;m1, m2|j,m〉,

and calculating
∑

m〈j,m|j1, j2;m′
1, m

′
2〉 · · · :

A(j) 〈j,m′|j1, j2;m′
1, m

′
2〉 =

∑

m1,m2

〈j,m′| T (j1)
m1

|j2, m2〉

×
∑

m

〈j1, j2;m1, m2|j,m〉 〈j,m|j1, j2;m′
1, m

′
2〉

︸ ︷︷ ︸
= δm1m

′
1
δm2m

′
2= 〈j,m′| T (j1)

m′
1
|j2, m′

2〉.
⇒ WE theorem (A(j) → reduced matrix element; α, α′ suppressed in notation). #
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Implications of the WE theorem:

• Qm. transition probabilities from some state |j2, m2〉 → |j,m〉 typically ruled by
matrix elements such as

〈j,m| T (j1)
m1︸︷︷︸

operator for interaction
driving the transition

|j2, m2〉 = 0 if m 6= m1 +m2 or j 6= j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|︸ ︷︷ ︸
selection rules implied by the WE theorem

.

(3.92)

E.g. T (j1) = scalar T (0): only j = j2 “allowed”,

T (j1) = vector T (1): only j = j2, j2 ± 1.

• Relative strengths of transition matrix elements entirely given by CG coefficients:

∣∣∣∣∣∣
〈j,m| T (j1)

m1 |j2, m2〉
〈j,m′| T (j1)

m′
1
|j2, m′

2〉

∣∣∣∣∣∣
=

∣∣∣∣
〈j,m|j1, j2;m1, m2〉
〈j,m′|j1, j2;m′

1, m
′
2〉

∣∣∣∣ . (3.93)
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3.6 Tensors of SO(N)

Definition: SO(N), N ∈ N, is the group of real orthogonalN×N matrices R, RTR = 1N ,
with detR = 1 (“defining representation”).

The matrices R form an N -dimensional (irreducible for N > 2) representation on the
vector space V = RN :

v ∈ V : vi → v′i = Rijvj . (3.94)

A tensor T i1...ir of rank r transforms like the tensor product of r vectors:

T i1...ir → T ′i1...ir = Ri1j1 . . . RirjrT j1...jr . (3.95)

Properties:

• The tensor product of two tensors of ranks r1 and r2,

T
i1...ir1+r2
3 = T

i1...ir1
1 T

ir1+1...ir1+r2
2 , (3.96)

transforms as a tensor of rank r1 + r2.

• The contraction
∑

j T
i1...j...j...ir of a rank-r tensor transforms as a tensor of rank

r − 2.

• The components of T i1...ir furnish an N r-dimensional representation D of SO(N):

~T = (T 1...11, T 1...12, . . . , TN...NN)T : ~T a → ~T ′a = Dab ~T b, a, b = 1, . . . , N r.
(3.97)

“Invariant symbols” are tensors that are invariant under group transformations (in a more
general context “relative tensors”, i.e. they receive a factor (detR)w with some “weight” w
when transformed by R). Invariant symbols follow from the defining properties of R:

• RRT = 1 ⇒ (δ′)ij = RikRjlδkl = RikRjk = Rik(RT)kj = δij ,

• 1 = detR = R1i1 . . . RNiN ǫi1...iN ⇒ (ǫ′)i1...iN ≡ Ri1j1 . . . RiN jN ǫj1...jN = ǫi1...iN .

Example: Reducibility of rank-2 tensors

The representations under which tensors of rank r > 1 transform are reducible. A rank-2
tensor T ij can be decomposed according to

T ij = Sij + Aij +
1

N
δijS0 with (3.98)

Sij =
1

2

(
T ij + T ji

)
− 1

N
δijS0 symmetric and traceless,

Aij =
1

2
(T ij − T ji) antisymmetric,

S0 = T ii scalar.
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The Sij, Aij , and S0 parts span invariant subspaces under group transformations:
T ij ± T ji → RikRjl(T kl ± T lk). The representation decomposes as

N ⊗N︸ ︷︷ ︸
general rank 2

=
(1
2
N(N + 1)− 1

)

︸ ︷︷ ︸
sym. traceless

⊕ 1

2
N(N − 1)
︸ ︷︷ ︸
antisym.

⊕ 1︸︷︷︸
trace

. (3.99)

For higher ranks, the symmetry patterns become more complicated. A full classification
is possible in the formalism of “Young tableaux” which are related to the representations
of the symmetric groups Sr (see, e.g., Chapter 5 in [9]).

Dual, self-dual, and anti-self-dual tensors

For a totally antisymmetric tensor Ai1...ir , its dual tensor Ãi1...iN−r is defined as

Ãi1...iN−r =
1

r!
ǫi1...iNAiN−r+1...iN (3.100)

and antisymmetric by construction. For SO(2N), we can define the self-dual (+) and
anti-self-dual (−) tensors

T i1...iN± =
1

2

(
Ai1...iN ± Ãi1...iN

)
⇒ T̃ i1...iN± = ±T i1...iN± . (3.101)

The self-dual and anti-self-dual tensors span invariant subspaces under group transforma-
tions.

Examples

• Special case SO(4): For N = 4, the 6-dimensional representation furnished by an
antisymmetric tensor Aij reduces to two 3-dimensional representations:

4⊗ 4︸ ︷︷ ︸
general
rank 2

= 9︸︷︷︸
sym.
trace-
less

⊕ 3︸︷︷︸
self-
dual

⊕ 3︸︷︷︸
anti-
self-
dual

⊕ 1︸︷︷︸
trace

. (3.102)

This happens in a similar way (up to factors of i) in the Lorentz group SO(3, 1):
Electromagnetic field strength tensor F µν and its dual F̃ µν → F µν

± = F µν ± iF̃ µν .

• Special case SO(3):

Aij =




0 A3 −A2

−A3 0 A1

A2 −A1 0


 → 1

2
ǫkijAij =



A1

A2

A3


 (3.103)

⇒ It is always possible to trade a pair of antisymmetric indices for one index.
⇒ It is sufficient to regard symmetric traceless tensors when studying irreducible
representations of SO(3). Number of components:
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Symmetric tensor of rank r:

r∑

n1=0

r−n1∑

n2=0

1 =
1

2
(r + 1)(r + 2) components

(n1 indices have the value 1, n2 the value 2, n3 = r − n1 − n2 the value 3).

Each pair of indices can be contracted. ⇒ 1
2
r(r − 1) trace conditions.

Traceless symmetric tensor:
1

2
(r + 1)(r + 2)− 1

2
r(r − 1) = 2r + 1 components

(=̂ 2l + 1 components of a spherical tensor T (l)).

The Lie algebra so(N)

As shown in Section 3.1, with the convention that SO(N) elements are expressed as
R = exp{−iθaJa}, the generators Ja of SO(N) are hermitian and antisymmetric (i.e. iJa
is real and antisymmetric).
⇒ There are 1

2
N(N − 1) generators. In the defining representation, the generators can

be chosen as

J ij(mn) = i
(
δmjδni − δmiδnj

)
, (3.104)

where (mn), m > n, takes the values (mn) ≡ a = 1, . . . , 1
2
N(N − 1), and J(nm) = −J(mn).

Lie algebra so(N) (independent of the representation!):

[J(mn), J(pq)] = i
(
δmpJ(nq) + δnqJ(mp) − δmqJ(np) − δnpJ(mq)

)
≡ if(mn)(pq)cJc, (3.105)

where the last equality defines the structure constants fabc.

Every antisymmetric tensor Aij can be expressed as Aij = iAaJ
ij
a , Aa ∈ R, i.e. in a basis

Ja of generators it can be represented by the coefficients Aa.
→֒ How do the Aa transform under an SO(N) transformation with group parameters θa?

A′ij = Rik(θ)R(θ)jlAkl = R(θ)ikAkl(R(θ)−1)lj ⇒ A′ = R(θ)AR(θ)−1. (3.106)

Transformation with infinitesimal θa:

δA = A′ − A = (1− iθaJa)A(1+ iθbJb)− A = −iθa[Ja, A] = θaAb[Ja, Jb]

= iθaAbfabcJc. (3.107)

On the other hand, with A′ = iA′
aJa and A′

a = Aa + δAa,

δA = iA′
cJc − iAcJc = iδAcJc

⇒ A′
c =

(
δcb + θafabc

)
Ab. ≡

(
δcb − iθa(Fa)cb

)
Ab. (3.108)

⇒ Aa transforms under the adjoint representation with the generators

(Fa)bc = ifacb = −ifabc. (3.109)
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Example: so(4)

SO(4) has six generators:

J(12) ≡ J3, J(23) ≡ J1, J(31) ≡ J2, J(14) ≡ K1, J(24) ≡ K2, J(34) ≡ K3.

The Lie algebra is (verify this!)

[Ji, Jj ] = iǫijkJk, [Ji, Kj] = iǫijkKk, [Ki, Kj] = iǫijkJk. (3.110)

→֒ Ji, i = 1, 2, 3, generate the SO(3) rotations in the x1-x2-x3 space.

→֒ Ki, i = 1, 2, 3, transform like the components of a vector ~K ∈ SO(3).

Choose a new basis T1,i =
1
2
(Ji +Ki), T2,i =

1
2
(Ji −Ki). Lie algebra in this basis:

[T1,i, T1,j] = iǫijkT1,k, [T2,i, T2,j] = iǫijkT2,k, [T1,i, T2,j] = 0. (3.111)

⇒ The Lie algebra so(4) falls apart into two su(2) algebras, so(4) ≃ su(2)× su(2).
⇒ The group SO(4) is locally isomorphic to SU(2)× SU(2)

(SU(2)× SU(2) is a universal cover of SO(4)).

3.7 Tensors of SU(N)

Definition: SU(N), N ∈ N: the group of unitary N × N matrices U , U †U = 1N , with
detU = 1 (“defining representation”).

The matrices U form an N -dimensional (irreducible for N > 1) representation on the
vector space V = CN :

u ∈ V : ui → u′i = U i
ju

j. (3.112)

The transformations U leave the scalar product v†u invariant:

v†u = v†U †Uu ⇔ (vi)∗ui = (vi)∗(U j
i)
∗U j

ku
k. (3.113)

⇒ v∗ transforms with the complex conjugate representation U∗: (v∗)i → (U∗)ij(v
∗)j.

→֒ Define vi ≡ (v∗)i with a lower index. Lower indices transform with U∗, while upper
indices transform with U . We can then write

v′iu
′i =

(
(U∗)ij(v

∗)j
)(
U i

ku
k
)
= vj(U

†)j iU
i
ku

k = viu
i, (3.114)

where contractions are always performed between upper and lower indices (sometimes
the notation Ui

j ≡ (U †)ji is used so that v′i = Ui
jvj). Contractions viui and viui do not

transform as scalars and are (in this sense) not defined.

Tensors of SU(N) can carry both upper and lower indices and transform as

T i1...inj1...jm
→ T ′i1...in

j1...jm
= U i1

k1 . . . U
in
knT

k1...kn
l1...lm

(U †)l1 j1 . . . (U
†)lm jm. (3.115)
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Invariant symbols:

• (U †)ijU
j
k = δik ⇒ δik → δ′ik = (U †)ijδ

j
l U

l
k = δik.

There are no invariant symbols δij and δij ⇒ Traces wrt. two upper (rsp. two lower)
indices do not transform as tensors.

• detU = 1 ⇒ ǫi1...iN → ǫ′i1...iN = U i1
j1 . . . U

iN
jN ǫ

j1...jN = ǫi1...iN .

• detU † = 1 ⇒ ǫi1...iN → ǫ′i1...iN = ǫj1...jN (U
†)j1 i1 . . . (U

†)jN iN = ǫi1...iN .

Special case SU(2):

• For N = 2, U(~φ) = exp{−i~φ · ~σ/2} and U∗(~φ) = exp{i~φ · ~σ∗/2} are equivalent. For

infinitesimal ~φ:

U(~φ)ij = δij −
i

2
φa(σa)

i
j , U∗(~φ)i

j
= δji +

i

2
φa(σ

∗
a)i

j = ǫikU(~φ)
k
lǫ
lj , (3.116)

because ǫik(σa)
k
lǫ
lj = −(σ∗

a)i
j.

⇒ SU(2) is pseudoreal and has the antisymmetric invariant bilinear form vTǫu =
vjǫiju

i, ǫT = −ǫ.
• A tensor with n upper and m lower indices can always be expressed as an equivalent

tensor with n+m upper (or lower) indices:

T i1...inj1...jm
→ T i1...inj1...jm = T i1...ink1...km

ǫj1k1 . . . ǫjmkm. (3.117)

• Antisymmetric contributions in any two indices span invariant subspaces:
ǫjkT

i1...j...k...ir transforms as a rank r − 2 tensor.

• Number of independent components T 1...1, T 1...12, . . . , T 1...12...2, . . . , T 2...2 of a sym-
metric tensor T i1...ir : r + 1.

Special case SU(3):

• Similarly to SO(3), ǫijk can be used to trade two antisymmetric lower indices for one
upper index (analogously for ǫijk), i.e. antisymmetric contributions can be expressed
as symmetric tensors of lower rank.
⇒ Tensors that are totally symmetric in all upper indices and in all lower indices
always span invariant subspaces.

• The trace δj1i1T
i1...in
j1...jm

(symmetry ⇒ all traces are equivalent) spans an invariant sub-
space.

• Number of components of a traceless tensor T i1...inj1...jm
with all upper and all lower

indices symmetric:

1

2
(n+ 1)(n+ 2)
︸ ︷︷ ︸
n sym. upper ind.

· 1
2
(m+ 1)(m+ 2)
︸ ︷︷ ︸
m sym. lower ind.

− 1

2
n(n+ 1) · 1

2
m(m+ 1)

︸ ︷︷ ︸
trace, rank (n− 1, m− 1) sym. tensor

=
1

2
(n+ 1)(m+ 1)(n+m+ 2). (3.118)
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Dimensions of the irreducible representations (n,m) of SU(3) up to m = n = 3:

(n,m) n = 0 1 2 3

m = 0 1 3 6 10

1 3∗ 8 15 24

2 6∗ 15∗ 27 42

3 10∗ 24∗ 42∗ 64

Besides (n,m) the dimension can be used to label irreducible representations. Rep-
resentations with n < m are then labelled by dim(n,m)∗ to distinguish them from
(m,n), e.g. (1, 0) ≡ 3, (0, 1) ≡ 3∗; (m,n) ≃ (n,m)∗.

• Clebsch-Gordan series for SU(3)

Given two irreducible tensors A
{i1...in}
{j1...jm} and B

{i1...in′}
{j1...jm′} ({. . . } means that the in-

dices are totally symmetric). How does the tensor product T
{i1...in}{j1...jn′}
{k1...km}{l1...lm′} =

A
{i1...in}
{j1...jm}B

{i1...in′}
{j1...jm′} decompose into irreducible representations?

1. Recursively take out all traces:

δl1i1T
{i1...in}{j1...jn′}
{k1...km}{l1...lm′}, δk1j1 T

{i1...in}{j1...jn′}
{k1...km}{l1...lm′},

δl1i1δ
l2
i2
T

{i1...in}{j1...jn′}
{k1...km}{l1...lm′}, δl1i1δ

k1
j1
T

{i1...in}{j1...jn′}
{k1...km}{l1...lm′}, δk1j1 δ

k2
j2
T

{i1...in}{j1...jn′}
{k1...km}{l1...lm′},

. . .

→֒ Produces a traceless tensor T̃
{i1...in}{j1...jn′}
{k1...km}{l1...lm′} that transforms under a (reducible,

because T̃ is not yet totally symmetric) representation labelled by (n,m;n′, m′).

⇒ (n,m)⊗ (n′, m′) =

min(n,m′)⊕

p=0

min(n′,m)⊕

q=0

(n− p,m− q;n′ − q,m′ − p). (3.119)

2. Recursively take out antisymmetric contributions from traceless tensors:

ǫi1j1s1T̃
{i1...in}{j1...jn′}
{k1...km}{l1...lm′}, ǫk1l1t1 T̃

{i1...in}{j1...jn′}
{k1...km}{l1...lm′},

ǫi1j1s1ǫi2j2s2T̃
{i1...in}{j1...jn′}
{k1...km}{l1...lm′}, ǫk1l1t1ǫk2l2t2 T̃

{i1...in}{j1...jn′}
{k1...km}{l1...lm′},

. . .

Note that e.g. contraction with ǫi1j1s1 automatically results in symmetric lower in-
dices (verify this!). Analogously for, e.g., ǫk1l1t1 .

⇒ (n,m;n′, m′) = (n+ n′, m+m′) ⊕
min(n,n′)⊕

p=1

(n+ n′ − 2p,m+m′ + p) ⊕

min(m,m′)⊕

p=1

(n+ n′ + p,m+m′ − 2p). (3.120)
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Example:

(1, 1)⊗ (1, 1) = (1, 1; 1, 1)⊕ (1, 0; 0, 1)⊕ (0, 1; 1, 0)⊕ (0, 0; 0, 0)

with (1, 1; 1, 1) = (2, 2)⊗ (3, 0)⊗ (0, 3),

(1, 0; 0, 1) = (1, 1),

(0, 1; 1, 0) = (1, 1),

(0, 0; 0, 0) = (0, 0).

⇒ (1, 1)⊗ (1, 1) = (2, 2)⊕ (3, 0)⊕ (0, 3)⊕ (1, 1)⊕ (1, 1)⊕ (0, 0),

⇔ 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10∗ ⊕ 8 ⊕ 8 ⊕ 1.



Chapter 4

SU(3)

4.1 The su(3) algebra, roots, and weights

The defining representation of the algebra su(3) consists of traceless hermitian matrices.
A common basis choice is given by the Gell-Mann matrices

λ1 =



0 1 0

1 0 0

0 0 0


 , λ2 =



0 −i 0

i 0 0

0 0 0


 , λ3 =



1 0 0

0 −1 0

0 0 0


 , λ4 =



0 0 1

0 0 0

1 0 0


 ,

λ5 =



0 0 −i

0 0 0

i 0 0


 , λ6 =



0 0 0

0 0 1

0 1 0


 , λ7 =



0 0 0

0 0 −i

0 i 0


 , λ8 =

1√
3



1 0 0

0 1 0

0 0 −2


 ,

which generalise the Pauli matrices from su(2) (it is straightforward to write down a basis
for su(N) for any N).

→֒ SU(3) generators in the fundamental representation: Ta =
1
2
λa, a = 1, . . . , 8.

→֒ Normalisation: Tr T aT b = TF δ
ab, TF = 1

2
.

→֒ Lie algebra [T a, T b] = ifabcT c, fabc totally antisymmetric with non-zero components

f 123 = 1, f 147 = f 246 = f 257 = f 345 =
1

2
,

f 156 = f 367 = −1

2
, f 458 = f 678 =

√
3

2
. (4.1)

In the fundamental representation, the anti-commutator has the form

{Ta, Tb} =
1

3
δab + dabcTc ⇒ TaTb =

1

6
δab +

1

2
(dabc + ifabc)Tc, (4.2)

61
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where dabc is totally symmetric with non-zero components

d118 = d228 = d338 = −d888 =
1√
3
,

d448 = d558 = d668 = d778 = − 1

2
√
3
, (4.3)

d146 = d157 = d256 = d344 = d355 = −d247 = −d366 = −d377 =
1

2
.

su(3) contains three “overlapping” su(2) subalgebras. Defining

I1,2,3 = T 1,2,3, U1,2 = T 6,7, V1,2 = T 4,5, Y =
2√
3
T 8, (4.4)

• [I1, I2] = iI3 (cyclic),

• [U1, U2] = i1
2

(
I3 +

3
2
Y
)
≡ iU3 (cyclic),

• [V1, V2] = i1
2

(
−I3 + 3

2
Y
)
≡ iV3 (cyclic).

I3, U3, V3 are not independent ⇒ su(3) 6≃ su(2)× su(2)× su(2).

Definition: The number of simultaneously diagonalisable generators is called the rank
of the Lie algebra.

su(3) has rank 2; choose I3 and Y which are already diagonal.
⇒ Classify states by their eigenvalues of I3 and Y :

I3|i3, y〉 = i3|i3, y〉, Y |i3, y〉 = y|i3, y〉. (4.5)

Definition: The vectors ~ω = (i3, y) of eigenvalues of the diagonal generators are called
weights of the weight vectors |~ω〉 ≡ |i3, y〉.
Definition: The non-zero vectors ~α = (∆i3,∆y) for which there exists an Xα ∈ su(3)C
[complexification of su(3): all linear combinations of T a with complex coefficients; su(3)C ≃
sl(3,C)], so that

[ ~H,Xα] = ~αXα with ~H = (I3, Y ), (4.6)

are called the roots of su(3). Xα is called the root vector corresponding to the root ~α. In
other words, Xα is a common eigenvector of adI3 and adY with eigenvalues ∆i3 and ∆y.

su(3) has six root vectors I±, U±, V± with roots ∆~i±, ∆~u±, ∆~v±:

I± = I1 ± iI2 : [I3, I±] = ±I±, [Y, I±] = 0 ⇒ ∆~i± = (±1, 0),

U± = U1 ± iU2 : [I3, U±] = ∓1

2
U±, [Y, U±] = ±U± ⇒ ∆~u± = (∓1

2
,±1), (4.7)

V± = V1 ± iV2 : [I3, V±] = ±1

2
V± [Y, V±] = ±V± ⇒ ∆~v± = (±1

2
,±1).
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In the basis I±, U±, V±, I3, Y , the commutators not listed in (4.7) are

[I+, I−] = 2I3, [I+, U+] = V+, [I+, U−] = 0,

[U+, U−] = −I3 +
3

2
Y, [I+, V−] = −U−, [I+, V+] = 0, (4.8)

[V+, V−] = I3 +
3

2
Y, [U+, V−] = I−, [U+, V+] = 0.

(remaining commutators by hermitian conjugation, e.g. [I−, U−] = [I+, U+]
†).

Root diagram:

∆i3

∆y

0 1

4
3

∆~i+∆~i−

∆~v+

∆~v− ∆~u−

∆~u+

Of the six roots, only two are linearly independent.

• Positive roots: all roots in some given half-space. Common choice: ∆~i+, ∆~u+, ∆~v+.

• Simple roots: minimal subset of positive roots so that all positive roots can be
expressed as linear combinations of simple roots with positive coefficients.
Here: ∆~v+ = ∆~i+ +∆~u+ ⇒ ∆~i+ and ∆~u+ are simple.

Applying a root vector Xα to a weight vector |~ω〉 shifts the weight by ~α:

~HXα|~ω〉 =
(
Xα

~H + [ ~H,Xα]
)
|~ω〉 =

(
Xα~ω + ~αXα

)
|~ω〉 = (~ω + ~α)Xα|~ω〉

⇒ Xα|~ω〉 ∝ |~ω + ~α〉 (4.9)

⇒ I±|i3, y〉 ∝ |i3 ± 1, y〉,
U±|i3, y〉 ∝ |i3 ∓ 1

2
, y ± 1〉,

V±|i3, y〉 ∝ |i3 ± 1
2
, y ± 1〉.

The proportionality constants may vanish for certain weights.
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4.2 Irreducible representations

Possible values of i3 and y:

• I1, I2, I3 span an su(2) algebra

⇒ i3 ∈ {−i,−i+ 1, . . . , i}, 2i ∈ N0. (4.10)

• U1, U2, U3 =
1
2
(I3 +

3
2
Y ) span an su(2) algebra

⇒ u3 = i3 +
3
2
y ∈ Z (4.11)

→֒ 3
2
y ∈ Z (y = . . . ,−4

3
,−2

3
, 0, 2

3
,−4

3
, . . . ) if i3 is integer,

→֒ 3
2
(y + 1

3
) ∈ Z (y = . . . ,−5

3
,−1,−1

3
, 1
3
, 1, 5

3
, . . . ) if i3 is half-integer.

Choosing U3 and I3 +
1
2
Y as diagonal basis elements instead shows that

u3 ∈ {−u,−u+ 1, . . . , u}, 2u ∈ N0. (4.12)

SU(3) has two irreducible representations of dimension 3 corresponding to the rank-1
tensors with one upper index, T j, or one lower index, Tj . The conditions on i3 and u3 fix
the two possible sets of weight vectors that furnish the 3-dimensional representations:

(1, 0) = 3

i3

y
u3

0

1

1

4
3

~f1~f2

~f3

(0, 1) = 3∗

i3

y
u3

0

1

1

4
3

~f ∗
2

~f ∗
3

~f ∗
1

• This is called a weight diagram.

• Denoting by (n,m) the upper rank n and lower rank m representations, (1, 0) (left
diagram) is called the fundamental representation and (0, 1) (right diagram) the
anti-fundamental representation.

• These are the lowest-dimensional non-trivial representations of SU(3).
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• The encircled dot denotes the highest weight ~ωmax = ~f
(∗)
1 of the representation,

satisfying

I+|~ωmax〉 = U+|~ωmax〉 = V+|~ωmax〉 = 0, (4.13)

i.e. the root vectors corresponding to positive roots lead out of the representation’s
weight space.

• The weights can be constructed from the highest weight of the representation by
applying I− and U− (in the corresponding representations). Fundamental represen-
tation:

I−|~f1〉 = |~f2〉, I−|~f2〉 = 0, I−|~f3〉 = 0,

U−|~f1〉 = 0, U−|~f2〉 = |~f3〉, U−|~f3〉 = 0. (4.14)

Anti-fundamental representation:

I−|~f ∗
1 〉 = 0, I−|~f ∗

2 〉 = |~f ∗
3 〉, I−|~f ∗

3 〉 = 0,

U−|~f ∗
1 〉 = |~f ∗

2 〉, U−|~f ∗
2 〉 = 0, U−|~f ∗

3 〉 = 0. (4.15)

Constructing higher-dimensional irreducible representations

The irreducible representation (n,m) can be constructed from its highest weight vector

|n
2
, 1
3
(n + 2m)〉 = |~f1〉 ⊗ · · · ⊗ |~f1〉︸ ︷︷ ︸

n times

⊗ |~f ∗
1 〉 ⊗ · · · ⊗ |~f ∗

1 〉︸ ︷︷ ︸
m times

(4.16)

by applying the root vectors

I
(n,m)
− = I− ⊗ 1 ⊗ · · · ⊗ 1 + 1⊗ I− ⊗ 1⊗ · · · ⊗ 1 + 1⊗ · · · ⊗ 1⊗ I−,

U
(n,m)
− = U− ⊗ 1⊗ · · · ⊗ 1 + 1⊗ U− ⊗ 1⊗ · · · ⊗ 1 + 1 ⊗ · · · ⊗ 1 ⊗ U− (4.17)

in this representation.

Example: The irreducible representation (1,1)

Apply I− (ւ) and U− (ց) repeatedly to the highest weight |1
2
, 1〉 = |~f1〉⊗ |~f ∗

1 〉 (omitting
⊗ in the following).

|~f1〉|~f ∗
1 〉

ւ ց
|~f2〉|~f ∗

1 〉 |~f1〉|~f ∗
2 〉

ւ ց ւ ց
0 |~f3〉|~f ∗

1 〉+ |~f2〉|~f ∗
2 〉 |~f2〉|~f ∗

2 〉+ |~f1〉|~f ∗
3 〉 0

ւ ց ւ ց
|~f2〉|~f ∗

3 〉 2|~f3〉|~f ∗
2 〉 2|~f2〉|~f ∗

3 〉 |~f3〉|~f ∗
2 〉

ւ ց ւ ց ւ ց ւ ց
0 |~f3〉|~f ∗

3 〉 2|~f3〉|~f ∗
3 〉 0 2|~f3〉|~f ∗

3 〉 |~f3〉|~f ∗
3 〉 0
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• There are 8 different states.

• The two states |~f3〉|~f ∗
1 〉 + |~f2〉|~f ∗

2 〉 and

|~f2〉|~f ∗
2 〉 + |~f1〉|~f ∗

3 〉 have the same weight
(indicated by the multiplicity 2 next to the
weight), because

~f1 + ~f ∗
3 = ~f2 + ~f ∗

2 = ~f3 + ~f ∗
1 = (0, 0).

• ∃ a 3rd linear combination |~f2〉|~f ∗
2 〉 −

|~f1〉|~f ∗
3 〉−|~f3〉|~f ∗

1 〉 of weight |0, 0〉 that does
not belong to the representation (1, 1).
This must be the representation (0, 0):

(1, 0) ⊗ (0, 1) = (1, 1) ⊕ (0, 0),

3 ⊗ 3∗ = 8 ⊕ 1.

(1, 1) = 8

i3

y

2

Example: The weight diagram of the representation (3,0)

• Start from highest weight |~f1〉|~f1〉|~f1〉 = |3
2
, 1〉.

• 10 states, no multiple weights.

• Highest-dimensional representation in the Clebsch-Gordan series

(1, 0) ⊗ (1, 0) ⊗ (1, 0) = (3, 0) ⊕ (1, 1) ⊕ (1, 1) ⊕ (0, 0),

3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1.

(3, 0) = 10

i3

y
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General case: The weight diagram of a representation (n,m)

(n,m)

i3

y

(I−)
n

(U−)
m

1
2

3

w-1
w

w

Weight multiplicities:

• Red numbers in the diagram.

• Weights on the outermost hexagon have multiplicity 1. Multiplicity increases by
1 on each hexagon closer to the origin, but stays constant at maximal multiplicity
w = min(n,m) + 1 once the hexagon turns into a triangle.

• Multiplicities can, e.g., be calculated by Freudenthal’s formula (see Section 6.5.3).

• Dimension of the representation:

dim(n,m) =
1

2
(n + 1)(m+ 1)(n+m+ 2)

as derived in Section 3.7.

4.3 Clebsch-Gordan decomposition

This section lists results and recipes. For more information see, e.g., M. Grigorescu:
SU(3) Clebsch-Gordan Coeffixients (arXiv:math-ph/0007033).

Besides n, m, i3, y, one more label is required to distinguish degenerate weights. This
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can be achieved by ~I 2 = I21 + I22 + I33 with eigenvalues i(i+ 1):

~I 2|n,m, i, i3, y〉 = i(i+ 1)|n,m, i, i3, y〉,
I3|n,m, i, i3, y〉 = i3|n,m, i, i3, y〉, (4.18)

Y |n,m, i, i3, y〉 = y|n,m, i, i3, y〉.

i can take values 2i ∈ N0 with

∣∣1
3
(m− n)− 1

2
y
∣∣ ≤ i ≤ imax, imax =

{
1
3
(2n +m)− 1

2
y if y ≥ 1

3
(n−m),

1
3
(n + 2m) + 1

2
y if y ≤ 1

3
(n−m).

(4.19)

The operators corresponding to n and m are the two Casimir operators

C1 =
∑

a

TaTa, C2 =
∑

a,b,c

dabcTaTbTc (4.20)

that have the form

C1 =
(1
3
(n2 + nm+m2) + n+m

)
1,

C2 =
1

18
(n−m)(n + 2m+ 3)(m+ 2n+ 3) 1 (4.21)

in the representation (n,m). C1, C2, ~I
2, I3, Y form a complete set of commuting operators.

I±, U±, V± act as

I±|n,m, i, i3, y〉 =
√
i(i+ 1)− i3(i3 ± 1)|n,m, i, i3 ± 1, y〉, (4.22)

U+|n,m, i, i3, y〉 = + γ+n,m,i,i3,y|n,m, i+ 1
2
, i3 − 1

2
, y + 1〉

− γ−n,m,i,i3,y|n,m, i− 1
2
, i3 − 1

2
, y + 1〉, (4.23)

U−|n,m, i, i3, y〉 = − γ−
n,m,i+

1
2
,i3+

1
2
,y−1

|n,m, i+ 1
2
, i3 +

1
2
, y − 1〉

+ γ+
n,m,i−1

2
,i3+

1
2
,y−1

|n,m, i− 1
2
, i3 +

1
2
, y − 1〉, (4.24)

V+|n,m, i, i3, y〉 = + γ+n,m,i,−i3,y|n,m, i+ 1
2
, i3 +

1
2
, y + 1〉

+ γ−n,m,i,−i3,y|n,m, i− 1
2
, i3 +

1
2
, y + 1〉, (4.25)

V−|n,m, i, i3, y〉 = + γ−
n,m,i+

1
2
,−i3+1

2
,y−1

|n,m, i+ 1
2
, i3 − 1

2
, y − 1〉

+ γ+
n,m,i−1

2
,−i3+1

2
,y−1

|n,m, i− 1
2
, i3 − 1

2
, y − 1〉, (4.26)

with

γ−n,m,i,i3,y =

√
i+ i3

2i(2i+ 1)

×
√

(1
3
(2n+m) + i− 1

2
y + 1)(1

3
(n+ 2m)− i+ 1

2
y + 1)(1

3
(m− n) + i− 1

2
y),

γ+n,m,i,i3,y =

√
3 + 2i

1 + 2i
γ−m,n,i+1,−i3,−y. (4.27)
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Clebsch-Gordan coefficients

Tensor product of representations (n1, m1) and (n2, m2) (see Section 3.7):

(n1, m1)⊗ (n2, m2) =
⊕

k

(nk, mk). (4.28)

Express product states

|n1, m1, i1, i1,3, y1;n2, m2, i2, i2,3, y2〉 ≡ |n1, m1, i1, i1,3, y1〉|n2, m2, i2, i2,3, y2〉, (4.29)

which are eigenstates of

C1,1, C1,2, ~I1
2
, I1,3, Y1, C2,1, C2,2, ~I2

2
, I2,3, Y2, (4.30)

in terms of

|nk, mk, ik, ik3, y
k〉γ (4.31)

which are eigenstates of

C1, C2, C1,1, C1,2, C2,1, C2,2,

~I 2 =
(
~I1 + ~I2

)2
, I3 = I1,3 + I2,3, Y = Y1 + Y2. (4.32)

There are 10 operators in (4.30), but only 9 in (4.32). This reflects the fact that the same
representation may appear multiply on the right-hand side of (4.28) and is taken into
account by the index γ in (4.31). It is possible to find an operator to complete the set
(4.32), but it is more convenient to use an orthogonalisation procedure instead.

1. Start with the subspace of highest weight in (4.28) and apply I− and U− to calculate
all states in this space.

2. Proceed to the subspaces with the next-to-highest weight, which have all the same
highest weight. If there is more than one subspace with this highest weight, choose
states so that

γ〈nk, mk, ik, ik3, y
k|nk, mk, ik, ik3, y

k〉γ′ = δγγ′ . (4.33)

3. Apply I− and U− to calculate all states in these spaces.

4. If there are any (combinations of) product states left, proceed with 2 for the next-
to-next-to-highest weight, etc..

The Clebsch-Gordan coefficients then follow from

|nk, mk, ik, ik3, y
k〉γ =

∑

i1,i2

∑

i1,3,i2,3

∑

y1,y2

〈n1, m1, i1, i1,3, y1;n2, m2, i2, i2,3, y2|nk, mk, ik, ik3, y
k〉γ

× |n1, m1, i1, i1,3, y1;n2, m2, i2, i2,3, y2〉. (4.34)
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4.4 Isospin and hypercharge

4.4.1 SU(2) isospin

Hadrons (= strongly interacting particles) occur in sets of similar mass of O(1%) differ-
ences.

Nucleons: mp = 938.3MeV/c2, mn = 939.6MeV/c2 ⇒ mn−mp

mn+mp
≈ 0.069%.

Pions: mπ± = 139.6MeV/c2, mπ0 = 135.0MeV/c2 ⇒ m
π±−m

π0

mπ±+m
π0

≈ 1.7%.

The strong interaction seems not to distinguish between particles in such a set.
→֒ Hypothesis: Strong interaction is (approximately) invariant under an SU(2) “isospin”
symmetry that transforms hadrons into each other.

• Nucleons form an isospin I = 1
2

doublet (p, n).

• Pions form an isospin I = 1 triplet (π+, π0, π−).

• Masses are not equal.
→֒ Symmetry is broken, e.g. by (but not only by) electromagnetic interaction,
because the particles have different electric charges.

• Symmetry constrains strong interaction between particles.
→֒ Clebsch-Gordan coefficients & Wigner-Eckart theorem.

Example: Ratio of deuteron production cross sections

The deuteron d (heavy hydrogen nucleus) is a bound state of a proton and a neutron.

1

2
⊗ 1

2
= 1⊕ 0 ⇒ d has either I = 0 or I = 1. (4.35)

pp and nn bound states have not been observed. ⇒ d must form an I = 0 singlet.

An example:
σ(p+ p→ d+ π+)

σ(p+ n→ d+ π0)
=

|〈d, π+|T |p, p〉|2
|〈d, π0|T |p, n〉|2 (4.36)

with a transition operator T of definite SU(2) transformation property.

Well-motivated assumption: T = scalar (otherwise no isospin conservation in reaction,
i.e. more particles should appear).

→֒ Clebsch-Gordan decomposition:

|p, p〉 ≡ |1
2
, 1
2
〉 ⊗ |1

2
, 1
2
〉 = |1

2
, 1
2
; 1
2
, 1
2
〉 = |1, 1〉

|p, n〉 ≡ |1
2
, 1
2
〉 ⊗ |1

2
,−1

2
〉 = |1

2
, 1
2
; 1
2
,−1

2
〉 = 1√

2

(
|1, 0〉 − |0, 0〉

)
,

|d, π+〉 ≡ |0, 0〉 ⊗ |1, 1〉 = |1, 1〉,
|d, π0〉 ≡ |0, 0〉 ⊗ |1, 0〉 = |1, 0〉. (4.37)

⇒ σ(p+ p→ d+ π+)

σ(p+ n→ d+ π−)
=

|〈1, 1|T |1, 0〉|2
|〈1, 0|T 1√

2

(
|1, 0〉 − |0, 0〉

)
|2 = 2. (4.38)
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Tensor method and effective field theory

Write nucleons as a vector N i and pions as a rank-(1,1) tensor Φij ,

N =

(
p

n

)
, Φ = ~π · ~σ

2
=

(
π3 π1 − iπ2

π1 + iπ2 −π3

)
≡
(

π0
√
2π+

√
2π− −π0

)
, (4.39)

where ~π = (π1, π2, π3)
T is in the cartesian vector representation and (π+, π0, π−) in the

spherical basis.

→֒ Build an SU(2)-invariant interaction Lagrangian of an effective theory of nucleons
and pions by combining N and Φ to singlets (trivial representation):

Lint = gNjΦ
j
iN

i = gN̄ΦN = g p̄π0p− g n̄π0n +
√
2g p̄π+n +

√
2g n̄π−p (4.40)

with some coupling constant g. Feynman diagrams of nucleon scattering:

g gπ0

p

p

p

p

(−g) (−g)π0

n

n

n

n

g (−g)π0

p

p

n

n
√
2g

√
2g

π±

p

n

n

p

⇒ Relations between different (pp, np, pπ0, etc.) scattering cross sections can be derived.
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4.4.2 SU(3) flavour symmetry

Further experimental observations:

• Different SU(2) multiplets of hadrons of the same spin show typical mass differences
by O(10%) (for baryons) or more (for mesons).

• Some hadrons have longer lifetimes than expected from the strong interaction.
→֒ Explanation by the quantum number “strangeness” S that is conserved by the
strong interaction. Those hadrons decay via the weak interaction.

⇒ SU(2) multiplets of hadrons of the same spin can be arranged into representations of
the SU(3) flavour symmetry.

Spin-0 mesons:

Q = −1

Q = 0

Q = 1
S = −1

S = 0

S = 1

i3

y

K+K0

K̄0K−

π−
π0

η
π+

• The octet consists of the pion triplet, the two kaon doublets (K0, K+) and (K−,
K̄0), and the isospin singlet η.

• This scheme of organising hadrons is called “The Eightfold Way”.

• Together with the η′ in the (0, 0) representation, the spin-0 mesons form the (1, 0)⊗
(0, 1) nonet.

• Electric charge: Q = I3 +
1
2
Y (Gell-Mann–Nishijima formula).

• Strangeness: S = Y −B with the “baryon number” B = 0 for mesons.
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Quarks and anti-quarks

This structure is explained by regarding hadrons as composite particles that consist of
more fundamental particles called quarks and their anti-particles, anti-quarks, which fur-
nish the fundamental rsp. anti-fundamental representations of SU(3).

Quantum numbers of the u (“up”), d (“down”), and s (“strange”) quarks:

Q I I3 Y S B

u 2/3 1/2 1/2 1/3 0 1/3

d −1/3 1/2 −1/2 1/3 0 1/3

s −1/3 0 0 −2/3 −1 1/3

Differences in the quark masses are another source for breaking the flavour symmetry.

There are 3 more quarks (c=“charm”, b=“bottom”, t=“top”), but their masses are so large
that the approximate flavour symmetries SU(4) and SU(5) are crudely broken. The top-
quark does not even form bound states.

Baryon multiplets and triality

i3

y

s̄d

K0

s̄u

K+

ūd

π−

d̄d ūu
s̄s

η

π0

d̄u

π+

ūsK− d̄s K̄0

JP = 0− pseudoscalar meson octet;
(0,0) representation: η′

i3

y

s̄d

K∗0

s̄u

K∗+

ūd

ρ−

d̄d ūu
s̄s

φ

ρ0

d̄u

ρ+

ūsK∗− d̄s K̄∗0

JP = 1− vector meson octet;
(0,0) representation: ω
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i3

y

du
d

n
uu
d

p

dd
s

Σ−

du
s

Λ

Σ0

uu
s

Σ+

sd
sΞ− su

s Ξ0

JP = 1
2

+
baryon octet

i3

y

dd
d

∆−

du
d

∆0

uu
d

∆+

uu
u

∆++

dd
s

Σ∗−

du
s

Σ∗0

uu
s

Σ∗+

sd
sΞ∗− su

s Ξ∗0

ss
s Ω−

JP = 3
2

+
baryon decuplet

Since quarks are fermions, the wave functions of hadrons must be totally antisymmetric
under exchange of two quarks.
→֒ How is this possible e.g. in the case of the spin- 3

2
baryon ∆++ of 3 up quarks?

|∆++〉 = |u↑〉|u↑〉|u↑〉 (4.41)

is totally symmetric.
⇒ There must exist another quantum number. This is the “colour charge”:

• 3 charges that transform under an SU(3) symmetry.

• This is the symmetry of quantum chromodynamics.

• Unlike flavour-SU(3), colour symmetry is exact.

Observable states must be colour singlets (“colour confinement”). This is the reason why
only representations (n,m) with n −m = 0 (mod 3) are populated with hadrons. This
fact is called triality.
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4.4.3 Gell-Mann–Okubo mass formula

The hadron octets can be arranged into the components of a tensor Φij . Spin-0 mesons:

Φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 −
√

2
3
η


 . (4.42)

Assuming exact flavour symmetry, the mass term in the Lagrangian would be

L(0)
mass =

1

2
m2

1TrΦ
2 =

1

2
m2

1Φ
i
jΦ

j
i . (4.43)

This would imply that all masses are equal. The symmetry can be broken by introducing
mass terms that transform like the (1, 1) and the (2, 2) representations:

Lmass =
1

2
m2

1Φ
i
jΦ

j
i +

1

2
ΦijM

j
kΦ

k
i +

1

2
ΦijM̃

jl
ikΦ

k
l . (4.44)

• Assumption: The SU(3) symmetry is only broken by the octet M j
k , i.e. M̃ jl

ik = 0.

• The mass term must conserve i3 and y.

⇒ M j
k transforms like the η meson

⇒ M = 3m2
2Y (factor 3 is convention).

The mass term is thus (note that K̄0 is the antiparticle of K0 and K− that of K+)

Lmass =
1

2
m2

1 TrΦ
2 +

1

2
TrΦMΦ =

1

2
m2
ηη

2 +
1

2
m2
π Tr π̄π +

1

2
m2
KK̄K

with m2
η = m2

1 −m2
2, m2

π = m2
1 +m2

2, m2
K = m2

1 −
1

2
m2

2. (4.45)

Eliminating m1 and m2 in (4.45) shows that

4m2
K = 3m2

η +m2
π, (4.46)

which is fulfilled to better than 4%.

With the same method, a mass formula for the baryon octet can be derived, where
two symmetry breaking terms transforming under (1,1) can appear: m2 Tr B̄Y B and
m3Tr B̄BY . Instead of working this out, we derive a formula for the case of a hadron
multiplet of an arbitrary representation of SU(3).

There can be at most two symmetry breaking mass terms that transform under the
(1,1) representation. For a baryon multiplet Bi1...in

j1...jm
of (m,n):

B̄j1...jm
i1...in

φi1k B
ki2...in
j1...jm

, B̄kj2...jm
i1...in

φj1k B
i1...in
j1...jm

, (4.47)

with some tensor φij.
⇒ Expressing the mass terms in terms of operators acting on the hadron multiplets, there
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can be at most two such operators.

The generators of a Lie algebra transform under the adjoint representation.
→֒ Arrange the generators of SU(3) in a traceless 3× 3 matrix G:

G =



I3 +

1
2
Y I− V−

I+ −I3 + 1
2
Y U−

V+ U+ −Y


 . (4.48)

From the same arguments as in the case of the meson octet, one of the possible operators
is Y , i.e. the component G3

3. The second operator can be constructed by projecting out
an octet in the Clebsch-Gordan decomposition of the tensor product Gi

jG
l
m,

G̃b
a =

1

2
ǫajlǫ

bkmGj
kG

l
m

⇒ G̃3
3 =

1

2

(
G1

1G
2
2 +G2

2G
1
1 −G1

2G
2
1 −G2

1G
1
2

)

=
1

4
Y 2 − I23 −

1

2
(I+I− + I−I+) =

1

4
Y 2 − ~I 2. (4.49)

Note that G̃b
a is not yet traceless, but this does not affect the mass formula. The masses

of the particles in a SU(2) multiplet of isospin i and hypercharge y are thus

Mi,y = m1 +m2y +m3

(
1
4
y2 − i(i+ 1)

)
(4.50)

with parameters m1, m2, m3. This is the Gell-Mann–Okubo mass formula.

In case of the baryon octet we obtain

mN ≡M 1
2
,1 = m1 +m2 −

1

2
m3, mΛ ≡M0,0 = m1,

mΞ ≡M 1
2
,−1 = m1 −m2 −

1

2
m3, mΣ ≡M1,0 = m1 − 2m3

⇒ mΣ + 3mΛ = 2mN + 2mΞ. (4.51)

This relation is fulfilled to better than 3h.

Comment: In a similar way it is possible to derive relations between magnetic moments
of hadrons (though not as a generic formula for arbitrary representations).



Chapter 5

Lie groups and Lie algebras

5.1 Lie groups

Definitions:

• “Lie group” ≡ a smooth manifold G that is also a group with the property that the
group product G×G→ G and the inverse map G→ G : g 7→ g−1 are smooth.

Loosely speaking, a “smooth manifold” is a set of points that looks locally like
a neighbourhood of some point of Rn, and “smooth” mappings are meant to be
infinitely many times differentiable (for precise definitions, see, e.g., Ref. [2]).

• “Matrix Lie group” ≡ closed subgroup of GL(Cn).

“Closed” means here: If {Am} is some sequence of matrices in G converging to some
matrix A, then either A ∈ G or A is not invertible.

This lecture focuses on matrix Lie groups:

• do not exhaust all Lie groups, but by far the most important in physics;

• are easier to handle (manipulations made very explicit).

Examples for groups that are not Lie groups:

• GL(Qn) = invertible n× n matrices with coefficients ∈ Q.

• G = { diag(eit, eiat) | t ∈ R }, with fixed a ∈ R, but a /∈ Q.

For an example of a Lie group that is not a matrix Lie group and has no faithful finite-
dimensional representations, see chap. 4.8 in [6].

77
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Characterization of a Lie group G

• Group multiplication encoded in analytical mappings fA(~θ
′, ~θ ) of group parameters

~θ ′, ~θ:

g′′ = g′g, g(~θ ′′) = g(~θ ′) g(~θ ), g, g′, g′′ ∈ G,

θ′′A = fA(~θ
′, ~θ ), A = 1, . . . , n = dimG,

θA = fA(0, ~θ ) = fA(~θ , 0), since g(~0 ) = e. (5.1)

The existence of g(~θ )−1, in particular, implies the local invertibility of fA:

ΘB
A(~θ ) ≡

∂fA(~θ
′, ~θ )

∂θ′B

∣∣∣
~θ ′=~0

= non-singular, Θ(~0) = 1,

Ψ(~θ ) ≡ Θ(~θ )−1. (5.2)

• Locally a Lie group is fully determined by its “Lie algebra” (Lie’s theorems).

→֒ General Lie groups treated below!

Special case of matrix Lie groups (previous chapters):
Lie algebra spanned by the generators TA for infinitesimal group elements

U(δ~θ ) = 1− iδθAT
A +O(δθ2A), (5.3)

with the commutators [TA, TB] = TATB − TBTA as product of generators.

Note: In general Lie algebras there is no matrix multiplication to define TATB.

• Global properties of the group parameter space are necessary to define a Lie group
uniquely.
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Important global properties:

• “Compactness”: Group parameter space is compact in the topological sense.

Compact groups have similar properties as finite groups, in particular wrt. repre-
sentation theory (finite-dim. representation can be chosen unitary).

→֒ Finite representations can directly represent qm. states.

Examples:

– Compact: O(N), SO(N), U(N), SU(N).

– Non-compact: translational group, Euclidean groups, Lorentz group.

• “Connectedness”: Each element is connected to the identity element by a con-
tinuous path in G.

→֒ Group parameter space decomposes into disjoint, isomorphic sets Gj, G = ∪jGj,
but only one component (the “identity component” G0) contains the unit element.

Some properties:

– The components Gj 6=0 are no groups (e /∈ Gj 6=0).

– G0 is an invariant subgroup of G.

– The factor group DG = G/G0 is a (finite or infinite) discrete group.

Examples:

– Connected: SO(N), U(N), SU(N).

– Not connected: O(N), Lorentz group.

• “Simple connectedness”: Each closed path in G can be continuously contracted
to a point.

Each connected Lie group G has a “universal covering group” which is locally iso-
morphic (isomorphic Lie algebras) and simply connected.

(Subtlely: The universal covering group of a mtrix Lie group might not be a matrix
Lie group.)

If a Lie group hasm independent non-equivalent closed curves (“m-connected group”),
m-valued representations are possible.

→֒ Universal covering groups only have single-valued representations.

Examples:

– Simply connected: SU(N).

– Not simply connected: SO(N).

– Recall: SU(2) is universal covering group of SO(3).
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Local properties (Lie’s theorems and their converses)

In addition to the Lie group G itself, consider its realization as transformations on some
vector ~x ∈ RN :

x′a = Fa(~θ, ~x), xa = Fa(~0, ~x), a = 1, . . . , N. (5.4)

Infinitesimal trafo δ~θ near identity (~θ = ~0):

xa + dxa = Fa(δ~θ, ~x), dxa = δθA u
A
a (~x), uAa (~x) ≡

∂Fa(~θ, ~x)

∂θA

∣∣∣
~θ=~0

. (5.5)

Infinitesimal trafo d~θ near finite ~θ: d~θ and δ~θ are related by θA + dθA = fA(δ~θ, ~θ).

⇒ dθA = δθB ΘB
A(~θ ), δθB = dθAΨA

B(~θ ) (5.6)

according to (5.2).

⇒ x′a + dx′a = Fa(~θ + d~θ, ~x) = Fa(δ~θ, ~x
′),

dx′a = uBa (~x
′) δθB = dθAΨA

B(~θ ) u
B
a (~x

′). (5.7)

Lie’s theorems:

• Lie’s 1st theorem:

∂x′a
∂θA

= ΨA
B(~θ ) u

B
a (~x

′) (5.8)

with analytical functions ΨA
B(~θ ) and uBa (~x

′).

Note: decoupling of ~θ and ~x ′ dependences in evolution in θA!

• Lie’s 2nd theorem:

The generators

XA(~θ ) ≡ −iΘA
B(~θ )

∂

∂θB
, XA(~x) ≡ −iuAa (~x)

∂

∂xa
(5.9)

obey the commutation relations:

[XA(~θ ),XB(~θ )] = ifABC XC(~θ ), [XA(~x), XB(~x)] = ifABC X
C(~x) (5.10)

with the “structure constants”, which neither depend on ~θ nor on ~x.

• Lie’s 3rd theorem:

The structure constants obey

fABC = −fBAC . (antisymmetry) (5.11)

0 = fABCf
DC

E + fDACf
BC

E + fBDCf
AC

E . (Jacobi identity) (5.12)

Both equations immediately follow from the definitions of the generators, in partic-
ular the second is due to [[XA(~θ ),XB(~θ )],XC(~θ )] + cyclic = 0.
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Proof of Lie’s 2nd theorem:

Take derivative of (5.8) wrt. θC :

∂2x′a
∂θA∂θC

=
∂

∂θC

[
ΨA

B(~θ ) u
B
a

(
~x ′(~θ )

)]

=
∂ΨA

B(~θ )

∂θC
uBa
(
~x ′(~θ )

)
+ΨA

B(~θ )
∂uBa
∂x′b

∂x′b
∂θC

=
∂ΨA

B(~θ )

∂θC
uBa
(
~x ′(~θ )

)
+ΨA

B(~θ )
∂uBa
∂x′b

ΨC
D(~θ ) u

D
b (~x

′). (5.13)

Using
∂2x′a
∂θA∂θC

=
∂2x′a
∂θC∂θA

and renaming indices, we get

(
∂ΨA

B(~θ )

∂θC
− ∂ΨC

B(~θ )

∂θA

)
uBa (~x

′) = ΨA
B(~θ ) Ψ

C
D(~θ )

[
∂uDa
∂x′b

uBb (~x
′)− ∂uBa

∂x′b
uDb (~x

′)

]
.

(5.14)

Aim: separation of variables ~θ and ~x ′, but problem with uBa (~x
′) term on l.h.s., which is

not necessarily invertible.
→֒ Take special case for x′a = Fa(~θ, ~x) interpreting ~x ′ as ~θ ′:

~x ′ → ~θ ′, uAb (~x
′) → ΘA

B(~θ
′).

⇒
(
∂ΨA

B(~θ )

∂θC
− ∂ΨC

B(~θ )

∂θA

)
ΘB

E(~θ
′)

= ΨA
B(~θ ) Ψ

C
D(~θ )

[
∂ΘD

E

∂θ′F
ΘB

F (~θ
′)− ∂ΘB

E

∂θ′F
ΘD

F (~θ
′)

]
.

⇔ ΘH
A(~θ ) Θ

I
C(~θ )

(
∂ΨA

G(~θ )

∂θC
− ∂ΨC

G(~θ )

∂θA

)

︸ ︷︷ ︸
function of ~θ

=

[
∂ΘI

E

∂θ′F
ΘH

F (~θ
′)− ∂ΘH

E

∂θ′F
ΘI

F (~θ
′)

]
ΨE

G(~θ
′)

︸ ︷︷ ︸
function of ~θ ′

!
= const. ≡ −fHIG. (5.15)

The remaining steps are fully straightforward:

• Calculate commutators of XA(~θ ):

[
XA(~θ ),XB(~θ )

]
=

[
−iΘA

C(~θ )
∂

∂θC
,−iΘB

D(~θ )
∂

∂θD

]

=

(
−ΘA

C(~θ )
∂ΘB

E(~θ )

∂θC
+ΘB

D(~θ )
∂ΘA

E(~θ )

∂θD

)

︸ ︷︷ ︸
= fAB

F ΘF
E(~θ ) accorcing to (5.15)

∂

∂θE
= ifABF X F (~θ ).
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• Calculate commutators of XA(~x):

[
XA(~x), XA(~x)

]
=

[
−iuAa (~x)

∂

∂xa
,−iuBb (~x)

∂

∂xb

]

=

(
−uAa (~x)

∂uBc (~x)

∂xa
+ uBb (~x)

∂uAc (~x)

∂xb

)
∂

∂xc

=
(5.14)

(
−∂Ψ

C
E(~θ )

∂θD
+
∂ΨD

E(~θ )

∂θC

)
ΘA

C(~θ ) Θ
B
D(~θ )

︸ ︷︷ ︸
= fAB

E accorcing to (5.15)

uEc (~x)
∂

∂xc

= ifABE X
E(~x).

#

Converse statements of Lie’s theorems:

• Converse of the 1st theorem:

If functions fA(~θ
′, ~θ ) and Fa(~θ, ~x) that are analytic around ~θ = ~θ ′ = ~0 and ~x = ~0

exist, then there is a corresponding “local Lie group” and “local Lie transformations”
(i.e. in the vicinities of the group identity and of points ~x = ~0) with the generators

XA(~θ ) and XA(~x).

• Converse of the 2nd theorem:

The Lie algebra of the generators XA(~θ ) and XA(~x) determines a local Lie group
up to (local analytic) isomorphism (i.e. up to a linear transformation in the Lie
algebra).

• Converse of the 3rd theorem:

An abstract Lie algebra (see Section 5.4) determines a simply connected Lie group
uniquely up to isomorphism.

Extension: For each given finite-dimensional Lie algebra L there is even a matrix
Lie group with L as Lie algebra.

Implications:

• All simply connected Lie groups (universal covering groups) can be classified by
classifying Lie algebras.
The classification of matrix Lie algebras provides also a classification of all abstract
Lie algebras.

• All Lie groups for a given Lie algebra can be obtained from the corresponding
universal covering group G by determining the discrete, invariant subgroups Gd of
G and deducing the factor groups G/Gd.

Note: Since G is simply connected, the subgroups Gd consist of elements that
commute with all g ∈ G, i.e. the Gd are the subgroups of the centre of G.
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Special case: matrix Lie groups

Matrix transformation:

~x ′ = ~F (~θ, ~x) = U(~θ) ~x. (5.16)

Construction of generators:

~uA(~x) =
∂U(~θ)

∂θA

∣∣∣
~θ=~0

~x ≡ −iTA ~x, TA = N ×N matrix. (5.17)

→֒ Generators for transformation (5.16):

• as differential operators:

XA(~x) = −iuAa (~x)
∂

∂xa
= −TAab xb

∂

∂xa
; (5.18)

• as matrices: The TA obey the Lie commutators:

[XA(~x), XB(~x)] =

[
TAab xb

∂

∂xa
, TBcd xd

∂

∂xc

]
= TAab T

B
cd

[
xb

∂

∂xa
, xd

∂

∂xc

]

︸ ︷︷ ︸
= xbδad∂c−xdδcb∂a

= (TB TA)cb xb
∂

∂xc
− (TA TB)ad xd

∂

∂xa
= −[TA TB]ab xb

∂

∂xa

= ifABC X
C(~x) = −ifABC T

C
ab xb

∂

∂xa
.

⇒ [TA, TB] = ifABC T
C . (5.19)
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5.2 One-parameter subgroups, exponentiation, and BCH

formula

Problem: Functions θ′′A = fA(~θ
′, ~θ ) in general hard to get, but

• one-parameter subgroups admit canonical form θ′′ = θ′ + θ;

• general case ruled by Baker–Campbell–Hausdorff (BCH) formula.

Theorem on one-parameter subgroups

Each direction in group-parameter space of a Lie group G, defined by some unit vector
~n = (nA), determines a one-parameter subgroup G~n with the multiplication property

g(λ′ + λ) = g(λ′) g(λ), where g(λ) ≡ g(~θ = λ~n).
The corresponding Lie group transformation on some vector ~x ∈ RN is given by

~x(λ) = U(λ) ~x, U(λ) ≡ exp
{
iλnAX

A(~x)
}
, (5.20)

with the generators XA(~x) of G at the start point ~x(0) = ~x of the trajectory:

XA(~x) = −iuAa (~x)
∂

∂xa
. (5.21)

Proof:

Subgroup defined by constructing a trajectory ~x(λ) with ~x(0) = ~x which corresponds to

some Lie group transformation with ~θ = λ~n:

• Lie’s 1st theorem for one-parameter group G~n:

dxa(λ)

dλ
= nAu

A
a

(
~x(λ)

)
, ~x ′ = ~x(λ), (5.22)

where Θ(~θ) = Ψ(~θ) = 1, since λ′′
!
= λ′ + λ.

• As 1st-order ordinary differential equation, (5.22) has a unique solution for given
~x(0) = ~x.
→֒ Check that (5.20) solves (5.22): ~x(0) = ~x is obvious.

d~x(λ)

dλ
=

dU(λ)
dλ

~x = U(λ) inAXA(~x) ~x = U(λ)nA~uA(~x). (5.23)

⇒ Still to show:

U(λ)nA~uA(~x) = nA~u
A
(
~x(λ)

)
. (5.24)
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• Proof of (5.24) with auxiliary relation for linear operators A,B: (Exercise!)

exp(A)B exp(−A) = exp(adA)(B), (adA)
k(B) ≡ [A, [. . . , [A,B], . . . ]]︸ ︷︷ ︸

k commutators

. (5.25)

Choose A = iλnAX
A(~x) and B = xb:

adA(B) = [A,B] = iλnA~u
A(~x)

(
∂

∂~x
xb

)
= function of ~x (multiplicative op.),

(adA)
k(B) =

((
iλnA~u

A(~x)
∂

∂~x

)k
xb

)
.

→֒ exp(adA)(B) = U(λ) xb = xb(λ)

= exp(A)B exp(−A) = U(λ) xb U(λ)−1. (5.26)

Since ~uA(~x) is analytic, U(λ) xb U(λ)−1 = xb(λ) implies (5.24):

U(λ)nA~uA(~x) = U(λ)nA~uA(~x)U(λ)−1 · 1 = nA~u
A
(
U(λ) ~xU(λ)−1

)
· 1

= nA~u
A
(
~x(λ)

)
.

#

Special case: matrix Lie groups

~x ′ = ~F (~θ, ~x) = U(~θ) ~x. (5.27)

Transformation operator for one-parameter Lie group: ~θ = λ~n.

U(λ) = exp
{
iλnAX

A(~x)
}
= exp

{
−iλnAT

A
ab xb

∂

∂xa

}
. (5.28)

→֒ Derivation of matrix transformation U(~θ) = U(λ~n): (~x = xa~ea)

−iθAT
A
ab xb

∂

∂xa
~x = −iθAT

A
ab xb ~ea = −iθAT

A ~x,

(
−iθAT

A
ab xb

∂

∂xa

)k
~x =

(
−iθAT

A
)k
~x.

⇒ U(λ) ~x = exp
{
−iθAT

A
}
~x. ⇒ U(~θ) = exp

{
−iθAT

A
}
. (5.29)

Convergence and consistency of exp

• The exponential form of the transformations U(λ) and U(~θ) always converge.

• In the identity component of compact groups, all group transformations can be
written in exponential form. For non-compact groups, in general a product of a
finite number of exponentials is required.
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Non-canonical parametrizations of group elements

The canonical form of matrix Lie group elements

U(~θ) = exp
{
−iθAT

A
}

(5.30)

is sometimes inconvenient to calculate matrix elements 〈ψ|U(~θ) |φ〉!
→֒ Often non-canonical forms like

U(α1, α2, . . . ) = exp{−iα1T̃
1} exp{−iα2T̃

2} . . . (5.31)

are more convenient if some of the new generators T̃A are

• diagonal (exp easy to compute) or

• nilpotent (exp series truncates).

Example: Euler-angle parametrizations of SO(3) and SU(2) elements:

D(~θ) = exp
{
−i~θ ~J

}
= D(α, β, γ) = exp

{
−iα J3

}
exp
{
−iβ J2

}
exp
{
−iγ J3

}
,

with J3 = diagonal in the usual representations.

Baker–Campbell–Hausdorff (BCH) formula

Given two elements X, Y in the Lie algebra L of a Lie group G sufficiently close to 0, the
following relation holds:

−i ln
(
eiX eiY

)
= X +

∫ 1

0

dt g
(
ei adX eit adY

)
(Y ) ∈ L, (5.32)

with

g(z) ≡ ln z

1− 1/z
= analytic function for |z − 1| < 1. (5.33)

⇒ BCH formula explicitly constructs the group element eiZ = eiX eiY for given X, Y .

Differential form:

ln
(
eiX eiY

)
= iX + iY − 1

2
[X, Y ]− i

12
[X, [X, Y ]] +

i

12
[Y, [X, Y ]] + . . . , (5.34)

where . . . stands for multiple commutators with at least 4 operators X, Y .

→֒ Form useful to obtain local information on functions fA(~θ
′, ~θ ) for small ~θ ′, ~θ.

Comments:

• BCH formula and its proof rather non-trivial (see, e.g., [6]).

• Special case: (proven in Exercise 1.4)

eiX eiY = eiX+iY− 1
2
[X,Y ] if [X, [X, Y ]] = [Y, [X, Y ]] = 0. (5.35)
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5.3 Invariant group integration

Aim: generalization of
∑

g F (g) =
∑

g F (g
′g) ∀g′ ∈ G (= finite group), which

• is valid due to the rearrangement lemma,

• attributes equal weight (=1) to each element g ∈ G,

to Lie group with elements g = g(~θ ):

∑

g

F (g) →
∫

G

dµg F (g) =

∫
dn~θ ρ(~θ )︸︷︷︸

density function

F (g(~θ )). (5.36)

→֒ “Left invariance” requirement: dµg︸︷︷︸
volume element at g

= dµg′g︸ ︷︷ ︸
volume element at g′g

∀g′ ∈ G.

Construction of ρ(~θ ):

g′′ = g′g, g(~θ ′′) = g(~θ ′) g(~θ ),

θ′′A = fA(~θ
′, ~θ ), θA = fA(0, ~θ ) = fA(~θ , 0), since g(~0 ) = e. (5.37)

Taking ~θ → ~̂θ = infinitesimal yields

dn~θ ′
︸︷︷︸

volume element left

translated from ~0 to ~θ ′

= dn~̂θ︸︷︷︸
volume
element at ~0

det

(
∂fA(~θ

′, ~θ )

∂θB

)∣∣∣∣∣
~θ=~0

≡ dn~̂θ J(~θ ′). (5.38)

⇒ Definition:

ρ(~θ ) ≡ ρ(~0 )

J(~θ )
, ρ(~0 ) = convention. (5.39)

Check invariance of dµg:

dµg′g = dn~θ ′ ρ(~θ ′) = dn~̂θ ρ(~0 ) = dn~θ ρ(~θ ) = dµg. (5.40)

Theorem for compact groups:

a)
∫
dµg = VG <∞ exists (“Haar measure”), usual convention: VG = 1.

Fixing VG, the Haar measure is unique.

b) The “left-invariant” measure dµg is also “right invariant”, i.e.

∫

G

dµg F (g) =

∫

G

dµg F (g
′g) =

∫

G

dµg F (gg
′) ∀g′ ∈ G. (5.41)

For a proof of a), see math. literature.
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A sketchy proof of b) in 3 steps:

1. Show that dµĝ = dµg′ĝg′−1 for infinitesimal ĝ, i.e. ĝ = g(δ~̂θ ), δ~̂θ = inf.

g̃ = g′ĝg′−1 = inf. with g̃ = g(δ~̃θ ) and δ~̃θ =M δ~̂θ with some matrix M .

→֒ Consider g̃(m) = (g′)mĝ(g′−1)m = g(δ~̃θ (m)), where δ~̃θ (m) =Mm δ~̂θ :

If G is compact, there are two possibilities:
(i) g̃ has finite order N , then MN = 1.
(ii) g̃ has infinite order, then lim

m→∞
g̃(m) = g̃(∞) and thus M∞ have to exist.

⇒ In either case detM = 1 and thus dn~̃θ = dn~̂θ , so that

dµĝ = dn~̂θ ρ(~0 ) = dn~̃θ ρ(~0 ) = dµg̃ = dµg′ĝg′−1 ∀g′ ∈ G. (5.42)

2. Generalization of dµg = dµg′gg′−1 to any g:

Let ĝ be inf. and g = ḡĝ, then using (5.42) for ĝ and left invariance of dµg:

dµg = dµḡĝ = dµĝ =
(5.42)

dµg′ĝg′−1 = dµĝg′−1 = dµḡĝg′−1 = dµgg′−1 = dµg′gg′−1 . (5.43)

3. Proof of right invariance of dµg: dµgg′ = dµg′−1gg′ =
(5.43)

dµg. #

Example: Haar measures of SU(2) ans SO(3)

A suitable parametrization of SU(2) matrices:

U(~x) = x0 1 − i~x · ~σ =

(
x0 − ix3 −ix1 − x2

−ix1 + x2 x0 + ix3

)
, x0 = ±

√
1− ~x 2. (5.44)

Relation to the form (3.18) with “rotation vector” ~θ = θ~e (~e 2 = 1):

x0 = cos θ
2
, ~x = sin θ

2
~e. (5.45)

Variations of U before and after translation to U(~x):

U(δ~x) =

(
−iδx3 −iδx1 − δx2

−iδx1 + δx2 iδx3

)
,

U(~x ′ + δ~x ′) =

(
x′0 − ix′3 + δx′0 − iδx′3 −ix′1 − x′2 − iδx′1 − δx′2
−ix′1 + x′2 − iδx′1 + δx′2 x′0 + ix′3 + δx′0 + iδx′3

)
, δx′0 = −x′nδx′n.

(5.46)

Transformation of differentials and volume element from U(~x ′ + δ~x ′) = U(~x′)U(δ~x):

δ~x =



x′0 −x′3 x′2
x′3 x′0 −x′1
−x′2 x′1 x′0


 δ~x ′ ⇒ d3~x = |x0(x20 + xnxn)| d3~x ′ =

√
1− ~x ′2

︸ ︷︷ ︸
=J(~x ′)

d3~x ′.

(5.47)
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⇒ Haar measure of SU(2):
∫

SU(2)

dµU =
1

2π2

∫

|~x|≤1

d3~x√
1− ~x 2

∑

x0=±
√
1−~x 2

=
1

π2

∫
d4x δ(1− x20 − ~x 2)

=
1

8π2

∫
dΩ

∫ 2π

0

dθ (1− cos θ ), Ω = solid angle of ~e. (5.48)

⇒ Haar measure of SO(3): (only x0 = +
√
1− ~x 2, i.e. 0 ≤ θ ≤ π)

∫

SO(3)

dµU =
1

π2

∫

|~x|≤1

d3~x√
1− ~x 2

∣∣∣∣
x0=

√
1−~x 2

=
1

4π2

∫
dΩ

∫ π

0

dθ (1− cos θ ). (5.49)

Reparametrization in terms of Euler angles:

x1 = sin β

2
sinφ, x2 = sin β

2
cosφ, x3 = sin β

2
sinχ, x0 = cos β

2
cosχ, (5.50)

0 ≤ φ = 1
2
(γ − α) ≤ 2π

0 ≤ χ = 1
2
(γ + α) ≤ 2π

}
⇔

{
0 ≤ α ≤ 2π,

0 ≤ γ ≤ 4π,

0 ≤ β ≤ π, x0 < 0 included. (5.51)

d3~x√
1− ~x 2

=
dφ d sin β

2
sin β

2
d sinχ cos β

2

cos β
2
cosχ

= dφ d sin β

2
sin β

2
dχ = 1

8
dα d cos β dγ.

⇒
∫

SU(2)

dµU =
1

16π2

∫ 2π

0

dα

∫ 1

−1

d cos β

∫ 4π

0

dγ, (5.52)

∫

SO(3)

dµU =
1

8π2

∫ 2π

0

dα

∫ 1

−1

d cos β

∫ 2π

0

dγ. (5.53)

Implications for compact groups: (similarity to finite groups!)

• All finite-dimimensional representations can be taken unitary, and all irreducible
representations are finite dimensional.

• Orthogonality relations of (unitary) irreducible representations D(j):
∫

G

dµgD
(j)
ab (g)

∗D
(k)
cd (g) = δjk δac δbd

VG
nj
, nj = dimD(j). (5.54)

• Completeness relation (“Peter-Weyl theorem”):

∑

j

nj Tr
{
D(j)(g)†D(j)(g′)

}
= δ(g − g′) ≡ δ(~θ − ~θ ′)

ρ(~θ )
, (5.55)

where
∑

j nj runs over all inequivalent irreducible unitary representations.

⇒ Any (square-integrable) function F (g) on G can be expanded:

F (g) =
∑

j,a,b

f
(j)
ab D

(j)
ab (g), f

(j)
ab =

nj
VG

∫

G

dµg F (g)D
(j)
ab (g)

∗. (5.56)
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5.4 Lie algebras

Definitions: (more abstract algebraic versions)

• “Algebra” A ≡ vector space with a bilinear product operation:

a, b ∈ A ⇒ a ◦ b ∈ A, (5.57)

a, . . . , d ∈ A; α, . . . , δ ∈ K = R,C

⇒ (αa+ βb) ◦ (γc+ δd) = αγ(a ◦ b) + αδ(a ◦ d) + βγ(b ◦ c) + βδ(b ◦ d). (5.58)

• “Lie algebra” L ≡ finite-dimensional algebra with a “Lie product” [., .] as product
operation:

[x, x] = 0 ∀x ∈ L ⇒ [x, y] = −[y, x] ∀x, y ∈ L, (5.59)

Jacobi identity: [x, [y, z]] + cyclic = 0 ∀x, y, z ∈ L. (5.60)

dL = dimL ≡ dimension of L as vector space.

Example: [x, y] = x ◦ y − y ◦ x for an associative product ◦.
In a given basis {TA}dimL

A=1 of L, each x ∈ L can be written as x = xAT
A, and the

closure of L under [., .] implies

[TA, TB] ≡ ifABCT
C , fABC = −fBAC , (5.61)

and the Jacobi identity implies fABCf
DC

E + cyclic = 0.

• A “complexification” LC of a real Lie algebra L is spanned by complex linear com-
binations of a basis of generators {TA} of L.

Adjoint representation and Killing form:

• “Adjoint representation” (TAad)
B
C ≡ −ifABC , adx = xAT

A
ad.

→֒ [TAad, T
B
ad] = ifABCT

C
ad by Jacobi identity.

Note: {adx} provide a representation with L as representation space itself:

adx(y) = [x, y], (5.62)

ad[x,y](z) = [adx, ady](z). (5.63)

• “Cartan–Killing form” g:

gAB ≡ Tr
(
TAadT

B
ad

)
= −fACDfBDC = gBA. (5.64)

Notation:

(x, y) ≡ Tr (adx, ady) = xAyB Tr
(
TAadT

B
ad

)
= xAyBg

AB. (5.65)

• L decomposes into a “direct sum” of two Lie algebras, L = L1 ⊕ L2,
if [x1, x2] = 0 ∀x1 ∈ L1, x2 ∈ L2. This implies:

fABC = 0 if TA ∈ L1, T
B ∈ L2 or vice versa, (5.66)

(x1, x2) = 0 if x1 ∈ L1, x2 ∈ L2. (5.67)
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Extension of some group properties to Lie algebras:

• “Invariant Lie subalgebra” (=“ideal”) H ≡ subalgebra with [H,L] ⊆ H.

• “Simple Lie algebra” ≡ Lie algebra with dim > 1
without a proper ideal (i.e. 6= {0},L).

• “Semisimple Lie algebra” ≡ Lie algebra with dim > 1
without a proper abelian ideal.

• “Compact Lie algebra” ≡ real Lie algebra corresponding to a compact Lie group G.

– G = compact. ⇒ finite-dim. representations can be chosen unitary:

u = exp
{
iθAT

A
}

= unitary.

u† = u−1 ⇒
(
TA
)†

= TA = hermitian.

–
(
TAad
)†

= TAad ⇒ fABC = real and fABC = −fACB.

Some facts about (semi)simplicity: (some proofs beyond the scope of this lecture)

a) L = semisimple ⇔ (gAB) = non-singular. (“Cartan’s criterion”)

⇒ Define inverse of g: gABgBC = δAC .

→֒ g acts as metric to raise/lower indices:

fABC ≡ fABDg
DC = −fABDfCEFfDFE

=
(
fBFDf

DA
E + fFADf

DB
E

)
fCEF (Jacobi id.)

= −fBFDfADEfCEF + fAFDf
BD

Ef
CE

F

= iTr
(
TBadT

A
adT

C
ad − TAadT

B
adT

C
ad

)

= antisymmetric in A,B,C. (5.68)

⇒ ([x, y], z) = Tr
(
TAadT

B
adT

C
ad − TBadT

A
adT

C
ad

)
xAyBzC = ifABCxAyBzC

= ([y, z], x) = ([z, x], y)

= (x, [y, z]) = . . . (5.69)

b) L = semisimple & compact ⇔ (gAB) = positive definite.

Proof of “⇒”:

Use compactness: gAB = −fACDfBDC = +fACDf
BC

D.

→֒ (x, x) = xAxBg
AB =

(
xAf

AC
D

) (
xBf

BC
D

)
=
(
xAf

AC
D

)2 ≥ 0.

But: (x, x) > 0 for x 6= 0 due to semisimplicity of L, see a). #

c) Every complex semisimple Lie algebra can be obtained as complexification of a
(real!) compact semisimple Lie algebra.
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d) L = simple ⇒ adjoint representation is faithful (=isomorphic to L).

Proof:

ker (adx) = {x ∈ L | adx(y) = [x, y] = 0 ∀y ∈ L, i.e. adx = 0}
= centre of L (= set of commuting elements)

→֒ defines an ideal I of L.

But: L = simple ⇒ I = {0} or L︸︷︷︸
impossible, otherwise L = abelian

⇒ ker (adx) = {0}. #

e) L = semisimple ⇔ L = L1 ⊕ · · · ⊕ Ln
with Lk = simple and [Lk,L] = Lk (=ideal).

Proof: based on a).

“⇒”: – Be I an ideal of L (if there is none, there is nothing to show).

→֒ [I,L] ⊆ I.

– Def.: C ≡ complement of I w.r.t. g, i.e. (C, I) = 0.

⇒
(
[C, I], I

)
=
a)

(
[I, I]︸ ︷︷ ︸
⊆I

, C
)
= 0

(
[C, I]︸ ︷︷ ︸
⊆ I, ideal!

, C
)

= 0





⇒ [C, I] = {0},
since g = non-singular.

⇒ L = I ⊕ C.

– I and C are semisimple, since the restrictions of g on I or C are non-
singular:

x ∈ L, x = xI + xC , xI ∈ I, xC ∈ C y analogously.

→֒ (x, y) = (xI , yI) + (xC , yC).

– Repeat decomposition of I and C recursively until only simple subalgebras
remain.

“⇐”: L = L1 ⊕ · · · ⊕ Ln, [Lk,Ll] = 0 for k 6= l.

Let x =

n∑

k=1

xk, xk ∈ Lk, y = analogously.

→֒ (x, y) =

n∑

k=1

(xk, yk)︸ ︷︷ ︸
= non-singular metric on Lk, since Lk is simple.

= non-singular. ⇒ L = semi-simple.

Recall: If TA ∈ Lk, then fABC = 0 if TB /∈ Lk.
⇒ gAB

∣∣
Lk

yields metric on Lk. #
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f) L = semisimple ⇔ L = [L,L],
i.e. each element can be written as commutator.

Proof of “⇒”: based on previous property e).

L = semisimple = L1⊕· · ·⊕Ln, Lk = simple = ideal, [Lk,Ll] = 0 for k 6= l.

→֒ [L,L] = [L1,L1]︸ ︷︷ ︸
=L1

⊕ · · · ⊕ [Ln,Ln]︸ ︷︷ ︸
=Ln

= L,

since [Lk,Lk] is an ideal of Lk that must be Lk or {0},
but {0} is not possible. #

g) L = compact ⇒ L = “reductive”, i.e. direct sum of an abelian
and a semisimple Lie algebra

= Labelian ⊕ Lsemisimple.
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Chapter 6

Semisimple Lie algebras

6.1 Cartan subalgebra, root vectors, and Cartan–Weyl

basis

Consider complex semisimple Lie algebra L resulting from complexification of a (real!)
compact semisimple Lie algebra. (Always assumed in Chapter 6.)

→֒ W.l.o.g. we can assume:

• structure constants fABC real,

• generators hermitian: TAad =
(
TAad
)†

,

• Cartan–Killing form g = positiv definite on real vector space spanned by {TA}.

Construction of “Cartan subalgebra” H
1. Find maximal set {Hj}rj=1 of linearly independent TAad that mutually commute:

[Hj, Hk] = 0, r ≡ “rank of L” = independent of choice of {Hj}rj=1, (6.1)

H ≡ subalgebra spanned by {Hj}, r = dimH.

2. Simultaneous diagonalization of all Hj in adjoint representation:

(adHj )AB =
(
T jad
)A

B
= −if jAB ∝ δAB for fixed j. (6.2)

⇒ adHj

(
TA
)
=
[
Hj, TAad

]
= if jABT

B
ad ∝ TAad. (6.3)

Renaming Xa = TAad /∈ H in this basis, define

adHj (Xa) =
[
Hj, Xa

]
≡ βj(a)Xa. (6.4)

→֒ Each generator Xa /∈ H is characterized by a

“root vector” β(a) =
(
β1(a), . . . , βr(a)

)
6= 0 (0 would mean Xa ∈ H), (6.5)

Φ ≡ set of all root vectors β(a) 6= 0. (6.6)

95
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Notation: E
(a)
β ≡ Xa with β = β(a).

Comments:

• The generators Xa are not hermitian anymore after the diagonalization of
all Hj .

• This step requires that the number field of L is closed.
→֒ Take field C, not R!

3. Inspect general H = hjH
j ∈ H:

[H,Xa] = hj
[
Hj, Xa

]
= hjβ

j(a)︸ ︷︷ ︸
≡ β(H) = “linear form” on H (=linear map H → C)

Xa, (6.7)

i.e. β ∈ H∗ = dual space of H.

Note: Construction of H in adjoint representation can be transferred to whole L
if L is simple, since the adjoint representation is faithful.
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Properties of roots:

a) If β(a) is a root, then also −β(a). ⇒ dL − r = even.

Proof:

[
Hj, Xa

]
= βj(a)Xa,

∣∣ . . .† and use β(a) = β(a)∗, Hj =
(
Hj
)†

[
(Xa)† , Hj

]
= βj(a) (Xa)† ,

[
Hj, (Xa)†

]
= −βj(a) (Xa)† . (6.8)

#

b) If β(a) + β(b) 6= 0, then either
[
Xa, Xb

]
= 0,

or
[
Xa, Xb

]
6= 0 is eigenvector to root β(a) + β(b).

Proof:

[
Hj,

[
Xa, Xb

]]
=
[
Xa,

[
Hj, Xb

]]
+
[
Xb,

[
Xa, Hj

]]
(Jacobi id.)

= βj(b)
[
Xa, Xb

]
− βj(a)

[
Xb, Xa

]

=
(
βj(a) + βj(b)

)
︸ ︷︷ ︸

6= 0 for some j-value

[
Xa, Xb

]
. (6.9)

⇒ If
[
Xa, Xb

]
6= 0, then it is an eigenvector to root β(a) + β(b). #

c) (Hj, Xa) = 0.

Proof:

0 =
([
Hj, Hk

]
, Xa

)
(since

[
Hj, Hk

]
= 0)

=
(
Hj,

[
Hk, Xa

])
= βk(a)︸ ︷︷ ︸

6= 0 for some k-value

(
Hj, Xa

)
.

⇒ 0 =
(
Hj, Xa

)
. (6.10)

#

d)
(
Xa, Xb

)
= 0 if β(a) + β(b) 6= 0.

Proof:

([
Xa, Hj

]
, Xb

)
= −βj(a)

(
Xa, Xb

)

=
(
Xa,

[
Hj, Xb

])
= +βj(b)

(
Xa, Xb

)
.

⇒ 0 =
(
βj(a) + βj(b)

)
︸ ︷︷ ︸

6= 0 for some j-value

(
Xa, Xb

)
.

⇒ 0 =
(
Xa, Xb

)
. (6.11)

#
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e) gij ≡ Tr {H iHj} in adjoint representation is non-singular and positive definite

(=restriction of Cartan–Killing form to H).

→֒ Define:
gijgjk ≡ δik, βj ≡ gjkβ

k, (6.12)

(α, β)︸ ︷︷ ︸
→֒ positive definite scalar product on the root space H∗

≡ gjkα
jβk = αkβ

k. (6.13)

Proof:

g =
(
gAB

)
= (gij)⊕

(
gab
)
, since {Hj} ⊥ {Xa}.

⇒ (gij) is non-singular and positive definite, since
(
gAB

)
is. #

f) Restricted Killing form calculable from root vectors:

(H,H ′) =
∑

α∈Φ
α(H)α(H ′) ∀H,H ′ ∈ H. (6.14)

Proof: Exercise!

g) All roots β(a) are different (no degeneracy of Xa!),

i.e. exactly one eigenvector Eβ ≡ E
(a)
β corresponds to a root β(a).

Proof in 3 steps:

• Step 1:
[
Xa, Xb

]
∈ H for β(a) + β(b) = 0, according to proof of b), i.e.

[
Xa, Xb

]
= cj(a, b)H

j
∣∣ (. . . , Hk)

⇒
(
Hk,

[
Xa, Xb

])
= cj(a, b)

(
Hj, Hk

)
= cj(a, b)g

jk ≡ ck(a, b)

=
([
Hk, Xa

]
, Xb

)
= βk(a)

(
Xa, Xb

)
︸ ︷︷ ︸

≡ d(a,b)

. (6.15)

Note: d(a, b) 6= 0 for at least one pair a, b!

Otherwise (Xa, X) = 0 ∀X ∈ L,
i.e. contradiction to non-singularity of metric.

⇒
[
Xa, Xb

]
= βj(a)H

jd(a, b) 6= 0 for some chosen index pair a, b. (6.16)

• Step 2: Choose one specific generator E
(a)
−α and define subspace A ⊂ L:

A ≡
[
E

(a)
−α,H, Vα, . . . , Vkα

]
, (6.17)

Vα = subspace spanned by all generators E
(b)
α with root β(b) = α,

k = largest integer k, so that kα is a root.

Observation: A is invariant under multiplication by all generators in

A =
{
E

(a)
−α,H, Vα

}
, i.e. [X,A] ⊆ A ∀X ∈ A.

→֒ Verification by calculating all commutators!
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• Step 3: Consider (6.16) on subspace A!

Identify α = −β(a), then Xa, Xb, {Hj}︸ ︷︷ ︸
of (6.16)

∈ A.

⇒ (6.16) defined also on restriction A of L.

→֒ Evaluate trace of (6.16) on A in adjoint representation!

Recall diagonal block structure:

adHj =




Vβ H V−β︷︸︸︷ ︷︸︸︷ ︷ ︸︸ ︷
β · 1

0 · 1
−β · 1

. . .



, (6.18)

because

adHj

(
Hk
)
=
[
Hj, Hk

]
= 0,

adHj

(
E

(b)
β

)
=
[
Hj, E

(b)
β

]
= βj(b)E

(b)
β . (6.19)

⇒ Tr
A
{(6.16)} = Tr

A

{[
Xa, Xb

]}
= 0 (due to cyclicity!)

= Tr
A

{
βj(a)H

jd(a, b)
}
= βj(a)d(a, b) · TrA

{
Hj
}

= −αj · d(a, b) ·
{
−αj︸︷︷︸
→֒ E

(a)
−α

+ 0︸︷︷︸
→֒ H

+ αj · dimVα︸ ︷︷ ︸
→֒ Vα

+ . . . + kαj · dimVkα︸ ︷︷ ︸
→֒ Vkα

}

= − αjα
j

︸︷︷︸
=(α,α)6=0

· d(a, b)︸ ︷︷ ︸
6=0

·
{
−1 +

k∑

l=1

l · dimVlα︸ ︷︷ ︸
≥ 0

}
. (6.20)

⇒ Unique solution: k = 1 with dimVα = 1. #

⇒ Standard form of a Lie algebra: “Cartan–Weyl basis”:

Generators: Hj, Eα, E−α = (Eα)
†

with Hα ≡ αjH
j and (Eα, E−α) ≡ 1 (i.e. d(a, b) set to 1).

Commutators:
[
Hj, Hk

]
= 0, (6.21)

[
Hj, E±α

]
= ± αjE±α, (6.22)

[Eα, E−α] = Hα, (6.23)

[Eα, Eβ] = NαβEα+β if α + β 6= 0, (6.24)

Nαβ = 0 if α + β is not a root. (6.25)
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6.2 Geometry of the root system

Root strings:

Definition: “β-string through root α”

Sβ;α ≡ {roots α + kβ | k = −p,−p + 1, . . . , q; p, q ∈ N0,

but α− (p+ 1)β and α + (q + 1)β are not roots}. (6.26)

In root space:

β

α
−β

−β
+β

+β

[Eβ , [Eβ, . . . , [Eβ, Eα] . . . ]

[E−β , [E−β, . . . , [E−β, Eα] . . . ]

Sβ;α as sl(2,C) representation space:

Sβ;α = representation space of sl(2,C) spanned by E±β, βjH
j = Hβ:

• sl(2,C) algebra:

[E+β, E−β] = Hβ, (6.27)

[Hβ, E±β] = ±βjβjE±β = ±(β, β)E±β. (6.28)

• E±β = shift operators on Sβ;α from α + kβ to α + (k ± 1)β:

[E±β, Eα+kβ] ∝ Eα+(k±1)β . (6.29)

• Eα+kβ are eigenvectors of adβjHj :

[Hβ, Eα+kβ] = βj(α + kβ)jEα+kβ = [(α, β) + k(β, β)]︸ ︷︷ ︸
eigenvalues = “weights”

Eα+kβ. (6.30)

⇒ highest sl(2,C) weight = (α, β) + q(β, β)

= −(lowest weight) = − [(α, β)− p(β, β)] . (6.31)

⇒ 2
(α, β)

(β, β)
= p− q ≡ n ∈ Z. (6.32)

Apply the same arguments to Sα;β (with p′, q′ instead of p, q):

2
(α, β)

(α, α)
= p′ − q′ ≡ n′ ∈ Z. (6.33)
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⇒ Condition on angle θαβ between roots α, β in root space:

0 ≤ cos2 θαβ ≡ (α, β)2

(α, α)(β, β)
=
nn′

4
≤ 1. (6.34)

In particular, n and n′ have the same sign (if both are non-zero)!

Constraints on Sβ;α and Sα;β from (6.32)–(6.34):

a) Assume special case β = c · α, c ∈ R:

2
(α, β)

(β, β)
=

2

c
= n ∈ Z ⇒ |c| = 2, 1,

2

3
,
1

2
,
2

5
, . . . (6.35)

2
(α, β)

(α, α)
= 2c = n′ ∈ Z ⇒ |c| = 0,

1

2
, 1,

3

2
, 2, . . . (6.36)

⇒ 2 possibilities: (w.l.o.g. |c| ≤ 1)

(i) |c| = 1, i.e. β = +α or β = −α.
→֒ Nothing new, since ±α are trivially roots.

(ii) |c| = 1
2
, i.e. α = +2β or α = −2β.

→֒ Contradiction to proof of property g) above!

⇒ With α being a root, ±α are the only multiples of α being roots!

b) Possibilities for β 6= ±α (0 ≤ cos2 θαβ < 1):

n n′ θαβ
length ratio from (6.32)/(6.33):√

(β,β)
(α,α)

=
√

n′

n

0 or 0 π
2

not fixed

+1 +1 π
3

1

−1 −1 2π
3

1

+1 +2 π
4

√
2

−1 −2 3π
4

√
2

+1 +3 π
6

√
3

−1 −3 5π
6

√
3

+ cases with α↔ β, n↔ n′
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Determination of |Nαβ|:
(
[Eα, Eβ] = NαβEα+β

)

• From definition and E−α = E†
α:

Nαβ = −Nβα = +N∗
−β,−α = −N∗

−α,−β . (6.37)

• Choose 3 (non-vanishing) roots α, β, γ with α + β + γ = 0:

[Eα, [Eβ , Eγ]]︸ ︷︷ ︸
. . . +cyclic= 0

=
[
Eα, Nβγ Eβ+γ︸ ︷︷ ︸

=E−α

]
= NβγαjH

j.

⇒ 0 = Nβγαj +Nγαβj +Nαβ γj︸︷︷︸
= −αj − βj

, since {Hj} = independent.

⇒ 0 = αj(Nβγ −Nαβ) + βj(Nγα −Nαβ), but α, β are independent.

⇒ Nαβ = Nβγ = Nγα, i.e. Nαβ = Nβ,−α−β = N−α−β,α. (6.38)

• Jacobi identity on root string Sβ;α:

0 =
[
Eβ , [E−β, Eα+kβ]︸ ︷︷ ︸

= N−β,α+kβEα+(k−1)β

]
+
[
E−β, [Eα+kβ, Eβ]︸ ︷︷ ︸

= Nα+kβ,βEα+(k+1)β

]
+
[
Eα+kβ, [Eβ , E−β]︸ ︷︷ ︸

= βjH
j

]
,

0 =
[
N−β,α+kβNβ,α+(k−1)β +Nα+kβ,βN−β,α+(k+1)β − βj(α + kβ)j

]
Eα+kβ︸ ︷︷ ︸

6=0

,

⇒ (α, β) + k(β, β) = N−β,α+kβNβ,α+(k−1)β +Nα+kβ,βN−β,α+(k+1)β.

Using

N−β,α+kβ =
(6.37)

−N∗
β,−α−kβ =

(6.38)
−N∗

α+(k−1)β,β =
(6.37)

N∗
β,α+(k−1)β , (6.39)

N−β,α+(k+1)β =
(6.38)

N−α−kβ,−β =
(6.37)

−N∗
α+kβ,β, (6.40)

we get the recursive relation

(α, β) + k(β, β) = F (k − 1)− F (k), F (k) = |Nα+kβ,β|2. (6.41)

• Boundary of recursion (6.41):

[Eβ, Eα+qβ ] = 0 ⇒ Nβ,α+qβ = 0 ⇒ F (q) = 0,

[E−β, Eα−pβ] = 0 ⇒ N−β,α−pβ︸ ︷︷ ︸
=Nβ,α−(p+1)β

= 0 ⇒ F (−p− 1) = 0. (6.42)

⇒ Unique solution for F (k):

F (k) = (q − k)
[
(α, β) + 1

2
(k + q + 1)(β, β)

]

= (q − k)
[
1
2
(p− q) + 1

2
(k + q + 1)

]
(β, β),

F (0) = |Nαβ|2 = 1
2
q(p+ 1)(β, β). (6.43)

Note: – Nαβ can be chosen real. (If needed, redefine phase of Eα.)

– Sign determination of Nαβ not so trivial, details see below!
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Weyl reflections:

Definition:

σβ(α) ≡ α− 2
(α, β)

(β, β)
β = “Weyl reflection” of α w.r.t. the hyperplane ⊥ β. (6.44)

Check properties: (see (6.35))

• σβ(α) = root, since p ≤ n = 2 (α,β)
(β,β)

= p− q and q ≥ −n = q − p.

• Projections:

(
σβ(α), β

)
= (α, β)− n(β, β) = (α, β)− 2

(α, β)

(β, β)
(β, β) = −(α, β),

(
σβ(α), σβ(α)

)
= (α, α)− 2n(α, β) + n2(β, β)2 = (α, α). (6.45)

“Weyl group” ≡ group of all Weyl reflections.

→֒ subgroup of the full symmetry group of the root system (and as such finite).

Note: The finiteness of a reflection group is non-trivial!

Abstract definition of a “root system”:

A “(reduced crystallographic) root system” is a finite set Φ of non-zero vectors (“roots”) in
some finite-dimensional real vector space V with scalar product ( . , . ), with the following
properties:

(i) The roots span V .

(ii) For each α ∈ Φ, −α is the only other multiple of α in Φ.

(iii) Φ is closed under Weyl reflections, i.e. σβ(α) ∈ Φ ∀ α, β ∈ Φ.

(iv) “Integrality”: 2
(α, β)

(β, β)
∈ Z ∀ α, β ∈ Φ.

The “rank” of the root system Φ is defined to be dim(V ).

Φ+ ≡ {α ∈ Φ | α > 0} = set of all positive roots.

Φ is “reducible” if it can be decomposed into a sum of mutually orthogonal parts, i.e. if
Φ = Φ1 + Φ2 with Φi ⊂ Vi and V = V1 ⊕ V2, V1 ⊥ V2. Otherwise Φ is “irreducible”.

Note Φ = reducible ⇔ L = semisimple, but not simple.

Serre’s theorem:

There is a one-to-one correspondence between abstract root systems and complex semi-
simple Lie algebras.
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6.3 Simple roots, Cartan matrix, and Chevalley basis

Chevalley relations:

1. Start from auxiliary identity: (Exercise!)

(α+ β, α+ β)

(α, α)
=
p+ 1

q
for roots α, β if α + β = root. (6.46)

Outline of proof: (Exercise!)

Use p = 2 (α,β)
(β,β)

+ q in auxiliary quantity

M ≡ p− (α + β, α+ β)

(α, α)
q + 1 =

(
1− (β, β)

(α, α)
q

)(
1 + 2

(α, β)

(β, β)

)

=

(
1− n′

n
q

)
(1 + n) (6.47)

and show that M = 0 for all possible cases of n, n′ . . . #

2. Application of (6.46) to Nαβ for α + β = root:

|Nαβ|2 =
1

2
q(p+ 1)(β, β) · p + 1

q
· (α, α)

(α + β, α+ β)

=
1

2
(p+ 1)2

(α, α)(β, β)

(α + β, α+ β)
. (6.48)

3. Redefinition of generators:

eα ≡
√

2

(α, α)
Eα, hα ≡ 2

(α, α)
αjH

j. (6.49)

⇒ “Chevalley relations”:

[hα, hβ] = 0, [hβ, e±α] = ±2
(β, α)

(α, α)
e±α,

[eα, e−α] = hα, [eα, eβ] =

{
±(p+ 1)eα+β if α + β = root,

0 otherwise.
(6.50)

Comments:

• In this basis, all structure constants are integers.

• The sign choice in the last relation is non-trivial.
→֒ Details clarified below!
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“Positive” and “simple” roots:

• A root α is “positive” (“negative”) if the first non-vanishing component αj of the
root vector in the fixed order of H1, . . . , Hr is positive (negative).

• A root α is “simple” if α is positive and cannot be written as linear combination of
other roots with positive coefficients.

Properties of simple roots α(i):

• Differences of simple roots cannot be roots. (p(i) = p(j) = 0)

⇒
(
α(i), α(j)

)
≤ 0, i.e. ∠

(
α(i), α(j)

)
=

2π

3
,
3π

4
,
5π

6
. (6.51)

• There are only 4 possible non-trivial chains for two simple roots:

α(i), α(i) + α(j), . . . , α(i) + qα(j), q = 0, 1, 2, 3.

• There are exactly r = rank(L) simple roots, and they span the whole root space.

• Any (positive) root β is a linear combination of simple roots with integer (positive)
coefficients:

β = biα
(i),

r∑

i=1

bi ≡ ht(β) = height of root β. (6.52)

Two new bases: simple coroots and fundamental weights

→֒ Particularly relevant in representation theory!

• To each root α define a coroot α̌:
α̌ ≡ 2α

(α, α)
. (6.53)

“Simple coroots”:

α̌(i) ≡ 2α(i)

(α(i), α(i))
, i = 1, . . . , r. (6.54)

⇒ B ≡ {α̌(i)}ri=1 is a basis of H∗.

• “Dynkin basis” of H ≡ dual basis to B ≡ B∗ = {Λ(i)}ri=1.
(
α̌(i),Λ(j)

)
= δij , Λ(j) = “fundamental weights” . (6.55)

• Some relations:

α = aiα
(i) = ǎiα̌

(i), ǎi =
(
α,Λ(i)

)
=
ai
2

(
α(i), α(i)

)
, (6.56)

λ = λjΛ(j), λj =
(
λ, α̌(j)

)
= 2

(
λ, α(j)

)

(α(j), α(j))
= “Dynkin labels” of λ, (6.57)

(α, λ) = ǎiλ
i =

r∑

i=1

1

2
aiλ

i
(
α(i), α(i)

)
. (6.58)
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Cartan matrix and Chevalley basis:

• “Cartan matrix” A of L

Aij ≡ 2

(
α(i), α(j)

)

(α(j), α(j))
=
(
α(i), α̌(j)

)
. (6.59)

⇒ A =




2 A12 · · ·
A21 2 A23 · · ·
...

... 2
. . .

2




with Aij = integer ≤ 0 for i 6= j. (6.60)

Note: ith row of A = components of α(i) in Dynkin basis.

• “Chevalley basis” ≡ {hα(i)} ∪ {eα(i)}.

[hα(i) , e±α(j) ] = ± Ajie±α(j) , (6.61)

[eα(i) , eα(j) ] = ± eα(i)+α(j) or 0, if α(i) + α(j) is root or not. (6.62)

→֒ Signs fixed by convention, e.g. “+” for α(i) < α(j).

Serre relations:
(
ade±α(i)

)1−Aji

e±α(j) = 0. (6.63)

Proof:

1−Aji = 1− 2

(
α(j), α(i)

)

(α(i), α(i))
= 1− nij = 1 + qij = smallest positive integer k

so that α(j) + kα(i) is not a root. #
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Simple properties of Cartan matrices:

a) Aii = 2, (6.64)

b) Aij = 0 ⇔ Aji = 0, (6.65)

c) Aij ∈ {0,−1,−2,−3} for i 6= j, (6.66)

d) if Aij ∈ {−2,−3} then Aji = −1 for i 6= j, (6.67)

e) det(A) > 0. (6.68)

Proof:

• a) and b) obvious from definition of A.

• c) and d) follow from properties of root strings (see Section 6.2):
n, n′ < 0, since p = p′ = 0 because of simplicity of roots α(i), α(j).

• To prove e), factorize A into diagonal matrix D and “Gram matrix” S:

D = diag(d1, . . . , dr), dj = 2/
(
α(j), α(j)

)
> 0, det(D) > 0,

S = (sij), sij =
(
α(i), α(j)

)
, det(S) > 0, since {α(i)} are linearly independent.

⇒ det(A) = det(SD) = det(S) · det(D) > 0. #

Examples:

Asl(2) = ( 2 ), Asl(3) =

(
2 −1

−1 2

)
, Asl(4) =




2 −1 0

−1 2 −1

0 −1 2


 . (6.69)

Relation between A and (semi)simplicity of L:

• Isomorphic semisimple Lie algebras have the same matrix A up to some possible
renumbering of simple roots (rows/columns).

• L is not simple: L = L1 ⊕ L2, with Li = semisimple Lie subalgebras of L.

→֒ [X1, X2] = 0 ∀ Xi ∈ Li.
⇔ A is “reducible” to the following block form by renumbering of roots

A =

(
A1 0

0 A2

)
, Ai = Cartan matrix of Li. (6.70)
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Reconstruction of all simple roots from A:

• Ratios of root lengths li:
li
lj

=

√
Aij

Aji
.

• Angles θij between roots: cos θij = −1

2

√
AijAji.

⇒ Simple roots determined up to orientation and overall normalization (=convention).

Examples:

a) sl(3): A =

(
2 −1

−1 2

)
.

Known: l1 = l2, cos θ12 = −1
2
, i.e. θ12 =

2π
3

.

Definable: l1 ≡ 1, α(1) ≡ ~e1, α(2) ·~e2 > 0.

→֒ α(1) =
( 1

0

)
, α(2) = 1

2

( −1√
3

)
.

b) G2: A =

(
2 −3

−1 2

)
.

Known: l1 =
√
3l2, cos θ12 = −1

2

√
3, i.e. θ12 =

5π
6

.

Definable: l2 ≡ 1, α(1) ≡
√
3~e2, α(2) ·~e1 > 0.

→֒ α(1) =
( 0√

3

)
, α(2) = 1

2

( 1

−
√
3

)
.
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Reconstruction of the full root system from A: (“Serre construction”)

Idea:

Each root α > 0 is a unique combination α = aiα
(i) with ai = integer ≥ 0 and corresponds

exactly to one shift operator eα, which is an eigenvector of all adh
α(j)

:

adh
α(j)

eα =
2(α(j), α)

(α(j), α(j))
eα = aiA

ij eα.

→֒ Each α > 0 can be obtained upon recursively constructing all possible root strings of
all simple roots α(i), starting from the simple roots themselves, and characterized by the
Dynkin labels aiA

ij .

Recursive algorithm:

1. Roots of height 1:
These are the simple roots α(i), which are known to exist.

Recall (6.61): adh
α(j)

eα(i) = Aijeα(i) .

→֒ Simple root eα(i) is eigenvector to hα(j) with eigenvalues Aij.
→֒ eα(i) is represented by its “weight vector” |Ai1, . . . , Air〉 of Dynkin labels.

2. Roots of height 2:
Consider all root strings of eα(k) through eα(i) :

• α(i) − α(k) is never a root, i.e. ade
−α(k)

eα(i) = 0,

• Serre relations:
(
adeα(k)

)1−Aik

eα(i) = 0.

→֒ Root strings start at α(i) and have lengths 1−Aik in α(k) direction, and
α(i) + α(k) is a root (i.e. eα(i)+α(k) 6= 0) exactly if −Aik > 0.

⇒ All roots of height 2 through α(i) determined and represented by
|Ai1 + Ak1, . . . , Air + Akr〉.

3. Roots of height (n+ 1) from roots of height n (starting with n = 2):
Consider all root strings of eα(k) through root β = biα

(i) with ht(β) = n:
β − pα(k), . . . , β, . . . , β + qα(k).

• p can be read from roots of lower weight.

• Recall (6.32): p− q = 2
(β, α(k))

(α(k), α(k))
= biA

ik, q = p− biA
ik.

→֒ β + α(k) is root if q > 0.

⇒ All roots of height (n + 1) through β determined and represented by
|Ak1 + biA

i1, . . . , Akr + biA
ir〉.

Repeat this step until no roots with bigger height are possible.

4. Adding for each positive root α the negative root −α completes the set Φ of roots.
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Extension to reconstruct the whole algebra:

Chevalley relations (6.50) fix algebra up to signs in

[eα, eβ] = ±(p + 1)eα+β if α + β = root.

Sign choice [3]: Free sign choice for all “extra special pairs” of roots α, β,
the others follow from algebra.

• An ordered pair {α, β} is “special” if α + β = root and α < β;

• a special pair {α, β} is “extra special” if α < α′ for all special pairs {α′, β ′} with
α′ + β ′ = α+ β.

Examples:

a) sl(3): A =

(
2 −1

−1 2

)
.

• Height 1: 2 simple roots: α(1) → |2,−1〉, α(2) → |−1, 2〉.
• Height 2: 2 relevant Serre relations for i 6= j:

(
adeα(1)

)1−A21

eα(2) =
(
adeα(1)

)2
eα(2) = [eα(1) , [eα(1) , eα(2) ]] = 0

⇒ α3 ≡ α(1) + α(2) = root, eα3 ≡ + [eα(1) , eα(2) ] .

(
adeα(2)

)1−A12

eα(1) = · · · = 0

⇒ no new information.

⇒ α3 → |A11 + A21, A12 + A22〉 = |1, 1〉 is the only root of height 2.

• Height ≥ 3: check 2 strings through α3:

α(1) string: p = 1, q = p− (A11 + A12) = 0,

α(2) string: p = 1, q = p− (A21 + A22) = 0.

⇒ No roots of height 3!

Φ = {α(1), α(2), α3,−α(1),−α(2),−α3}.

Graphical illustration: (coordinates of α(k) see above)

+ α(1)

+ α(2)

∅

|−1, 2〉 |1, 1〉 ∅

|2,−1〉

p = 1
q = 0

p = 0
q = 1

p = 0
q = 1

p = 1
q = 0

α(1)

α(2) α(1)+α(2)
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b) G2: A =

(
2 −3

−1 2

)
.

+ α(2)

+ α(1)

∅

∅ ∅ |1, 0〉

|2,−3〉 |1,−1〉 |0, 1〉 |−1, 3〉 ∅

|−1, 2〉

p = 1
q = 0

p = 0
q = 0

p = 0
q = 1

p = 1
q = 0

p = 0
q = 1

p = 0
q = 3

p = 1
q = 2

p = 2
q = 1

p = 3
q = 0

Positive roots:

|2,−3〉 : α(1), eα(1) ,

|−1, 2〉 : α(2), eα(2) ,

|1,−1〉 : α3 ≡ α(1) + α(2), eα3 ≡ +adeα(1) eα(2) = −adeα(2) eα(1) ,

|0, 1〉 : α4 ≡ α(1) + 2α(2), eα4 ≡ +adeα(2) eα3 ,

|−1, 3〉 : α5 ≡ α(1) + 3α(2), eα5 ≡ +adeα(2) eα4 ,

|1, 0〉 : α6 ≡ 2α(1) + 3α(2), eα6 ≡ +adeα(1) eα5 .

Note: α3 is the only non-simple root corresponding to a special and an
extra special pair of roots.
A root with special and extra special pairs correspond to alternative
paths for their construction.

The full root system: (coordinates of α(k) see above)

α(1)+2α(2)

α(1)

α(2)

2α(1)+3α(2)

α(1)+3α(2)

α(1)+α(2)
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6.4 Classification of complex (semi)simple Lie algebras

– Dynkin diagrams

Semisimple complex Lie algebras, root systems, and Cartan matrices:

There is one-to-one correspondences between:

• semisimple complex Lie algebras L,

• abstract root systems Φ with Cartan matrices A.

Similarly, there is one-to-one correspondences between:

• simple complex Lie algebras L,

• irreducible root systems Φ, with irreducible Cartan matrices A.

Decomposition of semisimple complex L:

L = ⊕i Li Li = simple. (6.71)

Simple components Li correspond to Φi and Ai:

Φ = ∪i Φi Φi = irreducible, Φi ∩ Φj = ∅ ∀i 6= j, (6.72)

A = ⊕i Ai, Ai = irreducible. (6.73)

⇒ Classification of simple complex Lie algebras:

• automatically provides a classification of semisimple complex Lie algebras,

• corresponds to a classification of irreducible root systems, which have irreducible
Cartan matrices.

“Dynkin diagrams”

→֒ graphically illustrate Cartan matrices (and thus the corresponding Φ and L).

Graphical rules: r = dim(A) = #(simple roots).

• Draw a circle ◦ for each simple root (labelled by i = 1, . . . , r).

• Connect the two circles i and j by max{|Aij|, |Aji|} lines.

• If
(
α(i), α(i)

)
>
(
α(j), α(j)

)
for the two connected roots i and j, then put the ordering

sign > on the line(s) between i and j, e.g.: >
i j

Note: Singly-connected roots have identical lengths;
different lengths occur for 2 or 3 connecting lines.

⇒ Connected Dynkin diagrams correspond to simple complex Lie algebras.

Examples:

sl(2) sl(3) sl(4)
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Classification simple complex Lie algebras (connected Dynkin diagrams):

Preparation:

• Deconstruction of root systems / Lie algebras:
Removing a simple root (e.g. number i) from the root system (eliminating row i and
column i from A), leads to an allowed simple or semisimple Lie algebra of rank r−1.

• Use normalized roots α̂(i) ≡ α(i)

√
(α(i), α(i))

, so that
(
α̂(i), α̂(i)

)
= 1 and

lij ≡ 2
(
α̂(i), α̂(j)

)
≤ 0,

l2ij = #(lines connecting i and j) ∈ {0, 1, 2, 3} for i 6= j. (6.74)

Restrictions on diagrams:

a) In a set K of k roots, the number LK of connected pairs of roots is at most k − 1.

Proof: Define α =
∑

i∈K α̂
(i), so that

0 < (α, α) =
∑

i∈K

(
α̂(i), α̂(i)

)
+
∑

i<j
i,j∈K

2
(
α̂(i), α̂(j)

)
= k +

∑

i<j
i,j∈K

lij .

⇒ k >
∑

i<j
i,j∈K

(−lij) ≥ LK . ⇒ LK ≤ k − 1.
#

b) There are no Dynkin diagrams with closed cycles (loops).

Proof: This follows directly from a). #

c) No more than 3 lines can originate from a single root.

Proof: Let α̂(i) be a normalized root connected to the k roots α̂(j) of the subset K:

1 =
(
α̂(i), α̂(i)

)
=
(
α̂(j), α̂(j)

)
,
(
α̂(i), α̂(j)

)
< 0, j ∈ K,

0 =
(
α̂(j), α̂(l)

)
, j, l ∈ K,

where the last condition stems from the absense of loops.
The linear independence of the simple roots implies that

0 6= β ≡ α̂(i) −
∑

j∈K

(
α̂(i), α̂(j)

)
α̂(j),

0 < (β, β) = 1−
∑

j∈K

(
α̂(i), α̂(j)

)2
= 1−

∑

j∈K
l2ij/4.

⇒ 4 >
∑

j∈K
l2ij = #(lines connected to i).

#
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Implications of property c) for a 3-fold-connected root i:

• Only 1 diagram possible with a triple line: <

• 2 possible substructures for a root i with a double and a single line:

<
i

. . . . . . >
i

. . . . . .

• 1 substructure for a root i with 3 single lines:

i

. . . . . .

...

→֒ Limitations on lengths of chains indicated by “ · · · ” (= one or no line)?

d) “Shrinking rule”: Replacing a linear chain of singly-connected roots by one root
generates a valid Dynkin diagram.

Sketch of proof: Label the k singly-connected roots α̂(i) by i = 1, . . . , k, so that

(
α̂(i), α̂(i+1)

)
= −1

2
, i = 1, . . . , k − 1,

(
α̂(i), α̂(j)

)
= 0, i, j = 1, . . . , k − 1, |i− j| > 1.

Define α̂ =
∑k−1

i=1 α̂
(i), which is a unit vector,

(α̂, α̂) =

k∑

i=1

(
α̂(i), α̂(i)

)
+ 2

k−1∑

i=1

(
α̂(i), α̂(i+1)

)
= k − (k − 1) = 1, (6.75)

and replace the whole chain C = {α̂(i)}ki=1 by α̂ to get a new Dynkin diagram.

To show: The set {α̂} ∪ {α̂(i)}ri=k+1 generates a root system Φ′ of rank r− k + 1.

• Linear independence of {α̂} ∪ {α̂(i)}ri=k+1 and rank of Φ′ obviously ok.

• Check angles between simple roots:
Note that any root β̂ ∈ {α̂(i)}ri=k+1 not in C could be connected to only one

root α̂(j) ∈ C, since there is no loop. But β̂ has the same non-trivial angle
(i.e. 6= π/2) with α̂(j) and the new root α̂:

(β̂, α̂) =

k−1∑

i=1

(
β̂, α̂(i)

)
=
(
β̂, α̂(j)

)
.

→֒ α̂(j) can be replaced by α̂ in all scalar products with β̂.
⇒ Integrality and Weyl reflections ok!

• Show non-existence of multiples of roots other than ±α yourself?
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e) A Dynkin diagram contains at most one double line.

Proof: According to c), two roots with double lines could only be linked by a
chain of singly-connected roots. Shrinking this chain to a single root as in d), would
lead to a root with 4 lines attached. → Contradiction! #

f) There are only 3 possible structures with a double line:

< . . . > . . . <

Proof: Consider 2 singly-connected chains {α̂(j)}nj=1 and {β̂(k)}mk=1 with a double

line linking α̂(n) and β̂(m), where β̂(k) are just some renamed roots α̂(i), so that

(
α̂(j), α̂(j+1)

)
=
(
β̂(k), β̂(k+1)

)
= −1

2
, j = 1, . . . , n− 1, k = 1, . . . , m− 1,

(
α̂(n), β̂(m)

)
= − 1√

2
,
(
α̂(j), β̂(k)

)
= 0, j 6= k, j = 1, . . . , n, k = 1, . . . , m.

Analyze the scalar products of the vectors α ≡∑n
j=1 jα̂

(j) and β ≡∑m
k=1 kβ̂

(k),

(α, α) =
n∑

j=1

j2 −
n−1∑

j=1

j(j + 1) =
n(n+ 1)

2
,

(β, β) =
m∑

k=1

k2 −
m−1∑

k=1

k(k + 1) =
m(m+ 1)

2
,

(α, β) = (α(n), β(m)) = −mn√
2
.

Schwartz’s inequality implies a condition on n and m:

0 < (α, α)(β, β)− (α, β)2 =
mn(m+ 1)(n+ 1)

4
− m2n2

2
=
mn(1 +m+ n−mn)

4
.

⇒ (m− 1)(n− 1) < 2.

Note that equality is ruled out, because α and β are linearly independent.

The 3 different types of solutions for n,m ≥ 1 correspond to the above diagrams,
assuming that the α(i) are longer than β(j) (unnormalized roots):

• m = n = 2: diagram on the right.

• m = 1, n ∈ N: diagram on the left.

• n = 1, m ∈ N: diagram in the middle.

g) There are only 4 different types of diagrams with a root connected to 3 other roots:

. . .
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Proof: Consider 3 singly-connected chains {α̂(j)}n−1
j=1 , {β̂(k)}m−1

k=1 , and {γ̂(l)}p−1
l=1

which are linked to the root δ̂ by α̂(n−1), β̂(m−1), and γ̂(p−1).

As in f), analyze the scalar products of the vectors α ≡∑n−1
j=1 jα̂

(j), β ≡∑m−1
k=1 kβ̂

(k),

and γ ≡∑p−1
l=1 lγ̂

(l):

(α, α) =
n(n− 1)

2
, (δ̂, α) = (n− 1) (δ̂, α(n−1)) = −n− 1

2
,

(β, β) =
m(m− 1)

2
, (δ̂, β) = (m− 1) (δ̂, β(m−1)) = −m− 1

2
,

(γ, γ) =
p(p− 1)

2
, (δ̂, γ) = (p− 1) (δ̂, γ(p−1)) = −p− 1

2
.

Calculate the norm of the vector

ǫ ≡ δ̂ − (δ̂, α)

(α, α)
α− (δ̂, β)

(β, β)
β − (δ̂, γ)

(γ, γ)
γ 6= 0,

which is orthogonal to α, β, γ,

0 < (ǫ, ǫ) = 1− (δ̂, α)2

(α, α)
− (δ̂, β)2

(β, β)
− (δ̂, γ)2

(γ, γ)
=

1

2

(
1

m
+

1

n
+

1

p
− 1

)
.

⇒ 1 <
1

m
+

1

n
+

1

p
.

The 4 different types of solutions for n,m, p > 1 correspond to the above diagrams:

• m = n = 2, 1 < p ∈ N: upper left diagram.

• m = 2, n = 3, p = 5: upper right diagram.

• m = 2, n = 3, p = 4: lower right diagram.

• m = 2, n = 3, p = 3: lower left diagram.

h) Finally, there is no restriction on diagrams with only one singly-connected chain
without bifurcations.
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Survey of all finite-dimensional simple complex Lie algebras

→֒ 4 infinite series of “classical Lie algebras” (r = rank)

• Ar ≡ sl(r + 1,C), r ≥ 1,

• Br ≡ so(2r + 1,C), r ≥ 3,

• Cr ≡ sp(2r,C), r ≥ 2,

• Dr ≡ so(2r,C), r ≥ 4,

and 5 “exceptional Lie algebras” (subscript = rank)

E6, E7, E8, F4, G2.

Some comments:

• Including all r ≥ 1, leads to redundancies:

A1 ≃ B1 ≃ C1 ≃ D1, B2 ≃ C2, D2 ≃ A1 ⊕A1, A3 ≃ D3. (6.76)

• These Lie algebras, classified as complex Lie algebras over C, have many different
real forms over R.

Particularly important are the compact real forms in which

Hj = (Hj)†, E−α = (Eα)
† . (6.77)

→֒ Relevant for the exponentiation to associated compact Lie groups!
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Series of classical Lie algebras:

a) Ar ≡ sl(r + 1,C), r ≥ 1 . . .

• Cartan matrix:

A =




2 −1

−1 2 −1

−1 2
. . . −1

−1 2



. (6.78)

• compact real form: Ar → su(r + 1), r ≥ 1.

b) Br ≡ so(2r + 1,C), r ≥ 3 < . . .

• Cartan matrix:

A =




2 −1

−1 2 −1

−1 2
. . . −2

−1 2



. (6.79)

• compact real form: Br → so(2r + 1), r ≥ 3.

c) Cr ≡ sp(r,C), r ≥ 2 > . . .

• Cartan matrix:

A =




2 −1

−1 2 −1

−1 2
. . . −1

−2 2



. (6.80)

• compact real form: Cr → usp(2r), r ≥ 2.

d) Dr ≡ so(2r,C), r ≥ 4 . . .

• Cartan matrix:

A =




2 −1

−1 2
. . . −1

−1 2 −1 −1

−1 2

−1 2



. (6.81)

• compact real form: Dr → so(2r), r ≥ 4.
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Series of classical Lie algebras:

a) E6

• Cartan matrix:

A =




2 −1

−1 2 −1

−1 2 −1 −1

−1 2

−1 2 −1

−1 2



. (6.82)

b) E7

• Cartan matrix:

A =




2 −1

−1
. . . −1

−1 2 −1 −1

−1 2

−1 2 −1

−1 2



. (6.83)

c) E8

• Cartan matrix:

A =




2 −1

−1
. . . −1

−1 2 −1 −1

−1 2

−1 2 −1

−1 2



. (6.84)
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d) F4 <
• Cartan matrix:

A =




2 −1

−1 2 −2

−1 2 −1

−1 2


 . (6.85)

e) G2 <
• Cartan matrix:

A =

(
2 −3

−1 2

)
. (6.86)
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6.5 Finite-dimensional representations of complex sim-

ple Lie algebras

6.5.1 Construction of irreducible weight systems

Preliminary considerations:

• L = complex simple Lie algebra with basis {H i}ri=1 ∪ {Eα}α∈Φ obeying
(H i)† = H i, E−α = (Eα)

†.

Recall: (compact real form of L) = Lc = {X = X† | X ∈ L}.
→֒ Representations of Lc exponentiate to unitary representations of

corresponding compact Lie group G.

⇒ Finite-dim. representations of L determine finite-dim. unitary repr. of G.︸ ︷︷ ︸
→֒ Importance in QM and QFT!

• L = overlay of sl(2,C) algebras.

→֒ Each representation R of L decomposes into several sl(2,C) representations.

→֒ Make use of construction and properties of sl(2,C) representations!

Properties of finite-dim. representations R of L:

• The repr. space V of R is spanned an orthonormal basis {vk}dRk=1, dR = dim V <∞.

• All R(H i) are simultaneously diagonalizable.

∃ orthogonal subspaces V(λ) spanning V = ⊕λV(λ) with

R(H i) v(λ) = λi v(λ) ∀v(λ) ∈ V(λ), (λ) ≡
(
λ1, . . . , λr

)
(6.87)

Each set (λ) 6= 0 defines a “weight” λ of R:

λ ≡ λiΛ(i) ∈ H∗. (6.88)

Notation for a generic “weight vector” v(λ) ∈ V(λ):

|λ〉 ≡ |λ1, . . . , λr〉 ≡ v(λ). (6.89)

⇒ R(Hα) |λ〉 = R(αiH
i) v(λ) = αiλ

i v(λ) = (α, λ) |λ〉 ∀|λ〉 = v(λ) ∈ V(λ). (6.90)

• Transition between different V(λ) via shift operators E±α:

R(Hα)
(
R(E±α)|λ〉

)
=
[
R(Hα), R(E±α)

]
|λ〉+R(E±α)R(H

α) |λ〉
= R

(
[Hα, E±α]

)
|λ〉+R(E±α) (α, λ) |λ〉

= ±(α, α)R(E±α) |λ〉+ (α, λ)R(E±α) |λ〉
= (α, λ± α)

(
R(E±α)|λ〉

)
. (6.91)

⇒ For each weight λ, the states R(E±α)|λ〉 are weight vectors |λ± α〉 or zero.
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• Each α ∈ Φ defines some finite weight string through |λ〉: (p, q ∈ N0)

|λ− pα〉, |λ− (p− 1)α〉, . . . , |λ〉, . . . , |λ+ qα〉, (6.92)

0 = R(E−α)|λ− pα〉, R(Eα)|λ+ qα〉 = 0. (6.93)

From sl(2,C) representation theory:

(α, λ− pα) = −(α, λ+ qα) ⇒ p− q = 2
(α, λ)

(α, α)
= (α̌, λ) ∈ Z. (6.94)

• Implications on components λi:

Special case: α = α(i) = simple root.

Z ∋
(
α̌(i), λ

)
= λi. (6.95)

⇒ Weights λ = λiΛ(i) have integer components in Dynkin basis.

Weights λ with λi ≥ 0 are called “dominant”.

• R = finite-dim. ⇒ ∃ highest weight Λ, i.e.

R(Eα)|Λ〉 = 0 ∀α ∈ Φ+, (Λ) = (Λ1, . . . ,Λr), Λi ∈ N0. (6.96)

⇒ All |λ〉 can be obtained from some Λ according to

|λ〉 = |Λ− α− β . . . 〉 = R(E−α)R(E−β) . . . |Λ〉. (6.97)

Note: |λ〉 = |Λ− (some rows of A)〉, because components of α(i) = ith row of A.

Highest-weight theorem:

For each dominant weight Λ there is a unique, irreducible, finite-dim. representation RΛ

of L, and each irreducible, finite-dim. representation corresponds to a dominant weight.

Algorithm for determining all weights of RΛ:

1. Weight of “level 0” = given highest weight Λ with integer Λi ≥ 0.

2. Weights of “level 1”:

a) Apply R(E−α(i)) for all pos. simple roots α(i) ∈ Φ+ to |Λ〉.
b) Calculate the new potential root |λ〉 = |Λ− (ith row of A)〉.
c) Check p = q + Λi > 0 with (6.94), i.e. whether |λ− α(i)〉 is still in the weight

string. (At this level, q = 0 ∀i.)
3. Weights of “level 2” and higher: Iterate step 2!

a) Subtract each row of A from each |λ〉 of the previous level.

b) Check p = q + λi > 0 with (6.94), i.e. whether each new potential weight
|λ− α(i)〉 is still in the weight string. (q is the largest integer with |λ + qα(i)〉
being a weight of lower level.)

Repeat this step until no more weights are obtained.

Comment: The algorithm does not determine the multiplicity of weight vectors |λ〉.
→֒ Done later (see Section 6.5.3)!
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Specific representations:

• “Fundamental representations” = representations with the fundamental weights Λ(i)

as highest weight, i.e. in components (Λ) = (1, 0, . . . ), (0, 1, 0, . . . ), . . . .

• Adjoint representation Rad: roots ≡ weights of Rad.

Highest weight Λad = maximal root θ = unique, and all Λiad > 0.

Examples:

• Fundamental representations of sl(3,C) = A2, A =

(
2 −1

−1 2

)
.

|1, 0〉

|−1, 1〉

|0,−1〉

−α(1) −α(2)

|0, 1〉

|1,−1〉

|−1, 0〉

• Fundamental representation of G2 for |Λ〉 = |1, 0〉, A =

(
2 −3

−1 2

)
.

|1, 0〉

|−1, 3〉

|0, 1〉

|1,−1〉

|−1, 2〉 |2,−3〉

|0, 0〉

|1,−2〉|−2, 3〉

|−1, 1〉

|0,−1〉

|1,−3〉

|−1, 0〉

−α(1) −α(2)

Note: This representation coincides with the adjoint representation (see Section 6.4).
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6.5.2 Quadratic Casimir operator and index of a representation

Recall:

• Def.: C = Casimir operator in some representation R of L.

⇔ [C, R(x)] = 0 ∀x ∈ L.

• Schur’s lemma: R = irreducible ⇒ C = CR · 1dR .

⇒ Casimir operators characterize representations.

Quadratic Casimir operator:

If L is a semisimple Lie algebra generated by {TA}dLA=1, then

C = gAB T
ATB (6.98)

is a Casimir operator.

Note: Evaluating C actually requires to go into some representation,
because TATB in general is undefined in L.

Proof:

[
TC , C

]
= gAB

[
TC , TATB

]
= gAB

( [
TC, TA

]
︸ ︷︷ ︸
=ifCA

DT
D

TB + TA
[
TC, TB

]
︸ ︷︷ ︸
= ifCB

DT
D

)

= igAB f
CA

D

(
TDTB + TBTD

)
using symmetry A↔ B in 2nd term

= igAB gDE f
CAE

(
TDTB + TBTD

)

=
i

2
(gAB gDE + gAD gBE) f

CAE
(
TDTB + TBTD

)
using symmetry B ↔ D

=
i

2
gAB gDE

(
fCAE + fCEA︸ ︷︷ ︸

= 0 due to antisymmetry of fCAE , cf. (5.68)

) (
TDTB + TBTD

)
renaming A↔ E

= 0.

#

C in Cartan–Weyl basis {H i}ri=1 ∪ {Eα}α∈Φ:

C = gijH
iHj +

∑

α∈Φ
EαE−α, if (Eα, E−α) = 1. (6.99)

Proof:

This is a consequence of the block structure of the Killing form (gAB):

(gAB) =




(gij) 0

0
σ1

σ1 . . .


 , σ1 =

(
0 1

1 0

)
. #
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Calculation of CR is representation RΛ: Use Eα|Λ〉 = 0 ∀α ∈ Φ+.

C |Λ〉 =
(
gijH

iHj +
∑

α∈Φ
EαE−α

)
|Λ〉 =

(
gijΛ

iΛj +
∑

α∈Φ+

[Eα, E−α]︸ ︷︷ ︸
=Hα

)
|Λ〉

=
(
(Λ,Λ) +

∑

α∈Φ+

(Λ, α)
)
|Λ〉.

Defining

ρ ≡ 1

2

∑

α∈Φ+

α = “Weyl vector” , (6.100)

this yields

C |Λ〉 = (Λ,Λ + 2ρ) |Λ〉, CR = (Λ,Λ+ 2ρ) / dR. (6.101)

Index of a representation R:

A statement about invariant bilinear forms on L:

For a simple Lie algebra L, any invariant bilinear form (x, y)′ differs by the Killing form
(x, y) = Tr(adx, ady) only by a constant factor.

Proof: Exercise?! (See also Ref. [1].)

→֒ Definition: The “index” IR of a repr. R with generators {TAR }dLA=1 is defined by

Tr
(
TAR T

B
R

)
= IR · gAB. (6.102)

Connection between IR and CR:

Trad(C) = gAB Tr
(
TAad T

B
ad

)
= gAB g

AB = dL,

TrR(C) = gAB Tr
(
TAR T

B
R

)
= IR · gAB gAB = IR dL,

= CR dR. (6.103)

⇒ IR =
dR
dL

CR =
dR
dL

(Λ,Λ+ 2ρ). (6.104)
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6.5.3 Multiplets of irreducible representations – Freudenthal’s

formula

Goal: Complete algorithm of Section 6.5.1 by determining the multiplicity nλ = dimV(λ)
of each weight vector |λ〉.

Idea: Calculate Tr(C) restricted to subspace V(λ) in two different ways.
→֒ Recursion relation for nλ.

1. Use result for CR:

TrR(C)
∣∣
V(λ)

= CR nλ = (Λ,Λ+ 2ρ)nλ. (6.105)

2. Use general form of C:

TrR(C)
∣∣
V(λ)

= TrR

(
gijH

iHj +
∑

α∈Φ
EαE−α

)∣∣∣
V(λ)

. (6.106)

Evaluation of 1st part with basis {|λ; l〉}nλ

l=1 of V(λ):

TrR
(
gijH

iHj
) ∣∣

V(λ)
=

nλ∑

l=1

gij 〈λ; l|H iHj|λ; l〉 =
nλ∑

l=1

gij λ
iλj 〈λ; l|λ; l〉︸ ︷︷ ︸

= 1

= nλ (λ, λ). (6.107)

3. Evaluation of 2nd part of (6.106) via sl(2,C) weight strings:

Each α-string corresponds to a multiplet of eigenstates |t, t3〉 with t = fixed and

~T 2 |t, t3〉 = t(t + 1) |t, t3〉,
T3 |t, t3〉 = t3 |t, t3〉, t3 = −t,−t + 1, . . . , t. (6.108)

Relation between ~T 2, Ta and Hα, E±α (α > 0), cf. (6.49):

T3 =
1

2
hα =

Hα

(α, α)
, T± = e±α =

√
2

(α, α)
E±α,

[T3, T±] =
1

2
[hα, e±α] = ± e±α = ±T±, [T+, T−] = [eα, e−α] = hα = 2T3.

⇒ ~T 2 = T 2
3 +

1

2
(T+T− + T−T+) =

(Hα)2

(α, α)2
+
EαE−α + E−αEα

(α, α)
. (6.109)

Since ~T 2 = t(t + 1) on the weight string, we get

EαE−α + E−αEα = t(t+ 1) (α, α)− (Hα)2

(α, α)
. (6.110)

Identify the state |t, t3 = t〉 with the highest-weight state |λ+ kα〉 of the string:

t |t, t〉 = T3 |t, t〉 =
Hα

(α, α)
|λ+ kα〉 = (α, λ+ kα)

(α, α)
|λ+ kα〉. ⇒ t =

(α, λ+ kα)

(α, α)
.
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⇒ Application of EαE−α + E−αEα to basis state |λ; l〉 ∈ V(λ):

(EαE−α + E−αEα) |λ; l〉 =
(
t(t + 1) (α, α)− (Hα)2

(α, α)

)
|λ; l〉

=

(
t(t + 1) (α, α)− (α, λ)2

(α, α)

)
|λ; l〉

=
(
k(k + 1) (α, α) + (2k + 1) (α, λ)

)
|λ; l〉. (6.111)

Note: k-value depends on l, k = kl, i.e. k differs for different |λ; l〉:

• nλ = (# states |λ; l〉 with arbitrary k),

• nλ − nλ+α = (# states |λ; l〉 with k = 0),

• nλ+kα − nλ+(k+1)α = (# states |λ; l〉 for given k = kl),

• nλ+kα = 0 for sufficiently large k.

⇒ ∑nλ

l=1 f(kl) =
∑∞

k=0(nλ+kα − nλ+(k+1)α)f(k)

Evaluation of remaining part of TrR(C)|V(λ):

TrR

(∑

α∈Φ
EαE−α

)∣∣∣
V(λ)

=
∑

α∈Φ+

TrR (EαE−α + E−αEα)
∣∣
V(λ)

=
∑

α∈Φ+

nλ∑

l=1

〈λ; l|EαE−α + E−αEα |λ; l〉

=
∑

α∈Φ+

∞∑

k=0

(nλ+kα − nλ+(k+1)α)
(
k(k + 1) (α, α) + (2k + 1) (α, λ)

)

=
∑

α∈Φ+

∞∑

k=0

nλ+kα

(
k(k + 1) (α, α) + (2k + 1) (α, λ)

)

−
∑

α∈Φ+

∞∑

k=1

nλ+(k+1)α

(
(k − 1)k (α, α) + (2k − 1) (α, λ)

)

= nλ
∑

α∈Φ+

(α, λ) +
∑

α∈Φ+

∞∑

k=1

nλ+kα

(
2k (α, α) + 2 (α, λ)

)

= nλ (2ρ, λ) + 2
∑

α∈Φ+

∞∑

k=1

nλ+kα (α, λ+ kα). (6.112)

4. Final relation upon combining (6.105), (6.107), and (6.112):

nλ =
2
∑

α∈Φ+

∑∞
k=1 nλ+kα (α, λ+ kα)

(Λ− λ,Λ+ λ + 2ρ)
. (“Freudenthal’s formula”) (6.113)
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Algorithm to determine nλ for known weights λ:

• Proceed recursively in increasing level of λ, starting with level 0: nΛ = 1.

→֒ R.h.s. of (6.113) can be assumed to be known.

• Evaluation of denominator of (6.113):

– Expand (Λ− λ) in terms of simple roots: Λ− λ = ciα
(i).

– Represent (Λ + λ+ 2ρ) in Dynkin basis: Λ + λ+ 2ρ = diΛ(i).
Use non-trivial relation for ρ: ρ = Λ(i).

⇒ (Λ− λ,Λ+ λ+ 2ρ) = ci d
j
(
α(i),Λ(j)

)
︸ ︷︷ ︸

= 1
2(α(i),α(i)) δij

= 1
2

∑r
i=1 ci di

(
α(i), α(i)

)
.

• Evaluation of numerator of (6.113):

– nλ+kα known from previous steps.

– (α, λ+ kα) calculable via (6.94):
(α, λ+ kα) = k (α, α) + (α, λ) =

(
k + 1

2
(p− q)

)
(α, α),

after reading p, q from weight diagram.

• Simple cases:
nλ = 1 if there is only one possibility to come to |λ〉 via E−αE−β · · · |Λ〉 with α, β > 0
(or via EαEβ · · · |Λmin〉).

Example of Section 6.5.1 reloaded: G2 representation with |Λ〉 = |1, 0〉.

A =

(
2 −3

−1 2

)
,

(
α(1), α(1)

)
= 3,

(
α(2), α(2)

)
≡ 1,

(
α(1), α(2)

)
= −3

2
.

• nλ = 1 obvious for all |λ〉 6= |0, 0〉.
• |λ〉 = |0, 0〉:

Denominator:
Λ− λ = Λ = 2α(1) + 3α(2),

(Λ + λ+ 2ρ) = (1, 0) + (0, 0) + 2 · (1, 1) = (3, 2),

⇒ (Λ− λ,Λ + λ+ 2ρ) =
1

2
(2 · 3 · 3 + 2 · 3)

(
α(2), α(2)

)
= 12.

6 numerator contributions from 6 positive roots α:

kα k p q (α, α) 2nλ+kα (α, λ+ kα)

α(1) 1 1 1 3 6

α(2) 1 1 1 1 2

α(1) + α(2) 1 1 1 1 2

α(1) + 2α(2) 1 1 1 1 2

α(1) + 3α(2) 1 1 1 3 6

2α(1) + 3α(2) 1 1 1 3 6

sum: 24 ⇒ n(0,0) =
24
12

= 2.
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