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“The universe is an enormous direct product of representations of symmetry groups.”
Hermann Weyl
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Chapter 1

Basic concepts and group theory in
quantum mechanics

1.1 Symmetry transformations in quantum mechanics

Classification of symmetry transformations:

e “Space-time symmetries™:
Changes of position or orientation of the observer by translations, reflections, rota-
tions, changing the state of motion, leaving the laws of physics invariant.

e “Internal symmetries™
Other changes in the qm. states (e.g. interchanging states or particles), leading to
physically equivalent systems.

Actions on states and observables

by symmetry operator U on states in Hilbert space H:

states 1)) € H L W) = Uly) € H,
expectation value (A), = (Y| A|Y) L) (AN = (Y| UTA'U ) = (A)y, V|Y) e H,

observable (—operator) A —— A’ = (UN'AU!,
ie. A =UAU" if U = unitary,

U !

Pow = (8] —— Py = [N = poy-
= probability to find |¢) in [¢) in
a measurement (||¢|| = ||¢|| = 1)
= U obeys
[(olv)] = [elUU) Vo), [v) € H, ¢l = ll¢ll = 1. (1.1)
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Wigner’s theorem  (non-triviall)
A symmetry operator U is unitary or antiunitary,

ie. U'U = 1 and U = linear or antilinear.
Examples:

e U = unitary: spatial translation 7', rotation R, time evolution
Ul(ty,to), space inversion P, etc.

e U = antiunitary: time reversal 7.

Properties of unitary symmetries:

e Symmetry trafos U form a math. “group” G.

— Groups are “discrete” (P, etc.) or “continuous” (“Lie groups”, e.g. T', R, etc.).

e Operator trafo: A — A’ = UAUT = similiarity trafo,
leaving eigenvalues of A invariant.

|

Symmetry: A =UAU" = A, U '=U"T,
ie. UA= AU, [A, U] =0.
= If |a) = eigenstate of A with eigenvalue a: Ala) = ala),
then all Ul|a) with U € G as well:
A(Ula)) = UAla) = a(Ula)). (1.2)

= Action of sym. ops. characterise eigenvalue spectra of observables,
in particular degeneracies.

e Lie group G: U =1U(b,,...,0,) = differentiable function of n = dim G real
“group parameters” 0,.

Infinitesimal parameters: (U(0,...,0) =1 by convention)
U6y, ...,60,) =1 —i60, X" + O(56%), (1.3)
U6y, ...,00,) =1 +i60,(X)T + ..., (1.4)
- U(60y,...,60,) ' =1 +100, X"+ ..., unitarity! (1.5)
= X% = (X9, a=1,...,n. (1.6)

— n hermitian operators,i.e. observables characterising the symmetry!

Summation convention: 06, X% =) 06,X%, i.e. summation over repeatedly
appearing indices in products is implicitly assumed.
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1.2 Group-theoretical definitions

Definition:

A “group” G is defined by a set of elements {gi,...,¢g,} with a mapping o : G x G — G
(“group multiplication”) obeying:

(i) g10(g2093) = (g10g2) 093 (associativity),
(i) dee G with goe=¢g Vge G (unit element),
(iii) Ve G Jg'e G withgogt=e (inverse element).
Consequences:
e jog=g0g9 = ¢ =g¢g2 (cancellation law),
e geG: eog=g, glog=e (9" =g
Further notions:

e (7 is “abelian” if gy 0 g = g2 091 V1,92 € G.

A “group homomorphism” is a mapping f : G — G’ from a group G to a group G’
that respects the group multiplication law, i.e.

flon oGgQ) = flg1)o f(g2) VYg1,92 €G. (1.7)
S eqG’ eG’

The set ker(f) = {g € G| f(g) = ¢ = unit element of G’} is called “kernel” of f.

e A bijective (injective and surjective) group homomorphism is called “isomorphism”.
Two groups G, G’ connected by an isomorphism are called “isomorphic” (G ~ G').

e The “direct product group” G x G’ of two group G, G’ is the set of all (g,¢'), g € G,
¢ € G’ with the multiplication

(91.91) © (92, 95) = (91 0 g2, g1 © g3)- (1.8)

e A group is called “discrete” if its (#elements) = |G| = ord(G) = “order of G” is
finite or countably infinite.
— Elements can be enumerated: g; = e, g2, 93, . ..

e In a “Lie group” G all elements U(0y,...,0,) are differentiable functions of n real
“group parameters” 0,, n = dim G = dimension of G.
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Examples:

e “Symmetric groups” S, of all permutations of (12 - -- n)
= group of order n! which is non-abelian if n > 2.

12 ...
Elements P € S,,: P = ( n) maps (12 ---n) — (mmy -+ ).
Ty =+ Tp

— All P’s can be written as products of “transpositions” F;
where m; = j,m; =1 and 7, = k for k # 4, 5.

sgn(P) = (—1)P = “signature of P” = +1 (“even”) or —1 (“odd”).
< p = (# transpositions) mod 2 needed to achieve P

“Cayley’s theorem™  Every finite group is isomorphic to a subgroup of .5,,.
e “Alternating group” A, = subgroup of S, (order n!/2) of all even permutations.

e “Cyclic group” ), = abelian group of order n generated by one element g:
Co={e=g¢"=g" 9" 0" ...9" '}

C,, realised, e.g., by rotations with angles k - 27”, k=0,1,...,n— 1, about a fixed
axis.

C realised by translations with vectors n - a, n € Z, with @ = fixed.
e GL(N,K) = “general linear group” over K = R, C

— group of invertible N x N matrices € K2
< Non-abelian Lie group of dimension N?(R) or 2N?(C) for N > 1.
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1.3 Substructures of groups

1.3.1 Classes

Definition:

Two elements a,b € G of a group G are called “equivalent” (a ~ b) if 3¢9 € G with
b= gag™'. The sets Cl(a) = {b € G|b= gag™'} are called “(equivalence) classes” for the
“(representative) element” a € G.

Some properties:

e “Equivalence” of group elements as in any set of elements:

— ‘“reflexivity”:  a ~ a,
— “symmetry> a~b = b~a,
— “transitivity: a~bAb~c = a~c

e Cl(a) =Cl(b) < a~b.
e The classes C; form a “partitioning” of G: G =JC;, C;NC; =0 fori # j.
Convention:  C; = {e} = class formed by unit element alone.
e In an abelian group each element defines its own class.
e Interpretation:  Two elements are equivalent if they have essentially the
same multiplication properties.
Example: Group of linear, invertible mappings in R?.
Two matrices A, A" are equivalent if they correspond to the same mapping A de-
scribed w.r.t. to two different bases {€;}, {€/} with €; = €/5;;:
ie. ZL‘; = Sijxj

In particular, rotations about the same angle, but any rotation axis are equivalent.

Example:

Group D4 = symmetry group of a square (edges A, B,C, D), generated by

p = rotation about 90°: A—-B—>C— D — A,
o = reflection about a symmetry axis: A<+ B, C <+ D.

= 8 elements {e, p, p?, p*, 0, po, p?o, p>c} with relations p? = 0 = (po)? = e.

= Hclasses: Cy={e}, Co={p,p*}, C3={p*}, Ci={o,p0c}, Cs5={po, pic}.
Note: D, (order 8) is a subgroup (conserving neighbouring objects) of Sy (order 24):

e = (ABCD), p=(BCDA), 0 = (BADC), p>* = (CDAB), ...
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1.3.2 Subgroups, cosets and Lagrange’s theorem

Definition:

A subset H C G of a group G is a “subgroup” if H is a group with the same product o
as G. The sets gH ={¢'|g' = gh, h € H}, g € G, are called “(left) cosets” of H.
“Right cosets” Hg are defined analogously.

Some properties:
e gH=gH < g/'go€H.

Proof: “=": Elhl, ho € H: g1h1 = g2h2 = g;lgz = hlhgl eEH
‘e gilgpeH = g'eH=H = gH=gH. #

e Only the coset hH = H, h € H, is a subgroup, since e ¢ gH if g ¢ H. (If e € gH,
then g is the inverse of some h € H and hence g € H.)
e All cosets have the same number of elements:  |gH| = |H]|.
Proof: Vg1,9o € H we have gg1 =992 < g1 = go.
= The mapping go : H — gH is injective. #

e Two left (right) cosets are either equal or disjoint.

e Corollary: “Lagrange’s theorem”
The order of any subgroup H of a finite group G divides the order of G.
The natural number [G : H| = |G| : |H| is called the “index of H in G”.

1.3.3 Invariant subgroups and factor group

Definition:

A subgroup N of a group G is called “invariant” (or “normal”) if N = gNg~! Vg € G,
written as N < G.

Comments:

e Equivalent definition: A subgroup is normal if the set of its left cosets equals the
set of its right cosets.
Proof: If aN = Nb for some b € GG, then a € Nb.
Since a € Na, NboN Na# () = Na=Nb = aN = Na.
Other direction: aN = Na = the sets of left and right cosets are equal. #

e A subgroup N is normal if it contains all g € G being equivalent to some h € N.

Definition:

Given a normal subgroup N of a group G, then the group of all gV is called the “factor
group” G/N.



1.3. Substructures of groups 11

Note: gN = Ny is essential that all g/N form a group:

(91V) (92N) = s1Ngo N = g1gaNN = (g1g2) N. (1.10)
Some properties:

e For a finite group G the order of a factor group G/N is equal to the index of the
normal subgroup N:

ord(G) = ord(N) x [G : N] = ord(N) x ord(G/N). (1.11)

e The mapping [ : G — G/N defined by f(g) = gN is a group homomorphism with
N =ker(f).

e “First isomorphism theorem”:

The kernel ker(f) of a group homomorphism f : G +— G’ is a normal subgroup, and
1(G) = G/ xer()).

Proof:

a) H = ker(f) is normal subgroup, since Vh € H and Vg € G we get
flghg™) = f(g) f(h) f(g™") = f(9)f(g™") = flgg™") = fle) =€
~~

—e!

= gHg ' CH.
gHg ' = H follows, since ¢, : H — gHg~ " with ¢,(h) = ghg™' is injective:

1— ghgg_l <~ h1 = hg.

ghig™
b) To show f(G) ~ G/H, define mapping F' : G/H — f(G) via F(gH) = f(g).
Such an F exists, because if g1H = goH, 3hy, hy € H with
gihy = goha, go = gyt = f(g2) = flgihahy') = fgr) f(hahy') = fg1).
—— —

Show that F'is an isonelgrphism: ’
Surjectivity:  For each ¢’ € f(G) 3¢ € G with ¢’ = f(g) = F(gH),
i.e. also some gH € G/H with F(gH) = ¢ .
Injectivity: If g) = ¢, for g1 = F(1H), g5 = F(g2H), we have
¢ =(91)7"95 = F(1H) 7' Fg2H) = f(91)7" f(92)
= flor ) f(g2) = flor'g2), ie  gi'go € H =ker(f).
= g1l =g H. #
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1.4 Group representations

Motivation:
represented as

Abstract symmetry trafo g € G ———————— operator U(g) acting on states [¢)) € H.

= Issues:

e Which states |¢)) are symmetry connected,
i.e. how are the subspaces Uy = {U(g)|?), g € G} characterised?

e Which types of U, do exist for given G?
e What are appropriate basis states |¢;) making the action of U(g) transparent?

— Answered by “representation theory of groups”

Definition:

A “representation D of a group G on a vector space V" is a homomorphism D : G — GL(V),
where GL(V') = “general linear group on V” = group of invertible linear mappings on V/,
with

D(g10g2) = D(g91) D(92) Vg1,92 € D, (1.12)
= In particular:  D(e) = 1 = unit operator and D(¢~') = D(g)~*.
Types of representations:
e dimD =dimV <oo: D(g) = matrices with the usual matrix multiplication.
e dim D = oo, but countable:  D(g) = infinitely large matrices,

Dy Dy
D= |Dy Dy ---|. (1.13)

e dim D = oo, not countable:
typical of “extended Hilbert spaces H” with improper states.

Example: functions ¢ (x) of z € R, T'(a) = translation by a constant «,

[e.9]

T(0) v(o) = vle —0) = 3 o (-ay ) (o) (1.14)

-~

— trafo represented by a differential operator
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Further notions:

e D is called “unitary” if D(g) = unitary Vg € G and V' is a unitary vector space.

D is called “faithful” if g; # go implies D(g;) # D(g2).
< D carries the full information of GG.

Note: If D # faithful, D(g) = 1 for some g # e.
Extreme case: D(g) =1 Vg € GG, “trivial representation”.

Dy and D, are “equivalent” (D ~ Ds) if 3 linear mapping S with

SDi(9)S™" = Dy(9) VgeG (common similiarity trafo for all g!) (1.15)

“Direct sum representation” D; @ Dy on V; @ V5 for two representations D; on V;:

Di@Ds(g) ([91), 102)) = (Di(g)lwn), Dalg)libn),  [us) € Vi,
<Dl<g> 0 ) <|¢1>> _ (zx(g)wn) (1.16)
0 Ds(g) |12) Dy(g)|ibs) ]

i.e. actions of Dy, Dy “blockwise independent”.

D is called “reducible” if 3 non-trivial invariant subspace V; C V' (V] # V), i.e.
D(g)v, € Vi Yge G, v €V (1.17)

Otherwise D is called “irreducible”.

In detail:

— D =reducible < 3 linear mapping S with

D@):S(Dl(g) X(g)> S VWgeG.

0 Y(g)
S can be determined by a basis change in V' so that
{ [O1)s o [Py )y [Prgst)ss - s |¢n)} = basis of V.
basis of V1

— D = irreducible & Vi = [D(g)|),ge G] =V V) € V with [¢) # 0.

The symmetry-connected vectors D(g)|¢)) of any [¢)) # 0 span the full repre-
sentation space V', i.e. symmetry trafos transform all basis vectors |¢x) of V
non-trivially into each other.

Basis of V' = {|¢1), ..., |¢n)} = “symmetry multiplet”.



14 1. Basic concepts and group theory in QM

e Finite-dimensional unitary representations are “fully reducible”, i.e. 45 with

D(g)=S5 _ St Vg€ G, DY =irreducible.

D (g)
(1.18)
Proof:

a) If D = irreducible, there is nothing to prove.

b) D = reducible. = 3 invariant subspace V; C V (V] # V).
D = unitary, i.e. 3 scalar product in V.
< Decompose V =V, @ Vi,

W) = ) + ), (@alyt) = 0.
~ —~~
eV evit
c¢) Show that Vi = invariant subspace:
(WilD(g)lvi) = (D(@)'er] i) = 0 V) €V, [¥1) € Vi
Q% ;/T

= D(g)li) € Vi

0 Ds(g)

D
= D(g) = ( ig) 0 ) in basis { |¢1),. -, [6n,), [Gnit1)- -, |6n) }-

VvV VvV
basis of V} basis of VlL

d) Repeat procedure for Dy and D if Dy or Dy is reducible.

e “Product representation” Dy ® Dy on V; ® V5 for two representations D; on Vj:
Di@Dy(g) ([0 @ ta)) = Di@)lé) @ Dalglea), ) € Vi (119)
——
eVi®Vse, dimVy ® Vo = dim Vj - dim Va
Note: Dy ® Dy in general is reducible even if D; are irreducible.
But: D; ® D, is fully reducible if D, Dy are unitary!
= J “Clebsch—Gordan decomposition”
Di®Dy = DV DPg...qe DU (1.20)

by decomposing the matrices Dy ® Ds(g) into irreducible building blocks D™ (g) by
an appropriate similiarity trafo:

DW(g) 0
D1®Dsy(g) = S 0 D) - |8 (1.21)
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Definition:  “Group characters”

The “character” xp(g) of a representation matrix D(g) of a representation of an element
g of a group G is defined by the trace of D(g):

dim D

xp(g) =tr{D(g)} = Z Dii(g). (1.22)

Some properties:

e Characters depend on the group G' and on the representation D(G).

Characters are functions of classes, i.e. if g1, go € Ci then xp(91) = xp(92) = xp(Ck)-
Proof: 3Jg € G with g, = ggag~'.

= xp(g1) = tr{D(g1)} = tr{D(9g29"")} = tr{D(9)D(92)D(g")}
= tr{D(g7")D(g9)D(g2)} = tr{D(9) " D(9)D(g2)} = tr{D(g2)}
= Xp(92)- i

Special case unit element:  xp(Cy) = tr{D(e)} = tr{1} = dim D.

Note:  Characters in general do not form representations,

since in general tr{AB} # tr{A} - tr{ B}.

But:  Determinants of D(g) form another (one-dimensional) representation:

det{D(g1)D(g2)} = det{D(g1)} - det{D(g2)}. (1.23)
e Characters of outer product matrices are products of characters of individual factors:
dim D1®D>
Xprons(9) = tr{(D1 @ Da)(9)} = D (D1 ® Ds)aalg)
a=1

dim D4 dim Do dim D4 dim Do
— Z Z Dyii(9)D2,3i(g) = ( Z Dm(Q)) (Z D2,jj(9)>
j=1 i=1 j=1

i=1



16 1. Basic concepts and group theory in QM

1.5 Implications for quantum-mechanical systems

Consider qm. system with Hamiltonian H with the symmetry group G:

[H,U(g)] = 0, g€ G, U(g)= symmetry operator on H, (1.25)
= unitary (antiunitarity only for time reversal).

= U ={U(g) | g € G} forms a unitary representation of G' on H.

= U is fully reducible, i.e. can be brought to block-diagonal form by an appropriate
choice of basis in H:

Ul(g) 0
Ug) = 0 U®(q) - |, U™ = irreducible representation of G (1.26)
: . (which can be the same for various r values),
dim U™ = n,. (1.27)
Consider an arbitray energy eigenstate |E,a), a =1,...,ng,

ng = degree of degeneracy of E.

= All U(g)|F,a) are energy eigenstates to energy F:
H(U(9)|E,a)) = U(g)H|E,a) = E(U(9)|E,a)), a=1,...,ng. (128

= U(g)|E,a) is linear combination of |E,b), b=1,... ng:
ng
U(g)|E,a) = Z |E,b) Dpa(g), normalisation: (E,a|E,b) = 6. (1.29)
b=1

= D ={D(g) | g € G} = ng-dim. unitary representation of G
on the “degeneracy space” spanned by {|E, a)}Z,.

= 2 possible cases:
a) D is one of the irreducible representations U™ of U.

= Degeneracy of states |F, a) is a consequence of the sym. group G of the system.

b) D is some direct-sum representation U™ @ U2 @ ... @ U"#) with dimension
NE =Ny, +Npy + -+ Ny

= Degeneracy between basis states (multiplets) of different U(#) blocks is
“accidental”; i.e. not implied by group G.

Note:  Most likely G does not exhaust the full symmetry of the system.
— Find larger symmetry group until no accidental symmetries remain.

= Block form of H:

I — 0  Epely |, (1.30)

with F, = E. (r # 1’) only for accidental symmetries.
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Reduction of symmetries

A ~

Typical case: H' = H + OH
~~~ ~~~ ~~
new Hamiltonian as above new contribution,

e.g., by switching on elmg. fields

Suppose §H does not respect the full symmetry group G.
< H’ has symmetry group G’ C G (G’ # G).

= Relation between irreducible representations of G’ and G?

e Representations of G automatically deliver representations of G':
U(G) — U(G") by subset of trafos.

e But: U(G’) in general is reducible, even if U(G) is irreducible.
Multiplet of U:

|11)
g € G’ only mix < : ) i
€ G mix all
subsets of [t) |¢nr) |§ka> in a non-
in a non-trivial Vs 41) trivial way.
way. < : )
an>

Less states |¢) are symmetry connected, i.e. degrees of degeneracy between energy
eigenstates can be reduced.
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Example: 2-dim. qm. harmonic oscillator

Hamiltonian for particle of mass m:

H= M + (wid® + w3g?) = Z hwy, (aTak + l) : (1.31)
2m 2 f k 2
Energy eigensystem:
ni,ne) = [na)na),  Jng) = (af)™ |0), ny,ny € N, (1.32)
H|ny,ng) = Ep nyna,m2), Eryng = hwi (n +3) + hws (no +3) . (1.33)

Symmetry and degeneracy:

e Symmetric case, w; = wy = w:

Ey\ vy = By = hw(n+1) with n = ny+ny is (n+1)-fold degenerate due to symmetry:

g (“1) = U( al), [H,0] =0, (1.34)

ag ag

Ul(o, 1, P2, ¢3) = e %o exp {—igror } = unitary 2x2 matrix, ¢y, € [0, 27).

U comprises:

— rotations about €, axis:  exp{—ig0},
— reflections v — —z, y — —y,
— phase transformations of az:  ay — e!(®3%%0) ¢

— complex transformations mixing coordinates and momenta.

Classification of states |ni, ng) by a maximal set of commuting symmetry operators:
E.g. take rotations about €, axis.

< Basis change {|ny,n5)} — {|n;m)’} to eigenstates of H and Ls:

H|n;m) = B, |n;m), Ls |n;m) = hm |n;m)’. (1.35)

e Unsymmetric case, wy # wy:

Symmetry reduced to two independent (commuting) phase transformations:

ar — e Pk ay, ¢ €[0,27). (1.36)

(o —

< Only “accidental” degeneracy for &L = rational.
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1.6 Schur’s lemmas

— Mathematical statements on irreducible representations D(G) on V:

(i) If there is a linear mapping S : V +— V with D(g) S = S D(g), i.e. [D(g),S] = 0,
Vg € GG, and if D is irreducible, then S = \ - 1.

(ii) If there is a linear mapping S : Vi — V5 with Dy(g) S = S Ds(g) Vg € G and if Dy,
Dy are irreducible, then either S = 0 or S = invertible (i.e. Dy ~ Ds).

Note:  Schur’s lemmas hold for vector spaces with dim < oo, and also for dim = oo if
the representations are unitary.

Proof:

(i) 3 eigenvalue A € C with eigenvector |¢) # 0:  S|i) = Ay).
(This step requires the unitarity of D for dim V' = o0.)
S (S— A1) D(g)|¥) = D(g) (S—\-DJ$) =0 Vg eG.
~— ——
=0
= D(g)|¢) are all eigenstates of S with eigenvalue .
But the eigenspace of A = V) = V', since D = irreducible.
= S=A-1
(i) K1 ={|¢p) e Vi|S|p) =0} = kernel of S
is invariant under Dy: V|¢) € Ky : S Di(g)|¢) = D2(g) S|p) =0 = Di(g)|¢) € K;.
Wa={I) € Va | ) = S|6).|) € Vi } — range of §
is invariant under Dy:  V|¢p) € Wy 1 Dsy(g)|v)) = Da(g) S|¢) = S Di(g)|o) € Wa.

Dy, Dy = irreducible. = K; =Vjor {0}, Wy =1V;o0r {0}.

a)K1:V1. :>W2:0,1€S:0

b) K; ={0}. = S = invertible, i.e. W5 # {0}. = Wy =15,
ie. dimV; =dimV,, S Di(g) S~ = Dy(g) Vg € G.
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“Inverse statement” to (i):

Let D(G) be a unitary representation of the group G. If [D(g),S] = 0 Vg € G implies
that S = A\ - 1, then D is irreducible.

Proof:  (indirect!)
If D = reducible, then D = fully reducible (since unitary) and 3 basis of V' so that

DW(g) 0
0 D®g) ... ...
D(g) = : : y Vg € G.
DU (g)
PYRE 0
= S= 0 )\2 1”2 ) )\1 # )\27 Obeys [D(g>7 S] =0.

Consequences for abelian groups:

All irreducible representations of abelians groups are 1-dimensional.

Proof:

[D(g),D(¢")] =0 Vg,¢' € G (= abelian).
= All D(g) = d(g) -1 if D = irreducible (Schur’s lemma).
—~—
eC
d(g) 0

But D(g)=| 0 d(g) ---| = irreducible only if dim D = 1.
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Example:  3-dim. representation of S5 (=non-abelian group of lowest order)

6 permutations of 3 objects ABC:  g123 = €, g231, 9312, G132, 321, G213-

Unitary representation via permutation matrices:

0 01
D(e) = ]]_3, D(g231) = 1 00 , ete (137)
010
] 1
Obviously an invariant subspace [ii;] is spanned by 7i; = % 11,
i.e. D is reducible. 1
1 ! 1 !
<« Choose new basisof V=R3: 7, fo=—| 1|, f3=—1] 1
1 2 NG 3 NG
0 —2
1 00
SD(g)S™' =10 _, ) S = (71, 19, 713) = unitary. (1.38)
D'(g)
0
This defines a new 2-dim. representation D’:
R
D'(e) = 15, D'(ga31/g312) = :i:i _i ;
2 2
+1 43 -1 0
D’ — [ "3 T2, D’ - . 1.39
(9132/9321) (i@ _% ) (9213) ( 0 +1) ( )
Check (ir)reducibility of D’ via inverse of Schur’s lemma:
t t
Ansatzz T = | " 7|
o1 a2
T, D 20 =ty =ty =0.
T D'(g213)] | v = T L. (1.40)
[T, D'(ga31)] = 0 = t11 = to.

= D’ = irreducible.
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1.7 Real, pseudoreal, and complex representations

Let D(G) be a representation of some group G.
= The set D(G)* of complex conjugate matrices forms another representation.
— Question: Is D(G)* equivalent to D(G) or not?

Definition:
Let D(G) be a unitary, irreducible representation of the group G.
(i) D(G) is “complex” if D(G) and D(G)* are not equivalent.
(ii) D(G) is “real” or “pseudoreal” if D(G) and D(G)* are equivalent:
35 with D(g)*=SD(g9)S™" VgeQG. (1.41)
D(G) is real/pseudoreal if ST = +5.

Some important properties:

a) D(G) is complex. < Not all characters are real.
— This obviously identifies complex representations, and xp+(g) = x7(9)-

b) If (1.41) holds, then ST = +S.
Proof:
Use unitarity of D(g), so that D(g)* = D(g~")™:
Ot =

( (g~ H* )T = (S D(g™) S_l)T, (1.41) for g1

D(g) = D(g~
= (S " D(gHT ST = (ST D(g)* ST, unitarity of D(g)
=(s)'s ( )S7hst
=(57'5") " Dlg)sT' ST =M"D(g)M,  M=5"S"
= [M,D(g)] =0 Vg € G and thus M = X - 1 according to Schur’s lemma.
= ST =)\5=\5T, N =1, = +1. 4

c) If D(G) is real /pseudoreal, S can be chosen unitary.
Proof:

Again based on unitarity of D(g):
S=D(g7")"SD(g), S"=D(9)'S"D(g™")"
= D(9)S'S=D(g)D(g)' " D(¢")" D(¢7")* S D(9) = S'S D(g).
=1 =1
= [S1S,D(g)] =0 Vg € G and thus STS = o - 1 according to Schur’s lemma.

— Redefine S — S/4/0, so that STS =1 and S~1 — S~1/\/o,
i.e. (1.41) stays intact. o
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d)

If the representation D(G) is real, then all D(g) can be chosen real.
Sketch of proof:
According to b) and c), (1.41) holds with some symmetric and unitary S.

— 3 symmetric and unitary matrix T with S = T2 (proof — linear algebra).
Define new representation D'(g) =T D(g) T, so that (T'=T7T, TT = T*)

D'(g)=(TD(g)T™") =T"D(g)'T =T"SD(g)S™' T
—T*T TD(g)T* T"T = D'(g),
—~ I~~~

-1 _py -1

i.e. D'(g) =real Vg € G. #

For real/pseudoreal D(G), there is a bilinear invariant product (.,.):
(r,y)=2"Sy, =z,yeV, (1.42)
(z,y) = (D(9)z, D(g)y) Vg€ G (1.43)

Proof:
Use unitarity of D(g), so that D(g)T = D(g71)*:

(D(g)x, D(g)y) = =" D(g)" SD(g)y = 2" D(g~")* SD(g)y
=SD(g ")s!

=2 SD(9) " D(g)y =" Sy = (x,9). #
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Chapter 2

Finite groups

2.1 Multiplication tables

Recall the cancellation law: If a,b,p € G and pa = pb (or ap = bp), the a = b. Proof:
multiply by p~! from the left (from the right). This implies the “rearrangement lemma’:

o If {g1,92,...,9n.} are the elements of a finite group G of order ng, then Vp € G,
{pg1. 092, - - PIne } = {90001, Gop(2)s - - - » Gop(ne) } 18 @ permutation o, of the elements.

o Ifa#e, o,(k) # kVE.

= the permutation leaves no element invariant.

All possible products of two elements can be written as an ng X ng table:

gl = e o .. gj P gnG
gl = € e o .. g] P gnG
9i 9i 9i9; 9i9ne
Ine Ine e Ina9j e IngYneg

e The multiplication table characterises the group completely.

e In each row and in each column, every group element appears exactly once, i.e. each
row and each column is a permutation of the elements of the group (rearrangement

lemma).
= Cayley’s theorem: every finite group of ng elements is isomorphic to a subgroup

of the permutation group S,,,.

Examples:

In the case of groups with 2 rsp. 3 elements, the multiplication tables are unique (we leave
out the redundant first row and column):

25
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e A B
e A
Cy ~ Ss: sp. Cs: |A B e
A e
B e A
In the case of 4 elements, there are two possibilities:
e A B C e A B C
A C B A B C
Cy ® Cy: ¢ and Cy: ¢
B C e A B C e A
C B A e C e A B

Choosing AA = B fixes the table immediately. The case AA = C' is redundant, because
relabelling B and C' shows that this is the same case as AA = B. Choosing AA = e still
leaves the options BB = e and BB = A. But BB = A is equivalent to the case AA =B
upon relabelling A and B.

A compact way to characterise a finite group is to define its generating elements, i.e.
the elements from which all other elements can be constructed by multiplication.

Examples:
e (C4: All elements are generated by a single element A: (A|A* = ¢),
o (, ®Cy: (A B|A*> = B*=¢, AB = BA).

This is called a presentation. General form: (generating elements|relations).

2.2 Unitarity theorem

Theorem: All representations of finite groups are equivalent to unitary representations.

Let D(g) be a representation on a vector space V and define H = 3_ D'(g)D(g). Prop-
erties:

e Di(¢)HD(g') =3, D'(¢g")D'(9)D(9)D(¢") = >_, D' (99')D(99') = H
(rearrangement lemma),
e H is hermitian, H = HT,
e V eigenvectors |h;), (h;|h;) = 1, with eigenvalue h;, i =1,...:
= (hi|H|hi) =) _(m|D'(9) Z ID(g)|ha)[* > 0. (2.1)
9

= All eigenvalues h; of H are positive.

e J unitary P such that H = PTdiag(hy,...)P
— H = S'S with § = diag(v/Trr, ... ) P.
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The representation U(g) = SD(g)S™! is unitary and U ~ D:

(UM (9)U(9)ly) = (z|(S7)'D(9) §'S, D(9) S |y)
= (|(ST) HS|y)
= (2| (S7)1ST S5 y) = (aly) V]a),ly) € V. (2.2)
~——

=(SS-1)t=1

Note that this theorem is not limited to irreducible representations.

2.3 Orthogonality relations

2.3.1 Orthogonality of irreducible representations

Theorem: Given two irreducible representations D*(g) and D"(g) of dimensions d,, and
d,, the representation matrices fulfil the relation

o D), D) = Lo (D= (D)) (2.3)

Proof: For an arbitrary d, x d, matrix X, define

A= ZDT )X D"(g). (2.4)

Then (— rearrangement lemma),

Di(9)AD"(g (ZDT NXD"( ))D” ZDT (¢'9)XD"(d'g) = A. (2.5)

Since G is a finite group, the representation matrices can be chosen unitary, Dl(g) =
(D)~ (g). According to Schur’s lemma, we need to distinguish two cases,

e 1 = v (i.e. if the representations are equivalent): A = A1, A € C, or
o n#v: A=0.
Choose the matrix X as (X]k)mn = 5}”55 for fixed 5 =1,...,d, and k =1,...,d,,

Z Di(g)' D*(g)", = Di(9)’.D"(9)". (2.6)

Since (A;?)il = 0 in the case p # v, this proves (2.3) for p # v. If u = v, taking the trace

of
(AbY = Mo = Z Di(g
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gives
i _ NG ok
Nyd, =Y (D"(g)D Z(Sk =ngdf = (AY) = T skor, (2.7)
g
which proves (2.3) for p = v. #
{D"(g1)'5, -, D“(gng)ij} can be regarded as a vector with ng components. For each
irreducible representation p there are di such vectors labelled by ¢, 7 = 1,...,d,. In total,

summing over all irreducible representations, there are » i di vectors. According to (2.3),
these vectors are orthogonal and, hence,

> & < ng, (2.8)
nw

because there can be no more than ng orthogonal vectors with ng components. In Section
2.3.3 we will show that this is actually an equality.

2.3.2 Orthogonality of characters

Representations are only unique up to similarity transformations (= basis choice).
= Take traces of the representation matrices to obtain relations for characters which are
basis independent.

Set i = 7, k = in (2.3) and sum over i, k:

Z Di(g9)'.D"(g 5”5k5k
Z = Z X,.(9 - nG(SZ
& Z nex;,(C = ngd,, (2.9)

where ne is the number of group elements in the class C.

Application: Calculate to which irreducible representations a given (reducible) repre-
sentation reduces.

The characters x(C) of a reducible representaion are given by
=> m.x"(C), (2.10)
m

where n,, is the number of times the irreducible representation ;1 appears in the reducible
representation.

Calculate n, for a given representation:

chX;(C)X(C) = ch Z%XZ(C)XV(C) = Znyngéz =ngny,. (2.11)
C C v v
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= Check whether a representation is reducible:
Z nex*(C)x(C) = Z ne Z n,1, X, (C)X"(C) = Z nunyneo, = ng Z n,.  (2.12)
C C 187 v 1

If this evaluates to ng, the representation is irreducible, because » i ni = 1 if all irrede-
ducible representations except one do not appear and one appears once.

2.3.3 Regular representation
The group multiplication can be written as
agi = Ga; = Ym0, a, gi, §a; € G. (2.13)

gm0, is an element of the group ring C[G].

C|[G] is the set of all complex linear combinations of group elements g %99: %29 € C,
g € G. (new structure beyond the group structure!) with product structure derived from
the group multiplication (multiplication is distributive wrt. addition).

For ab = ¢, a,b,c € G:
abg; =cg; < gk & =gioh = OF & =6F, (2.14)
which means that the matrices
D*¥(g)', = 0, (2.15)

form a representation of G, namely the regular representation.

For g # e, D*(g) permutes the group elements in a way that leaves no element
invariant (rearrangement lemma),

e D™%(g) is an element of the defining representation of the symmetric group S,,..

Characters of the regular representation: x™¢(e) = ng, x"®(g # e¢) = 0.

>, M = ng. Proof:
Y 1eXe(CXE(C) = (X(€)) = 1. (2.16)
c

On the other hand, (2.12) gives

Z e Xreg (C)X#(C) = ng Z ni = Zni =ng. # (2.17)
c Iz

I
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e Each irreducible representation p appears n, = d, times in the regular representa-
tion. Proof:

chxu X (C) = X (e)x"*®(e) = dunc- (2.18)

On the other hand, (2.11) gives

chxu XEC) =nen, = nu=d,.  # (2.19)

This also proofs the equality >, a2 =ng (cf. Eq. (2.8)), i.e. according to (2.3) there are
ng orthogonal non-vanishing vectors {D*(g1)"}, ..., D*(gng)’;} with ng elements. This is
only possible if the set of vectors is complete, hence,

dy
Z Z duDu@)ljDL(gl)Ji = nglg,g - (2.20)

root,j=1

The sum of all representation matrices in a class (“class sum”) is proportional to 1:

DH(C) = ZC X*(C)1, where DM(C) =Y D*(h). (2.21)
heC
Proof:
D"(g)D*(C => DX ghg =Y DMI')=D'(C) VgeG. (2.22)
heC h/ec h'eC

According to Schur’s lemma, D*(C) = A*1. Take the trace to determine \*:
Te{D"(C)} = M Tr{l} & nex"(C) = \d,, (2.23)

which proofs (2.21). #
Summing (2.20) over group elements g € C and ¢’ € C’ of classes C, C’ proves the
completeness of characters:

ZZZZdDN J_ZznGégg

gECgEC’ wooi,j=1 geC g’'eC’
= Z Z d 'D“ ) = nGncéacl
pnoot,j=1
dy n
= Z Z d,. dz (C)‘SZ — *(C )0 = ngnedecr
noot,j=1
<~ nN¢ Z X“(C)X;(C’) = ng(sac/. # (224)
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2.3.4 Character table

The character table lists the characters of all classes C;, i = 1,..., N, (N, = number of

classes) for all irreducible representations y,., r = 1,..., Ng (Ngr = number of irreducible
representations) of a group G.
G | C={e} Cs o Cn,
po | xM(C) o x(C) ..o XM(C)
pe | x2(C) x(C) o X(Ch)
png | X*Nr(Cr)  x"Ne(Ch) .. XMVe(Cw,)

Regard all classes as a vector of V. elements:
The Ng vectors of N, elements {x*(Ci),...,x*(Cn.)} of the normalised characters

X'(C) = /#£x"(C) are orthogonal (2.9) and complete (2.24)

= Nrp=N,, (2.25)
i.e. the character table is square. In other words, there are always as many inequivalent
irreducible representations as there are classes.

Further properties of characters:

o If x*(e) =d, =1, then |x*(C)| =1 for all classes C.
Proof: x*(e) = 1 means that the corresponding representation D*(g) is 1-dimensional
= (D'(g))'D*(g) =1 = "9l =I[D"g)l=1 #

e Y"(g7!) = (x*(g9))*. In particular, if g, ¢! € G, x*(g) is real.
Proof: D*(g) is unitary = V eigenvalues A\, k =1,...,d,, of D*(g): |\¢| = 1.
XM(g) = Te{D"(g)} = >4 M,
X7 =Te{D (9)} = 20 /A =2 A = (X"(9))"- #
Example: Character table of the quaternionic group )
The quaternionic group () is defined by the presentation

Q= (i, jli* =e,i® = j° jij ' =i"). (2.26)

It consists of the 8 elements

x>

{ee,i,i=kj,j,j =ik, k k= ji}

that satisfy i? = j2 = k* = ijk = €, and € commutes with all elements (derive this from
the presentation!).
The regular representation decomposes as

ng=8=> dy=1+1+1+1+4 (2.27)
w
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into four 1-dimensional and one 2-dimensional irreducible representation. The decom-
position 8 = 1+1+1+4+1+1+ 141+ 1 is not possible, because @ is not abelian:
ijk=¢e=1ij=k+# k= ji.

= ¢ and € are the only elements that commute with all others and &% = e.

= C; = {e}, C; = {€}, and C3, C4, C5 must have 2 elements each. )
kik = jiik = ei =i~ =i = C3 = {4, 1}, analogously Cy = {j,j}, C5 = {k, k}.

So far we can tell that the character table has the form

Q |CG={e} CG={e} CG={ii} C={jj} C={kFk}
pw=1 1 1 1 1 1
p=2 1 X2,2 X2,3 X2,4 X2,5
p=3 1 X3,2 X3,3 X3,4 X3,5
p=4 1 X4,2 X4,3 X4,4 X4,5
p=>5 2 X5,2 X5,3 X5,4 X5.,5

Character completeness for Cs:

!
e ZX“(C:s)XL(Cs) = 2(1+ |xaal” + [xssl” + [xasl” + [xs5.3°) = ne = 8. (2.28)
“w
For 1 = 2,3,4, |xu3| = 1, because x*(e) =1 = x53 = 0.
Analogousy, Xx54 = X55 = 0.
Character orthogonality between p =1 and p = 5:
(2.29)

ZHCXT(C)XS(C) =24 X5, =0 = Xs52 = —2.
c

Character orthogonality between = 2,3,4and =5 = X22 = X32 = X42 = 1.

The remaining characters have |x,.| =1, p = 2,3,4, ¢ = 3,4, 5, because x,; = 1, and
must be real, because each class contains the inverses of its elements, hence x, . = £1.

Character orthogonality
= for each =2, 3,4, two of the remaining characters must be —1, one +1.

The complete character table is thus

Q [{e) (& (i} ) (kK
p=1] 1 1 1 1 1
p=21 1 1 1 -1
p=3] 1 1 -1 1 1
p=4] 1 1 -1 -1 1
w=>5\ 2 2 0 0 0
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Example: Degeneracies in coupled classical harmonic oscillators

System of N point particles of masses m;, @ = 1,..., N at positions &; in d dimensions,
coupled by springs of spring constants k;j, 2,7 =1,..., N, 7 > j.
: 1 sy 1 L a2
Lagrangian: L= 5 Z My =5 ; kij(Z; — @5)*.
i 1>]

Equation of motion can be written as

Tq = — Ky, a=1,...,Nd running over all coordinates. (2.30)

Ansatz: z,(t) = X, e“".
= Squared eigenfrequencies are given by the eigenvalues of the matrix K.
Symmetry: let the system by invariant under x — 2’ = D(g)z,
where D(g) is an Nd-dimensional representation of a group G, g € G.
= 1’ also solves the EOM (2.30) = D(g9)K = KD(g).

Use Schur’s lemma:
e ( has irreducible representations o of dimension d,,, p=1,....

e If the (in general reducible) representation D(g) reduces to n; times p = 1, ny times
=2, ..., then K has the diagonalised form

Kdiag = dlag ((w§1))21d17 ceey (w§nl))2]ld17 (wgl))21d2)7 cety (w§n2))21d27 s ) (231)

Special case:

N = 3 particles of identical mass in d = 3 dimensions, coupled by identical springs.

= Symmetry transforms the coordinates under a Nd = 9-dimensional representation
D(g) of the symmetric group Ss (rsp. D3, because S5 ~ D3). Need the character table of
Ss (prove this!) and the characters of the representation D(g):

So= Dy | G = {e} G —{(123),(132)} Cs—{(12),(23), (31)}
ne 1 2 3
w=1 1 1
w=1 1 1 -1
=2 2 -1 0
D(g) 9 0 3

The characters of D(g) are easy to find:
e x(¢) = dim(D(g)) = Nd = 9,
e x(Cy) = 0, because the elements of C; leave no coordinate invariant,

e x(C3) = d = 3, because the elements of C3 leave the coordinates of one particle
invariant and permutes all others.
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Use (2.11) to calculate how often each irreducible representation appears in D(g):
IZ “(CO)x(C) = 1(1 1-942-1-0+3-1-3)=3
n, — — n nG = — . . . . . . —
“w ne - CXH X 1 6 )

1
e =(1-1:9+2:1:0+3:(-1):3) =0, (232)

1
my=(1-2:942-(~1)-0+3-0-3) =3

We expect three 2-fold degeneracies and three non-degenerate modes.

But: This includes the “zero modes”, i.e. modes with w = 0. These are not all symmetry
connected by S3, hence, there are accidental degeneracies (— space-time symmetries).
With some physical intuition, we can identify the modes.

Zero modes (w = 0):
e 1l-dim: translation orthogonal to the plane spanned by the particles,
e 2-dim: translation within the plane,
e 1-dim: rotation around the symmetry axis,
e 2-dim: rotation around the two other axes.

Oscillation modes: T

e l-dim: “breathing mode” J&l

- ~ )

e 2-dim: two degenerate oscillation modes % %\

N KK



Chapter 3
SO(3) and SU(2)

3.1 The rotation group SO(3)

Definition:
SO(3) = Lie group of all rotations in 3-dim. space.

Defining representation R in 3-dim. vector space V =R3: ¢ — o' = Rv, o€ R3,
with the two requirements:

25Ty =i"RTR¥, RTR=1 (detR = =1), (3.1)

@' (Fx W) =i (7 x @) = (Rid) - (RT x R¥) =det R @ (6 x @),  det R = +1,

i.e. R preserves orientation of 3 vectors. (3.2)

= SO(3) = { 3x3 matrices R | R real, R"R =1,det R = +1}.

Infinitesimal rotations:

R=1+06R, 1= (1+6R)"(1+06R)=1+0R+6RT +OR),
i.e. S RT = —§R, antisymmetry.

Note:  No restruction on §R from det R = 1, since real orthogonal R with
det R = —1 cannot be obtained from 1 by continuous deformations.
B 1 0R1» O0R3 1 —d0603 96,
= R(OO)=1+0R = 1 R | = 1 =06 (3.3)
antisym. 1 antisym. 1
=1+60 X, 06, = angle for infinitesimal rotation around €, axis
=160 - JI), dim SO(3) = 3 = # group parameters 0,,.

JUW) = generators of SO(3), spanning the Lie algebra so(3)

= “angular momentum operator”.

35



36 3. SO(3) and SU(2)

— 3-dim. “defining representation” R of J:

00 0 0 0 i 0 -1 0
KP=100 <), KP=fo oo, HV=[i 0 0 (3.4)
01 0 -1 0 0 0 0 0

Basic commutators of J, (“Lie algebra”) by identifying J, = J in defining repr.:

[Ja, ] = iz €abe e, verified by explicit calculation, (3.5)
c but valid in all representations!
Specifically, (J(gR))bc = —i€qp 18 given by the structure constants €, of so(3) and therefore

called “adjoint representation”.

Finite rotations:

0

R(é) = exp {—ig- ﬂR)} , 6= |6, | = 6= rotation by angle 6 aroung ¢, €2 = 1.
05

Properties: (3.6)

e R(0) = 1, identity.

—

e R(0) with 0 < 6 < 7 are different for different axes €, é”.

e R(0) with § = &, 7&” are different iff & # +&, i.e. 7€ and —€ are identical.
— group parameter space of SO(3)

= sphere of radius m with antipodal points on its surface identified

= RP? (“real 3-dim. projective space”).
Note:  RP? is “doubly connected”, i.e. 3 two inequivalent classes of closed curves,

where two curves are equivalent (“homotopic”) if they can be continuously
deformed into each other.

—

2 examples of inequivalent closed curves 0(s) L e3 (0 <s<1):

A A
02 92
™ ™

N [

Q] " : o

R(0(s)) ~ R(0) =1 R(0(s)) ~ R(0) =1
f(s) can be deformed into R(0) = 1.  6(s) cannot be deformed into R(0) = 1.

\
\
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Explicit form of R(f): (straightforward exercise!)
R(#) =cosf-1+4 (1 —cosf) &~ +sinhex, (3.7)
=é&Re — cross product
R(g)ab =080y + (1 — cos ) e,ep, — sin @ Z €abeCo- (3.8)

Alternative parametrization via “Euler angles™

— Decomposition of rotation around ¢ into 3 standard rotations:

R(a, B,7) = Rs(a) Re () Rs(v) (3.9)
Rj(¢) EE(cpé}) = rotation by angle ¢ around €
cosa —sina 0 cos 0 sinpg cosy —siny 0
= |sinaa cosa 0 0 1 0 siny cosy 0],
0 0 1 —sinf8 0 cosf 0 0 1
0<a<2m, 0<p<m, 0<~v<2m.
Relation between «, 5, and i (straightforward exercise)
cos @ = cos 3 cos> <OZ—2PV) — sin? (a—;—fy) , (3.10)
cos?(3/2) sin(a + ) sin (3 (siny — sin «) . sin 3 (cos o + cos7y)
63 — = 9 =

sin 6 ’ ! 2sin f ’ 2sin #
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3.2 The group SU(2)

Definition:
SU(2) = { 2x2 matrices U | U complex, UTU =1, detU = +1}.

Transformations, generators, Lie algebra:

Parametrization of U (5 ) by real group parameters 6= (01,...,0,)T and generators T
U(f) = exp{—if - T} —1—i0-T+..., (3.11)
U@ = exp{if - T} =1+i6-TT+ ..., (3.12)
UG)™" = exp{if - T}. 1410 T+...=14+i0- T+ ..., (3.13)
(3.14)

det U(0) = exp{—if - Te(T)} =1+if-Te(T)+... = 1.

—

= Conditions on 2 x 2 generators T = (T1,...,T,):

T,=T — Tu(T,) =0.

= n = 3 independent T,’s, usually chosen as T, = %aa:

0 1 0 —i 1 0 . .
o = , o9 =1 , 03 = , “Pauli matrices”.
10 i 0 0 -1

Lie algebra su(2) = so(3) (by explicit calculation):

[Taa Tb] =1 Z Eabc,-z—‘ca
Note:  su(2) =so(3) = {>_, caTs | ca € R} = 3-dim. Lie algebra over R,
sl(2) ={>_,cilu]|ca € C}, = 3-dim. Lie algebra over C.

Finite group transformations:

1 —isinl(€-7), H=6¢

U() = cos &

2

SU((2) = {U(g) |0 <6 <2m, &€ S* = unit sphere in R*}.

(3.16)

(3.17)

(3.18)

(3.19)

— Group parameter space = compact ball By, of radius 27 in R? (singly connected).
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Relation between SU(2) and SO(3):
e su(2) =so(3) = SU(2) and SO(3) are locally isomorphic.

e But: SU(2) and SO(3) are not fully isomorphic, since group parameter spaces are
not isomorphic (connectedness!).

e Precise relation obtained by inspecting the group homomorphism
F:SU@2) = S0@3), f (U(§)> — R(A), 0¢€ B, (3.20)

Determine kernel of f:  R() =13 < =0V 21 < U = +1.
— ker(f) = {£1} ~ Zs.
= SO(3) ~ SU(2)/Zy according to first isomorphism theorem (Section 1.3.3).
Correspondence: R <« {U,—U},

i.e. SO(3) is multivalued on By, and SU(2) doubly covers SO(3).
SU(2) = “universal covering group” (simply connected) of SO(3).

e [mplication on representations:

— Each representation of SO(3) defines a repr. of SU(2), where D(27¢) = 1.
— Only representations of SU(2) with D(27€) = 1 define reprs. of SO(3).

— Representations of SU(2) with D(27€) = —1 define “ray (or projective) repre-
sentations” of SO(3), which define D(g) for g € G only up to some constant:

D(g) D(g") > D(gg').

Comment: Ray representations are “good enough” to describe symmetries in QM,
because qm. states are “rays’ (=states with arbitrary normalization and
phases) in some Hilbert space.

SO(3):  group of rotations in classical physics,
SU(2):  group describing rotations in QM.
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3.3 Irreducible representations of SU(2) and SO(3)

Irred. representations of su(2) and so(3):

— known from eigenvalue problem of angular momentum in QM:

For each j = 0,%,1,2,... 3 (2j + 1) simultancous eigenstates {|j,m) [m = —j,...,j} of
Js and J2, which span some (2j + 1)-dim. vector space V)

Js |j,m) = m|j,m),

T2 gm) = (G + 1) ljm),

Telism) = Vi +1) = mlm + 1) [jm + 1),

T-1gim) = V3G +1) = m(m = 1) [j,m = 1), (3.21)

with the “shift operators” Jy = J; +1J, obeying
s, Ju] = 0o, [Je,J] = 25 (3.22)
Note:  J2 = “Casimir operator”, i.e. [J2,J,] =0, but J2 ¢ su(2).

= Each j defines a (24 + 1)-dim. representation DU):

1 0 :

: : 1
Jéj):dlag(],]—l,...,—j), (ﬂ])) =j(j+1)1,

0« 0 ... 0 0 0

0 x * 0
g~ | : o i, 9= =10« 0 ] (323)
% : '
0 0 0 x 0

Features of DU):

e Consider su(2) as vector space spanned by basis {J3, J,, J_}.
— Brackets [J,, X] € su(2) act as linear operator (matrices!) on X € su(2).

< The matrices ad;, = [J,, .| define a 3-dim. repr. of su(2) on the vector
space su(2), which is identical with the adjoint prepresentation:

[adJa, ade] = Z iEabc adJc (324)

Note:  The basis {J5, J, J_} is very special:

— Js is diagonal:  ady(X) = [J3, X| = f(X) X.
— J4 are nilpotent: ad?,i(X) = [Jy, [Js, [Jx, X]]] = 0.
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e [rreducibility:

Js3 J3 J3

F e P e P BN /

14:3) 4,7 =1) 14,7 =2) IJ, —J)
\J+/ \J+/ \J+/ \J+/

All basis states |j, m) can be obtained from a single state upon applying (J1)", e.g.

gom) o (Y gy, (W) ) = 0. (3.25)
—— ~—~—
state of “weight” m state of “maximal weight”

Example: j=1.
e Generators:

Jél) = diag(1,0, —1), (f(l))Z =2-1

, 10 ) 000
JYV=v2lo o 1|, JY=v2|10 0],
000 010
1 (010 1 (0 -1
JV=— 1|10 1], i 0 —i (3.26)
V2\o 1 0 V2o i
e Relation to 3-dim. defining representation R of so(
00 O 0 0 i 0 —1 0
JP =100 -i|, JS¥=10 oo, JP=|i 0 o (3.27)
0 i O -1 0 0 0 0 O
Check whether D™ and R are equivalent:
JR L g g g1, (3.28)
1. Diagonalize JéR)
— S = (ry, M9, M3), 1, = eigenvectors of J:)ER),
Qidl 1 5 0 oids 1 (329
ﬁl = s ﬁg e'? 0 s ﬁg = —1]. 3.29
2 2
V2 0 1 V2 0
2. Check whether phases J, can be chosen so that (3.28) is valid for a = 1, 2.
< Answer: yes! 1= —¢el% = ¢l%2 = ¢l%,
—1/v/2 0 1/V2
= S=|-i/V2 0 —i/v2]. (3.30)
0 1 0

= (3.28) holds, i.e. R ~ DW
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Irred. representations of SU(2) and SO(3):

< obtained from DY) representation of the generators J,:
DY (F) = exp{—igj(j)} =(2j 4+ 1) x (25 + 1) matrix
D(j)(g)m’m = (J, m/‘ exp{—i@if} |, m

Here Euler angles are particularly convenient:

D9 (@, B,7)nm = (G| exp{~ia 1} exp{ =18 17} exp{~iv I} j.m

_ oimla—imy \<‘7’ m’| exp{—iﬁ J2} lJ,m

=dY) (p), “Wigner’s d-functions

Properties:
e Irreducibility of DY) follows from irreducibility of J9.

e Explicit closed form:

k

allk e Ngwith k< j+m, k<j—m',k>m—m

)

Possible proofs are based on:
— d(f) as normalizable solutions of the differential eq.

d? d  m?2+m? —2mm’ cos B
+cot f— — —
dﬁQ dg sin” 3

which is related to the Jacobi differential eq.

+J0+ 1)} d(B) =0,

— Analysis of “Schwinger’s oscillator model” of angular momentum.

e DY(a,3,7) = unitary matrix,

dfj)m(ﬁ ) = real orthogonal matrix (clever choice of Euler rotations!).

e Symmetries: d%?m(ﬁ) = (=1)m™ dfflzn,(ﬁ) = (—1)m d]) (8).

—m/,—m

e Orthogonality:

/ da/ dﬁsmﬁf d’ny,Zlml B)” mm( ,B.7)

Haar measure of SU(2

872

= G im0

- 192 9mima 9m/ m/ -
2j; +1 7Y -

(G+m =Kk —k—m)(k—m+m)!

(3.33)

(3.34)

(3.35)

(3.36)
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e Global properties and action on states [¢) € V1)

representation for
DY) in SO(3)
D@(F) in SU(2)
D) (2mé) ) =
D) (4mé) ) =

state =

i=0,1,2,...

single valued

single valued

+[¥)
+[¥)

bosonic

_ 13
.]—5,57...

double valued

single valued

—[¥)
+[¥)

fermionic

43
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3.4 Product representations and Clebsch—Gordan de-
composition

Qm. problem of addition of angular momenta:

Consider a qm. system of 2 independent components (e.g. 2 particles) with angular mo-
menta Ji (k= 1,2) each, i.e.

T2k m) = Gk + 1) 5k, mu), gk =10,3,1,- - = fixed!
T3 1 Jes M) = My | Ji, M), My = —Jks —Jk + 1,0, s
[J1.4, J25) = 0, independence of 2 components! (3.37)

= Product basis of Hilbert space H: |1, j2;m1, ma) = |1, m1) ® |2, ma).
— (251 + 1)(2j2 + 1) states

Problem:

Express eigenstates [j, m) of total angular momentum J = J; + Jo(= 41 @1+ 1® Jo)
T2 1jym) = j( +1) j;m), j="
J3|jam>:m|jam>a m=—j,—j+1,...,7] (338)

in terms of |71, jo; My, Mmo)!
Commutators:

o bl =13 €ape Jo,  since J =Ty + Jo, [Jia, Jay] = 0. (3.39)

[

— J = indeed angular momentum operator.

[J37Jk,3] 207 [J37j

] =0, Simultancously diagonalizable:  J 2, J2 J2, J;.
(2 k] # 0, [J27

2
k
%] =0, — Eigenstates: |[j,m) = |j1,J2, 7, m). (3.40)

Basis change:

‘ja m> = Z ‘jimjé? mry, m2> <j17jéa maq, m2‘j7 m>1 (341)
],,,11552 “Clebscthora;n coefficients”

# 0 only if j| = j1, j5 = jo,
because 0 = <]ia]éam1;m2| ‘]i - ‘]i |j17j27jam>

#0 for j; #i

= |j, m> = Z |j1,j2;m1,m2> Sjlan;m1>m2|ja m>1 (3-42)

mi,2

= 0 only if m = mq + mo,
because 0 = (j1, jo; m1, ma| J1,3+ Jo 3 — J3|j1, j2, j, m)

= (m1 +mo —m) (j1,j2; m1, malj1, jo2, j, m).
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Note:  Both {|j1,j2;m1,m2)} and {|j,m)} are orthonormal bases!
= Orthogonality relations:

Z<.j17.j2; ma, m2|.j7 m) <.]7 m‘jlmj% m,17 m,2> = 5m1m’1 5m2m’27 (343)
J,m
> Gomliu, do;ma,ma) (G, gas ma, mali’, m') = 65 Gy (3.44)
mi,ma2

Calculation of CG coefficients:
e Step 0: M = Myax.
Mumax = Max(my +My) = j1 + jo. = Jmax = J1 + J2. (3.45)
|7 = j1+ jo,m = j1+ jo) = |71, 72; 41, J2), unique up to phase choice! (3.46)
= (J1, J2 Ju, Jolgn + Ja2, u + J2) = 1. (3.47)

o Step I m = Mmypyax — 1.
Application of J_|j,m) = \/4(j + 1) —m(m — 1) |j,m — 1):
J_ g1+ g2, g1+ 2) = V201 +Jo) [1 F g2, g1 H g2 — 1)
= (Jim + Joo) |J1, J2; J1, Jo)
= V271 |j1, J2s 1 — L, j2) + /242 g1, G2 i, Ja — 1), (3.48)

]1,]2,]1 1, ja) 4/ |71, J2s 1, J2 — 1
J1 +92 )

lj1 4 Jo,d1 +J2 — 1)

(3.49)
L o o ‘ J1
= (o — Ljalir + o, g1 +J2 — 1) = | ———,
J1+ )2
(Ji, 92291, 02 = Yjr + Jo, i + 32 — 1) = | = J2 —. (3.50)
J1+ )2
3 (2nd state with m = j; + jo — 1) L |j1 + Jo,J1 + jo — 1):
j1 +]2—1 J1 +]2—1 |jla]2a]1 1, ja) |]1,]27]1,]2—1>
Check elgenvalue of J2 explicitly!
phase choice! 3 51)
L o . . . J2
= (J,J2ii — Ljalii + o — Lji +ja— 1) = 4 [ ——,
J1+ 2

J1
i+ e

(J1:J2: g1, Je — i1+ e — L1 +ja — 1) = — (3.52)
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e Step 20 M = My — 2.

Construct 3 states:

Joljitge it —1) o« i+t i—2)=... (3.53)
Jltp—Lati—1) < [i+i-Lia+tp—2)=... (3.54)
via orthogonalization: |j; + jo — 1,71 + j2 — 2). (3.55)

— Express them in terms of |j1, j2;j1 — 2, J2),
J1, 251 — 1, J2 — 1),
|71, J23 71, 2 — 2).

= 9 CG coefficients with m = j; + js — 2.

Graphical illustration: A
ma
3] R e L) ‘e
7 \\/J_\\/J_\\/J_\ m=ji+ Jo in step 0
[ ) [ )
/J /J, m=71+7o—1 instep 1
[ ) [ ) [ )
\/J_\ m =71+ 7J2 —2 in step 2
. : : NN 5]
‘ : : J1
e Step ki m = Mpax — k.
Construct k£ 4+ 1 states:
J |+ tie—k+1) o< |1 +jeitia—k)=... (3.56)
Jolitp—k+Li+j—k+1) o< [i+tjp—k+1Lj+i—k) =... (3.57)
via orthogonalization: |71 + jo — k, j1 + jo — k). (3.58)
But:  m values: my=7j1 —k Z —J1, mo = Jo
my = ji, my = js —k > —ja.

= k < min(2j1, 2]2)
Otherwise there cannot be a new state with j = j; + jo — k!
= Jmin = J1 + J2 — min(2jy, 2j2) = [j1 — Jal- (3.59)

e Further steps analogously until m = —myac = My, but no new states via orthog-
onalization for m < |j; — jal.

Jiti2 Jj1+72 l71—72]-1
# states = Z (27+1)= ZZ]— Z 2j+ 51 +72— (lj1 — jo| = 1)
J=lj1—j2|

=1+ 7)1 +ja—1) — (|]1 — Jo| — 1)|J1 —Jol + g1+ jo — (lj1 — jol = 1)
=2h+1)22+1). #
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Example: jlzé, Jo=1. = j:%,%.
Bases:
[my,ma)) = |3, 1;my,mg) =+1 my =0, 41,
|7,m) : j:%,m:i%,i%;
j=3, m==%1i.
Construction of states:
m=32: 13,3y = |5, 1)), highest-weight state. (3.60)
m=ti LBH=VELY
= Ji- I3, 1) + Lo |5, 1) = [1=5, 1) + V215, 0)),
= 138 =35 1)+ /2150, (3.61)
= 15,3 = 211-5, 1) - /2113.0) (3.62)
m=t: g H=20D
= JE ) =5 1) + R+ D) [13,0)
= 31-5.0) + \3I-5.0) + /4113 -1)
= 33 = Rl-50) + /5113 -, (363)
J-13:3) = 15,—3)
= 2+ D) =51 = /S G+ ) (15 0)
= AI=500 = 315 0p — 3115 -1)
= 15, -3 = /5I=5,00 = /2115, -1 (3.64)
m=—3:  LI3-h=vE-3
= VR4 B =500+ E G+ D) 15 1)
= Jal=5 -1+ I3 -1
= [3.-3) = [I-5,-1). (3.65)
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Clebsch—Gordan series:

|j, m) = Z |j1,j2;m1,m2) \<j17j2;m17m2|j7 m)J. (3-66)
“nQ:Tnlﬁml) = C’r(gzmv
C — C(jl“"jZ) @ . @ C(‘JI*JZD — unitary
= <j7m/|A|j7m> = Z (j,m/|A|j1,j2;m1,m2> Cr(erzm

mq
(mo=m—mj)

= Z Cy(i); <]1,]27 mla m2| A |]1,]2, my, m2> Cy(»f]“m (3-67)

7711,771/1
(mo=m—my

NN S |
mo=m/—m/)

Matrix notation:
1 0

AD = CUT ARSI GO gy = 0 [, [jj-1) =] 1|, etec. (368

Block structure of EBjA(j) = @ (j(J ) @]J3j), @jJ : (Jmax = J1+J2, Jmin = |J1—J2|)
(o
) ﬂjtrlax_l) 2
oy, (JV) = ( ) 5 C (D) =G+ 1) Tag,
(j(jmln))
= diagonal,
J?Ejmax)
) Jéjmax_l) )
@;m‘}’;mjéj = . 9 J?E]) - dlag(]a] - ]-7 ey _j)a
J?Ejmin)
= diagonal,
J:(tjmax)
) J(]max )
@l JP = ) . JY = (2 +1) x (2j + 1) matrix,
J:(Ejmin)
= block-diagonal. (3.69)

= CG decomposition of DU @ DU2):
Ct [DY) @ DW)] ¢ = @@= DU DU = irreducible,

J=Jmin

DU @ pU2) ~ plUitiz) gy ... g plit=izl) (3.70)
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3.5 Irreducible tensors, Wigner—Eckart theorem

Tensor operators in QM: (recap)

—

Let U(0) be the rotation operator on some Hilbert space H of qm. states |¢):

W) — 1) =U(@) 4. (3.71)
) — |7 =U(0)17) =

—

—
R
— RZ), R = R(0) = rotation matrix, (3.72)

N

-~

defines the geometrical meaning of U(f)

1
CzU0) 2 |R\E)NE = [ BPZU0) R #|R'2)(Z|

_ / PR F | (F = R F / &$F |3 (F = R 7 (3.73)

7' =U@0)vU0) =R 7, (3.74)
T)oan =UO0) Ty, UO) = > (R ey (B e, Ty (3.75)
aly,...al,

Infinitesimal rotations:

UOBH)=1—i60.J + ..., (3.76)
R(0O)=1—i60 JB + . (JHF), = —icpe. (3.77)

a

= Transformation property (3.75) implies commutation relations: (0, = T,)

[‘]av Tal---an] = IZ Eaala’lTa’l...an +-+ IZ Eaana;Tal...a;f (378)

! !
aj an

Note:  Cartesian tensors Ty, ,, in general have the flaw of being reducible.

Example:  rank-2 tensor Ty,.

Tab = %TY<T) 5ab + %(Tab - Tbu) + [%((Tab + Tba) - %TI‘(T) 5ab} . (379)
W—/ \ ~~ 7 N - /
ESO EAab ESab

The parts Sy, Aup, Sa transform independently:
o So=Tr(T)=>,T,, = invariant, i.e. Sy defines a “scalar”.
e A, = antisymmetric, i.e. A, = Zab €abcApe defines a (pseudo)vector.

e S, = traceless symmetric = irreducible rank-2 part of 7T'.
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Irreducible (spherical) tensors:
< Definition via irreducible SU(2) representations D):

A set of (274 1) operators T (m=—j,—j+1,...,5) forafixed j =0, 55 1, ... is called
“irreducible (spherical) tensor operator” of rank j if it behaves as

(4)

L o (T

TV =U@)TVU@) = pW@)TTY,  TW = : |[. (3.80)

©)

T—j

< Irreducibility is implied by the irred. of D i.e. all components T#{ )
from a single component via symmetry relations (rotations).

can be obtained

Construction of spherical from cartesian tensors:

Recall spherical harmonics Y}, (which transform like spherical tensors!):

Yim (9, ) = (e]l,m), € = unit vector with polar coordinates 1, ¢ (3.81)
Vi (9, ') = (@ U(0) |1, m) (¢, ¢ correspond to e’ = R™'¢.)
—Z L, m'y (L,m!|U(@) |1, m), Zu m/'Y(I,m/| = 1y41 on DV

_znm (0.6) D) = 32 DL (O Vim0, (3:52)

Note: 'Y}, (9, ) = homogeneous polynomial of degree [ in coordinates w1, 2o, 73,

where ¥ = ré = (21, 12, 23)".

1)

Procedure to construct TT% out of some given T}, ,:

Calculate symmetrized version Tal,_.al of Ty, .4, and define

47
TV = 4/ 7' Vi (0 : 3.83
m 2l —|— 1 ! ( ’(’0) l‘al"%al—)Talmal ( )
————
or any other normalization
(Symmetrization of 7" necessary to obtain a unique correspondence!)
Proof of irreducibility:
TO' = U@) TV U@®) \/ 'r’Y}mﬁ‘(p _
Tay ' xalﬁTal .ap Z ’ AAAAA aE(R_l)alall"'Tal“‘al
4
= Y (9, o
A+1 ! (7, &) Tay - Tay—Tay ..

_ [ AT O (F\T
=V a1 22 Do (0) Yo (9, 9)

Laq "'malHTalmal

=3"DO )T, #
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Examples:

e[ =0: Ty=scalar — TO,  /Arr%Y,, =1, trivial case!

l

o [=1: = (T,) = vector — T,
,/ T Y = +tirg)/V2 = F(T+iT)/V2 = T,

M?T }qo—l‘g —)Tg

=2: T, =rank-2 tensor — T3,

T,

o1

(3.84)

/47T
—7r Y2 42 = \/7 .Tl SU2 + 21371372 — \/7 T11 — Th9 :l: T12 + T21)] = T( )’

A/ ? T Y2,:|:1 = :F\/;(.Tl + 11’2)1‘3 — :F\/;[Tlg + T31 + 1(T23 + ng)] = T:E:l’

[4m 1 1
g 7"2 }/270 = 5(2$‘§ — l‘% — IL‘%) — 5(2T33 — Tn — TQQ) = TéQ)

Commutator relations for 7U) from infinitesimal rotations:

UOBH)=1—1i00.J + ...,
DW(§6) =1 — 66 JYU) +

= [J 19 =>"19 JY)

L G| Tl
[T, T =m T, [Jo, T = /GG + 1) - mm £ 1) T,

Compare with

Jsljm)y=m|jm),  Jiljm)=+/j(G+1)—m(mE1)|jm=E1).

= T |72, ma) behaves under rotations like |1, m1) |ja, m2):

jTgf) g2, M) = [T, T#ﬁ | 72, m2) + T,Sf}’ T |2, ma),
J3 Tgll) |72, ma) = (M1 + my) Téﬂf) |2, ma),
T TEY |jayma) = /i1 (1 + 1) — ma(my £ 1) TYL, [ja, mo)

+V/G2(jo + 1) — ma(ms £ 1) TEY [jo, ms £ 1).

2)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)
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Wigner—Eckart theorem

The matrix elements of an irreducible tensor operator T between angular momentum

eigenstates |a, j, m) obey: (e = remaining quantum numbers)
. o a, j|| TV ||a/, 5
<Oé ]7m|T]1 |OZ,]2,m2> <j7m|]17]2;m17m22'< J|| 2] +||1 j2>, (390)

~
CG coefficient

(... ||TUV||...) = “reduced matrix element”,

. independent of m, mq, ms
Proof based on the analogy between T |72, ma) and |j1, mq) |j2, ma):

= Modify recursive calculation of CG coefficients described in Section 3.4:
e Procedure for each j-value:
Construct {|j,m) bm=jj1,..—j for j = j1+jo, then j = j1+jo—1,...,7 = |j1 — Jal.
Previously: |7, m) expressed in terms of |j1,m1) |2, m2).

Now: |7, m) expressed in terms of T |72, m2).

e Highest m-values for fixed j:

Previously: |7, m = j) fixed up to phase choice in terms of |j1,m1) |72, m2), €.g.
|1 + Jos J1 + J2) = |1, Jos i = J1, Mo = Ja),
lj1+J2— 1,51+ j2 — 1) L known [ji + ja, j1 +ja — 1), ete.

Now: |[j,m = j) fixed by T |72, ma = j2) up to some constant A(j),

m
since there is no canorilc]zil normalization of T3 |72, m2)
(in contrast to |71, m1) [ja2, m2)).
e Lower m-values for fixed j:
Previously: Evaluate J7 |7, 7) to derive relation:
M) =3 s [0 J2smasma) (u, Jas ma, malj,m).

~
explicitly constructed

Now: The same procedure applied to J7~™ |5, j) - A(j) yields

3) |3, m Z TV o, ma) (1, joi ma, malj,m). (3.91)

mi,ma2
e Solve (3.91) for (j, m/| T |72, mo) upon evaluating (7, m’| - (3.91):
A(J) O = Z (3, m| Tr(njll) |72, m2) (J1, Jo; ma, malj, m),

mi,ma2

and calculating Em@',m\jhjé; mi,my) -

A(7) (g, m |41, Jay miy, my) = Z {7, |Tj1 |J2, m2)

mi,ma
X Z<j17j2;m17m2‘j7 m) (4, m|ju, jo; mi, ms)

(J,m\T oy mb).

= WE theorem (A(j) — reduced matrix element; a, o/ suppressed in notation). +#
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Implications of the WE theorem:

e Qm. transition probabilities from some state [jo, ma) — |7, m) typically ruled by
matrix elements such as

(Gom| TD jayma) = 0 if m # my +my or j# ji+ o, o+ jo = Lo, Ljs = ol
~— A ~~

operator for interaction selection rules implied by the WE theorem

driving the transition

(3.92)
E.g. TUD) = scalar T©):

only j = j5 “allowed”,
TU) = vector TW:

only j = ja,j2 £ 1.

e Relative strengths of transition matrix elements entirely given by CG coefficients:

(j,m| TYE’lel) |72, Ma) _ (4, m|j1, J2; m1, M) (3.93)
(7,m/| Téf,ll) |72, mb) (J,m| 1, Ja; mi, mh)
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3.6 Tensors of SO(N)

Definition: SO(N), N € N, is the group of real orthogonal N x N matrices R, R*R = 1y,
with det R = 1 (“defining representation”).

The matrices R form an N-dimensional (irreducible for N > 2) representation on the
vector space V = R¥:

veV v =" = R9. (3.94)
A tensor T of rank r transforms like the tensor product of r vectors:
Titr — Tt = RAIL LRI (3.95)
Properties:

e The tensor product of two tensors of ranks r; and ro,
Tgil---irl-ﬁ"g — Tl'il---irl T2ir1+1---i7"1+r2 (396)

transforms as a tensor of rank r; + rs.

r—2.
e The components of 7% furnish an N"-dimensional representation D of SO(N):

T‘ _ (T1...11’ Tl"'12, o ’TN...NN)T : T’a N T‘za _ DabT‘b’ ab=1,...,N".
(3.97)

“Invariant symbols” are tensors that are invariant under group transformations (in a more
general context “relative tensors”, i.e. they receive a factor (det R)"™ with some “weight” w
when transformed by R). Invariant symbols follow from the defining properties of R:

° RRT =1 = (5/)2‘]‘ — Rz’kleakl — Rsz]k — Rzk(RT)kj — 5”’
° 1 :detR: Rlil ...RNiNeil...Z'N = (6/)i1...iN = Riljl ...RiNjNEjlij — eil...iN.
Example: Reducibility of rank-2 tensors

The representations under which tensors of rank r > 1 transform are reducible. A rank-2
tensor 7% can be decomposed according to

TV = §" + AY + N (51]50 with (398)
- 1 - . 1 ...

SV = 5 (T w4 T”) N 0.5 symmetric and traceless,
- 1 - .

AV = §(T” — 717" antisymmetric,

Sy =T% scalar.
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The S%, AY, and S, parts span invariant subspaces under group transformations:
T4 + T7" — R*RIYTk 4 T'™%). The representation decomposes as

1 1
NN = (—NN 1—1) “N(N -1 1. .
H(%—’ 9 (N +1) ’ © 5 ( ), D - (3.99)
general rank 2 Vv ~ trace

sym. traceless antisym.

For higher ranks, the symmetry patterns become more complicated. A full classification
is possible in the formalism of “Young tableaux” which are related to the representations
of the symmetric groups S, (see, e.g., Chapter 5 in [9]).

Dual, self-dual, and anti-self-dual tensors

For a totally antisymmetric tensor A% its dual tensor A%~iN—r is defined as

Airin—r _'611---ZNA2N—r+1~~~ZN (3.100)
T!

and antisymmetric by construction. For SO(2N), we can define the self-dual (4) and
anti-self-dual (—) tensors

L 1 L ~ ~i g i1...4
T:ztl...zN _ i(Azl...zN :l:A“"'ZN) = :ZI:LHZN _ :l:Tj:l”'ZN. (3101)

The self-dual and anti-self-dual tensors span invariant subspaces under group transforma-
tions.

Examples

e Special case SO(4): For N = 4, the 6-dimensional representation furnished by an
antisymmetric tensor AY reduces to two 3-dimensional representations:

14 :\%_/EB 3 69\3/_/69 1 . (3.102)
general SYW  self- anti- trace
rank 2 trace- dual = self-

less dual

This happens in a similar way (up to factors of i) in the Lorentz group SO(3, 1):
Electromagnetic field strength tensor F* and its dual F* — FL = FM +iF*,

e Special case SO(3):

0 A3 — A2 . Al
A2 —AY 0 A3

= It is always possible to trade a pair of antisymmetric indices for one index.
= It is sufficient to regard symmetric traceless tensors when studying irreducible
representations of SO(3). Number of components:
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r r—nmi 1
S tric t f k r: 1=- 1 2 t
ymmetric tensor of rank r ZO ZO 2(7’ + 1)(r 4+ 2) components
n1=0no=
(ny indices have the value 1, ny the value 2, ng = r — n; — ny the value 3).

Each pair of indices can be contracted. = %r('r’ — 1) trace conditions.
1
Traceless symmetric tensor: 5(7’ +1)(r+2)— 57’(7“ — 1) = 2r + 1 components

(2 21 + 1 components of a spherical tensor T%).

The Lie algebra so(N)

As shown in Section 3.1, with the convention that SO(N) elements are expressed as
R = exp{—if,J,}, the generators J, of SO(N) are hermitian and antisymmetric (i.e. iJ,
is real and antisymmetric).

= There are N(N — 1) generators. In the defining representation, the generators can
be chosen as

Thmy = 1(07967 — §6m7), (3.104)
where (mn), m > n, takes the values (mn) =a=1,...,sN(N — 1), and Jim) = —J(mn)-

Lie algebra so(N) (independent of the representation!):
[emm)» Tipg)) = 100" Jing) + 8" Timp) — 0" Ty = 0™ Jmg)) = ifmmypajee:  (3.105)

where the last equality defines the structure constants fu..

Every antisymmetric tensor AY can be expressed as AY =iA,J7, A, € R, i.e. in a basis

J, of generators it can be represented by the coefficients A,.

— How do the A, transform under an SO(NV) transformation with group parameters 6,7
AT = R*OVR(O)'AF = R(O)*AF(R(O)™HY = A =R(0)ARH)™ . (3.106)

Transformation with infinitesimal 6,,:

SA=A — A= (1—i0,J,) AL +i0,J,) — A = —i0[Ja, A] = 0.4y, Jy]
= 10, Ap fape . (3.107)

On the other hand, with A’ = 1A/ J, and A, = A, + 0A,,

SA = 1A, —iA.J, = 16A,J.
= 'A/c = (5cb + Hafabc)Ab- = (5cb - iea(Fa)cb).Ab- (3108)

= A, transforms under the adjoint representation with the generators

(Fa)bc = ifacb = _ifabo (3109)
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Example: so(4)
SO(4) has six generators:

Jaoy =3, Jey=J1, Jay =, Juy =K1, Joay = K, Jize = Ks.
The Lie algebra is (verify this!)
[Jl', J]] = iGiijk, [JZ, KJ] = ieiijk7 [KZ, KJ] = ieijk:t]k- (3110)

— J;, i =1,2,3, generate the SO(3) rotations in the z1-zo-x3 space.
— K, i =1,2,3, transform like the components of a vector K € SO(3).

Choose a new basis T ; = %(J, + K;), Ty, = %(JZ — K;). Lie algebra in this basis:
(T, T ;) = €T, (T, Ts,;] = i€ijiTo, [T, T5,] = 0. (3.111)

= The Lie algebra so(4) falls apart into two su(2) algebras, so(4) ~ su(2) x su(2).
= The group SO(4) is locally isomorphic to SU(2) x SU(2)
(SU(2) x SU(2) is a universal cover of SO(4)).

3.7 Tensors of SU(N)

Definition: SU(N), N € N: the group of unitary N x N matrices U, UTU = 1, with
det U = 1 (“defining representation”).

The matrices U form an N-dimensional (irreducible for N > 1) representation on the
vector space V = CV:
weV u —u" =Un. (3.112)
The transformations U leave the scalar product vfu invariant:
viu=0"UTUu & (v’ = (v))(U7,) U7 . (3.113)

= v* transforms with the complex conjugate representation U*: (v*)" — (U*);(v*).
— Define v; = (v*)" with a lower index. Lower indices transform with U*, while upper
indices transform with U. We can then write

viu = (U)o ) (U k) = v, (UTY U u? = v, (3.114)

where contractions are always performed between upper and lower indices (sometimes
the notation U,/ = (UT)7; is used so that v, = U/v;). Contractions v'u’ and v;u; do not
transform as scalars and are (in this sense) not defined.

Tensors of SU(NV) can carry both upper and lower indices and transform as

Tian — Tovsin = Uiy U TR ot Ut (3.115)

Ji---Jm JieJm m
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Invariant symbols:
° (UT)ijUjk =46 = & — o= (UT) 5]Ul =4l
There are no invariant symbols 6% and 52] = Traces wrt. two upper (rsp. two lower)
indices do not transform as tensors.

o detU=1 = v o v =i, UV, @lIN = v,
e detUT=1 = ¢ iy — €iyoin = €. JN(UT)J1 (UT) o = €y iy
Special case SU(2):

e For N =2, U(¢) = exp{—i¢ - 7/2} and U*(¢) = exp{i¢ - #*/2} are equivalent. For
infinitesimal ¢:

—

U(cg)ij:c?}—%aﬁa(aa)ij, U*(¢): ’_5]+ 50a(o 97 = Uk, (3.116)

E lj _ *\ J
because €in(0y)" €7 = —(0y)i.
= SU(2) is pseudoreal and has the antisymmetric invariant bilinear form vTeu =
vleu’, €l = —e.

e A tensor with n upper and m lower indices can always be expressed as an equivalent
tensor with n + m upper (or lower) indices:
11...0n lenjljm . 11...0n jlkl ]mkm
A =T et™oe : (3.117)
e Antisymmetric contributions in any two indices span invariant subspaces:
ejkT““'J'“k'““ transforms as a rank r — 2 tensor.

e Number of independent components 71, 7112 L1220 722 of 5 sym-
metric tensor T : r 4 1.

Special case SU(3):

e Similarly to SO(3), €% can be used to trade two antisymmetric lower indices for one
upper index (analogously for €;), i.e. antisymmetric contributions can be expressed
as symmetric tensors of lower rank.
= Tensors that are totally symmetric in all upper indices and in all lower indices
always span invariant subspaces.

e The trace 5511 T]’f ]Z” (symmetry = all traces are equivalent) spans an invariant sub-
space.

e Number of components of a traceless tensor T;ll ;” with all upper and all lower
indices symmetric:

1 1 1 1
§(n+1)(n+2) -§(m+1)(m+2) — §n(n+1)-§m(m+1)
n sym. tg)per ind. m sym. lower ind. trace, rank (n — 1,7n — 1) sym. tensor
1
=—-(n+1)(m+1)(n+m+2). (3.118)

2
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Dimensions of the irreducible representations (n,m) of SU(3) up to m =n = 3:

n=0 1 2 3
1 3 6 10
3 8§ 15 24
6™ 15 27 42
100 24* 42 64

~—

(n,m

m =

w N = O

Besides (n, m) the dimension can be used to label irreducible representations. Rep-
resentations with n < m are then labelled by dim(n,m)* to distinguish them from
(m,n), e.g. (1,0) =3, (0,1) = 3% (m,n) ~ (n,m)*.

e Clebsch-Gordan series for SU(3)

Given two irreducible tensors A"~} and B} ({...} means that the in-

{i1.im?} {tedms} .
dices are totally symmetric). How does the tensor product T{{;izﬁ}{ﬁljf',}} =

Alivin} pliniy)

L ' decompose into irreducible representations?
{rdmt H{ar G }

1. Recursively take out all traces:

5i1T{k1...km}{l1...lm/}’ 5_711T{k1...km}{ll...lm/}’
U sl rplinein {1 g } Uy skyplindn {1 dnr} k1 skorpiin-inHi1.dnr }
5@&5z‘§T{ki...km}{lll...lm,}7 52‘15j11T{k1...km}{lll...lm,}7 5]‘11 5]‘22T{k1...km}{lll...lm,}7

< Produces a traceless tensor T {{;i;':j}{ﬁljl"',}} that transforms under a (reducible,

because T is not yet totally symmetric) representation labelled by (n,m;n/, m’).

min(n,m’) min(n’,m

)
= (n,m)® (n',m') = @ @ (n—p,m—qn —qgm —p). (3.119)

p=0 q=0

2. Recursively take out antisymmetric contributions from traceless tensors:

F{i1in it g} Evlity Apdinein {1 g
EiljlslT{kl...km}{ll...lm,}’ € T{kl...km}{ll...lm/}’
{1 i Hi1 - Jn kility koloto it in i1}
Eiljlsl6i2j282T{k1...km}{l1...lm/}7 € € T{kl...km}{ll...lm/}7

Note that e.g. contraction with ¢;,;,5, automatically results in symmetric lower in-

dices (verify this!). Analogously for, e.g., e"hifr,
min(n,n’)
= (n,m;n/,m)=(n+n,m+m) & @ (n+n" —2p,m+m'+p) &
p=1

min(m,m’)
@ (n+n"4+p,m—+m'—2p). (3.120)

p=1



60
Example:
L) e@,1)=
with  (1,1;1,1) =
(1,0;0,1) =
(0,1;1,0) =
(0,0;0,0) =

= (,1)®(1,1)=

& 8 ® 8

3. SO(3) and SU(2)

(1,1;1,1) @ (1,0:0,1) @ (0,1;1,0) @ (0,0; 0, 0)
(2,2) ®(3,0)® (0,3),
(1,1
(1,1),
(0,0

)®

),

)
) )

(2,2)©(3,0)0@(0,3) @ (L, 1)@ (1,1) @ (0,0),
27 ® 10 ® 10" @ 8 @& 8 & 1



Chapter 4

SU(3)

4.1 The su(3) algebra, roots, and weights

The defining representation of the algebra su(3) consists of traceless hermitian matrices.
A common basis choice is given by the Gell-Mann matrices

010 0 -1 0 1 0 0 0 01
A=1100], X=|1 0 0, X=[0 -1 0|, =100 0],

000 0 0 O 0 0 0 1 00

00 —1 000 00 O ] 10 0
A=100 0|, X=|00 1|, X=]00 —if, Agzﬁ 01 0],

i 0 0 010 01 O 00 =2

which generalise the Pauli matrices from su(2) (it is straightforward to write down a basis
for su(NV) for any N).

< SU(3) generators in the fundamental representation: T, = tA,, a =1,...,8.

< Normalisation: Tr T%7T? = Tré®, T = %

< Lie algebra [T, T%] = ifecT¢, fob¢ totally antisymmetric with non-zero components

f123 -1 f147 — f246 _ £257 _ f345 — 1
) 27
186 _ p367 _ _%’ A3 TS _ ? (4.1)

In the fundamental representation, the anti-commutator has the form

1 1 1 )
{Taa Tb} - g ab T dabcTc = TaTb - 6 5ab + é(dabc + lfabc)Tca (42)

61
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where dg. is totally symmetric with non-zero components

1
diig = daos = d3zs = —dsss = /3
1
d =d =d ey = -, 4.3
448 = U558 = dees = 778 We (4.3)
1
diag = dis7 = dase = daas = dzss = —daar = —dses = —dgrr = 5
su(3) contains three “overlapping” su(2) subalgebras. Defining
2
L5 =T"? Urp =T, Vig=T%, Y = %T87 (4.4)

o [I}, 5] =il3 (cyclic),

o [U1,Us] =1 (_[3 + %Y) = iU; (cyclic),

1

2
_ ;1 3 _ - .

o Vi,V =il (=L +3Y) =iV5 (cyclic).

I3, Us, V5 are not independent = su(3) 2 su(2) x su(2) x su(2).

Definition: The number of simultaneously diagonalisable generators is called the rank
of the Lie algebra.

su(3) has rank 2; choose I3 and Y which are already diagonal.
= Classify states by their eigenvalues of I3 and Y:

[3|i37 y) = i3|i37 y>7 Y‘Z37y> = y|237y> (45)

Definition: The vectors & = (i3,y) of eigenvalues of the diagonal generators are called
weights of the weight vectors |&J) = |is, y).

Definition: The non-zero vectors @ = (Aig, Ay) for which there exists an X, € su(3)c
[complexification of su(3): all linear combinations of 7 with complex coefficients; su(3)¢ ~
sl(3,C)], so that

—

[H,X,]=adX, with H=(l3Y), (4.6)

are called the roots of su(3). X, is called the root vector corresponding to the root @. In
other words, X, is a common eigenvector of ad;, and ady with eigenvalues Aiz and Ay.

su(3) has six root vectors I, Uy, Vi with roots Aiy, Ay, ATy
Io=1+il:  [I3, 1] = £1., [V, I.] =0 = Ay = (£1,0),
. 1 _
Uy =U, £iUs : [Ig, Ui] = :FiUi’ [K Ui] =+U4 = Aui = (:F%, :i:l), (47)

1
Ve=W+xilVy: [I3,Vi] = iévi YV, Vil=£VL =  Ad = (£3,+1).
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In the basis I, Uy, V4, I3, Y, the commutators not listed in (4.7) are

[[Jm [*] = 2[37 [[+7 UJr] = v+7 [[+7 U*] = 07
3
[U-l-a U—] = _13 + 5YV, [I-H V—] = _U—a [I-H V+] = Oa (48)
3
Vi, V] :[3+§Ya U, Vo] =1, U+, Vi] = 0.
(remaining commutators by hermitian conjugation, e.g. [I_,U_] = [I,,U.]").
Root diagram:
Ay
at
3
Aﬁq, - Af+

AV

AT AU

Of the six roots, only two are linearly independent.
e Positive roots: all roots in some given half-space. Common choice: Aiy, A, AT,.

e Simple roots: minimal subset of positive roots so that all positive roots can be
expressed as linear combinations of simple roots with positive coefficients.
Here: Av, = Aiy +Auy = Aip and Au, are simple.
Applying a root vector X, to a weight vector |&J) shifts the weight by a:
HX,|5) = (XoH + [H, X,))|5) = (Xo@ + @X,)|0) = (@ + @) Xao|@)

=  X,|d) x |&+ a) (4.9)

U:|:|Z37 |Z3:F Qayi:[)

J) =
J) o

= ILifiz,y) o< fiz £ 1,y),
y)

V:I:IZ37 > |Z3 2,yi1>

The proportionality constants may vanish for certain weights.
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4.2 Irreducible representations
Possible values of i3 and y:
e [y, I, I3 span an su(2) algebra

= iye{—i,—i+1,...,i}, 2 €N, (4.10)

o Uy, Uy, Us = 5(I3 + 3Y) span an su(2) algebra

= w=i3+3yez (4.11)
— %yEZ (yz...,—%,—%,O,%,—%,...) if 73 is integer,
— %(y+§) S/ (y:...,—%,—1,—%,%,1,%,...) if 73 is half-integer.

Choosing Us and I3 + %Y as diagonal basis elements instead shows that

us € {—u,—u+1,...,u}, 2u € Ny. (4.12)

SU(3) has two irreducible representations of dimension 3 corresponding to the rank-1
tensors with one upper index, 77, or one lower index, Tj. The conditions on i3 and ugz fix
the two possible sets of weight vectors that furnish the 3-dimensional representations:

Y
w4l
\\ 3 (]_’0) — 3 (0’ 1) — 3*
1%
e - /)fl
> > i > |
T o1
I

e This is called a weight diagram.
e Denoting by (n,m) the upper rank n and lower rank m representations, (1,0) (left
diagram) is called the fundamental representation and (0,1) (right diagram) the

anti-fundamental representation.

e These are the lowest-dimensional non-trivial representations of SU(3).
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_1(*) of the representation,

e The encircled dot denotes the highest weight Wpax =
satisfying
I |Brmax) = Ui |Gmax) = Vi |Gmax) = 0, (4.13)

i.e. the root vectors corresponding to positive roots lead out of the representation’s
weight space.

e The weights can be constructed from the highest weight of the representation by
applying I and U_ (in the corresponding representations). Fundamental represen-

tation:

LIf) =1/, I|f)=0, I_|fs) =0,

U_1f1) =0, U-1f2) = |f3), U-|fs) = 0. (4.14)
Anti-fundamental representation:

L|ff) =0, L|f3) =f5), L|f5)=0,

U-1f7) =112, U-1f3) =0, U-|f5) = 0. (4.15)

Constructing higher-dimensional irreducible representations

The irreducible representation (n,m) can be constructed from its highest weight vector

Ne-elf)e|ff)e---a|f) (4.16)

N J/ J/
N N

n times m times

by applying the root vectors
"= 319---®1 + 10].91® 01 + 1®---®1Q I,
UM = @191 + 1U_- Q1901 + 1®---1@U_  (4.17)

in this representation.

Example: The irreducible representation (1,1)

Apply I_ (/) and U_ (\,) repeatedly to the highest weight |3,1) = /) @|fF) (omitting
® in the following).

fD1F)
R / \‘ - o
|f2)|17) Sl fs)
YA YN
0 B+ 1f205) 2102) + 1 folfz) 0
7 N e N
FEVVEY; 2| fa)lf3) 2[f2)|f3) |f3)|/2)
N < N < hY N
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e There are 8 different states.

o The two states || f1) + |f2)|f5) and (1,1) =8 A
\fa)lf5) + |f1)|f3) have the same weight
(indicated by the multiplicity 2 next to the
weight), because

fitfs=fat fi=Ff+fi=(00).

> i

S 2

e 7 a 3rd linear combination |f9)|fs) —
| flfa)y — | f3) | f1) of weight |0, 0) that does
not belong to the representation (1,1).
This must be the representation (0,0):

(1,0) ® (0,1) = (1,1) & (0,0),
3 ® 3 = 8 @& L

Example: The weight diagram of the representation (3,0)

e Start from highest weight | f1)|f1)|f1) = |2, 1).

29

e 10 states, no multiple weights.

e Highest-dimensional representation in the Clebsch-Gordan series

(1,0) ® (1,0) ® (1,0) = (3,0) @ (1,1) @ (1,1) & (0,0),
3 ® 3 ® 3 =10 @ 8 @© 8 & 1

(3,0) =10
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General case: The weight diagram of a representation (n,m)

y
(n,m) 1

- (1)
( &\Vﬁ// >

13

Weight multiplicities:
e Red numbers in the diagram.

e Weights on the outermost hexagon have multiplicity 1. Multiplicity increases by
1 on each hexagon closer to the origin, but stays constant at maximal multiplicity
w = min(n, m) + 1 once the hexagon turns into a triangle.

e Multiplicities can, e.g., be calculated by Freudenthal’s formula (see Section 6.5.3).

e Dimension of the representation:
) 1
dim(n, m) = §(n +1)(m+1)(n+m+2)

as derived in Section 3.7.

4.3 Clebsch-Gordan decomposition

This section lists results and recipes. For more information see, e.g., M. Grigorescu:

SU(3) Clebsch-Gordan Coeffizients (arXiv:math-ph/0007033).

Besides n, m, i3, y, one more label is required to distinguish degenerate weights. This
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can be achieved by 1% = I2 + [2 + I3 with eigenvalues i(i + 1):

f2‘n7 m7i7 Z.37 y) = Z<Z + 1)‘”7 m7i7 Z.37 y>7
I3|n7m72.7i37y> - i3|n,m,i,i3,y>, (418)

Y‘na m, iu Z.37 y) = y|n7 m, i7 i37 y)

1 can take values 2¢: € Ny with

1(9 1y i u> i —
B B P A NS -t OBt
s(n+2m)+gy if y<g(n—m)
The operators corresponding to n and m are the two Casimir operators
Cr=Y T.T.. Co=> duT.TT, (4.20)
a a,b,c
that have the form
1
C, = <§(n2 + nm + m?) +n+m)]l,
1
C'Q:E(n—m)(n+2m+3)(m+2n+3)]l (4.21)

in the representation (n,m). Cy, Cs, I 2 I5, Y form a complete set of commuting operators.
I+, Uy, Vi act as

Liln,myiyis,y) = \/i(i + 1) —is(is £ 1)|n, m, 4,45 £ 1, y), (4.22)
Usln,m,ivis,y) = + Ymiigglnmi i+ 3.0 — 5,5 +1)

~ Vomiing | 01— 5,03 — 5,y + 1), (4.23)
U_|n,m,i,ig,y) = — fy;mﬁ%’iﬁ%’yil\n, m,i+ 303+ 3,y—1)

+ ’Y:,m,if%,ing%,nyn’m’i — 3 s+ 3,y — 1), (4.24)
Viln,myiyis, y) =+ Ylmi—iag s Mo+ 03 + 5,y 1)

F Vil MG — 305 4+ 2y + 1), (4.25)
V_ln,m,i iz, y) = +’y;m’i+%7_i3+%’y_l\n,m,i + %,’ig — %,y —1)

+A% In,m,i— % i3 — 3 y—1), (4.26)

1 1
n7m727§7723+§7y71
with

_ 1+ 13
n,Mm,2,13,Y 27/(27/ + 1)

X \/(%(2n+m)+i—%y+1)(%(n+2m)—i+%y+1)(%(m—n)+i—%y),

[3+ 21
+ o —
7n7m7i7i37y - 1424 ’Ym,n,iJrl,fig,fy' (427)
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Clebsch-Gordan coefficients

Tensor product of representations (ny, my) and (ng, msy) (see Section 3.7):

(n1,mq) ® (ng,mg) = EB (n¥, mk). (4.28)
k
Express product states
|n1,m1,i1,i1,3,yl§n27m27i27i273792> = |n1,m1,i1,i1,3,y1>|n2,m2,i2,i2,3,y2>, (4-29)
which are eigenstates of
Ciio Cia Iy L Vi, Cay, Chao I, L, Yo, (4.30)
in terms of
n* mP ik ik gk, (4.31)

which are eigenstates of

Clv 027 Cl,la 01,27 C'2,17 02,2,
I’ = (1?1“‘[;)27 Is=1IL3+ s, Y=Y +Y (4.32)

There are 10 operators in (4.30), but only 9 in (4.32). This reflects the fact that the same
representation may appear multiply on the right-hand side of (4.28) and is taken into
account by the index ~ in (4.31). It is possible to find an operator to complete the set
(4.32), but it is more convenient to use an orthogonalisation procedure instead.

1.

Start with the subspace of highest weight in (4.28) and apply /_ and U_ to calculate
all states in this space.

. Proceed to the subspaces with the next-to-highest weight, which have all the same

highest weight. If there is more than one subspace with this highest weight, choose
states so that

R A T L o A A Vel SRR S (4.33)

. Apply I_ and U_ to calculate all states in these spaces.

If there are any (combinations of) product states left, proceed with 2 for the next-
to-next-to-highest weight, etc..

The Clebsch-Gordan coefficients then follow from

[

e, 1,13, Y >’y - <”1>m17Zla11,37?/17”2>m2712712,3792|” 1,13,y >’y

11,12 11,3,12,3 Y1,Y2

X |n1,ma, i1, 01 3, Y15 N, M, la, i3, Ya). (4.34)
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4.4 Isospin and hypercharge

4.4.1 SU(2) isospin

Hadrons (= strongly interacting particles) occur in sets of similar mass of O(1%) differ-
ences.

Nucleons: m, = 938.3MeV/c?, m, =939.6MeV/c*? = 222 x(.069 %.

ntmp

Pions: my+ = 139.6 MeV/c?, mgo = 135.0MeV/c? = Z=2 20 5 1.7%.

mq+ +m‘rr0
The strong interaction seems not to distinguish between particles in such a set.
— Hypothesis: Strong interaction is (approximately) invariant under an SU(2) “isospin”
symmetry that transforms hadrons into each other.

e Nucleons form an isospin I = 3 doublet (p, n).
e Pions form an isospin I = 1 triplet (7 +, 7% 77).

e Masses are not equal.
< Symmetry is broken, e.g. by (but not only by) electromagnetic interaction,
because the particles have different electric charges.

e Symmetry constrains strong interaction between particles.
— Clebsch-Gordan coefficients & Wigner-Eckart theorem.

Example: Ratio of deuteron production cross sections
The deuteron d (heavy hydrogen nucleus) is a bound state of a proton and a neutron.

1 1
5@521@0 = d haseither /=0 or [ =1. (4.35)

pp and nn bound states have not been observed. = d must form an I = 0 singlet.

An example:
p olp+p—d+7Th) _ |<d77r+|7—|p7p>‘2 (4.36)
olp+n—d+a0)  [{dxTlp,n)P '

with a transition operator T of definite SU(2) transformation property.

Well-motivated assumption: 7 = scalar (otherwise no isospin conservation in reaction,

i.e. more particles should appear).
— C(lebsch-Gordan decomposition:

) =155 @153 = 15555 = 1L1)
1
) =13,2) @13, =3) = I5:33 =) = 5 (11,0) = 10,0)),
|d, 7)) = 0,0y ®1,1) = |1, 1),
|d, 7°) = [0,0) @ [1,0) = |1,0). )
op+p—d+7t) (1, 1|71, 02

o(p+n—d+m7)  [(1,0/TZ5(]1,0) —10,0))? =2 (4.38)
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Tensor method and effective field theory

Write nucleons as a vector N' and pions as a rank-(1,1) tensor <I>§,

N={P), ez Z_( ™ m—im ™ \@ﬁ, (4.39)
n T+ 179 —T3 \/§7T* —T

where 7@ = (71, m, 73)T is in the cartesian vector representation and (7, 7% 77) in the
spherical basis.

o | Q

< Build an SU(2)-invariant interaction Lagrangian of an effective theory of nucleons
and pions by combining N and & to singlets (trivial representation):

Lint = gNj(I)gNi = gNON = gpr’p — gnr’n +V2gprtn +V2gnr p (4.40)

with some coupling constant ¢g. Feynman diagrams of nucleon scattering:

= Relations between different (pp, np, pr, etc.) scattering cross sections can be derived.
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4.4.2 SU(3) flavour symmetry

Further experimental observations:

e Different SU(2) multiplets of hadrons of the same spin show typical mass differences
by O(10%) (for baryons) or more (for mesons).

e Some hadrons have longer lifetimes than expected from the strong interaction.
— FExplanation by the quantum number “strangeness” S that is conserved by the
strong interaction. Those hadrons decay via the weak interaction.

= SU(2) multiplets of hadrons of the same spin can be arranged into representations of
the SU(3) flavour symmetry.

Spin-0 mesons:

K K+

K- 0
K0 — o

Q=-1

The octet consists of the pion triplet, the two kaon doublets (K 0 K*) and (K-,
K?), and the isospin singlet 7.

This scheme of organising hadrons is called “The Fightfold Way”.

Together with the 7" in the (0, 0) representation, the spin-0 mesons form the (1,0) ®
(0,1) nonet.

Electric charge: Q = I3 + %Y (Gell-Mann—Nishijima formula).

Strangeness: S =Y — B with the “baryon number” B = 0 for mesons.
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Quarks and anti-quarks

This structure is explained by regarding hadrons as composite particles that consist of
more fundamental particles called quarks and their anti-particles, anti-quarks, which fur-
nish the fundamental rsp. anti-fundamental representations of SU(3).

Quantum numbers of the u (“up”), d (“down”), and s (“strange”) quarks:

Q I I, Y S B
w 2/3 1/2 1/2 1/3 0 1/3
d —1/3 1/2 —1/2 1/3 0 1/3
s —1/3 0 0 —2/3 -1 1/3

Differences in the quark masses are another source for breaking the flavour symmetry.

There are 3 more quarks (c=“charm”, b="‘“bottom”, t="“top”), but their masses are so large
that the approximate flavour symmetries SU(4) and SU(5) are crudely broken. The top-
quark does not even form bound states.

Baryon multiplets and triality

J¥ = 0~ pseudoscalar meson octet; J¥ =17 vector meson octet;
(0,0) representation: 7’ (0,0) representation: w
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JP = 17 pharyon octet

1
2

* baryon decuplet

<
!

Il
[NJ[et]

Since quarks are fermions, the wave functions of hadrons must be totally antisymmetric
under exchange of two quarks.
— How is this possible e.g. in the case of the spin—% baryon A** of 3 up quarks?

[ATT) = [ut)ut)]ut) (4.41)

is totally symmetric.
= There must exist another quantum number. This is the “colour charge”

e 3 charges that transform under an SU(3) symmetry.
e This is the symmetry of quantum chromodynamics.
e Unlike flavour-SU(3), colour symmetry is exact.

Observable states must be colour singlets (“colour confinement”). This is the reason why
only representations (n,m) with n —m = 0 (mod 3) are populated with hadrons. This
fact is called triality.
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4.4.3 Gell-Mann—Okubo mass formula
The hadron octets can be arranged into the components of a tensor (IJ; Spin-0 mesons:
% 70+ % " a+ K+
o= T —m+En K| (4.42)
K~ K° — \/%77
Assuming exact flavour symmetry, the mass term in the Lagrangian would be

1 1
L0 = mPTrd? = 5 m; L], (4.43)

mass 2

This would imply that all masses are equal. The symmetry can be broken by introducing
mass terms that transform like the (1,1) and the (2,2) representations:

1 o
Lmass = 3 m%(b;q)z +

1 . . 1 . -
5 — QLM O + 5 NUVER (4.44)

2
e Assumption: The SU(3) symmetry is only broken by the octet M7, i.e. szkl =0.

e The mass term must conserve i3 and y.

= M g transforms like the 1 meson
= M = 3m2Y (factor 3 is convention).

The mass term is thus (note that K° is the antiparticle of K° and K~ that of K)

1 1 1 1 1
Loinass = 2m1Tr<I>2—|— 5 TrdMP = ém n* + 2m Tr7mm + 2mKKK

1
with mfz =m? —m2, m2 =m? + m3, m3 =m? — §m§ (4.45)
Eliminating m; and my in (4.45) shows that
4m3, = Bm% +m2, (4.46)

which is fulfilled to better than 4 %.

With the same method, a mass formula for the baryon octet can be derived, where
two symmetry breaking terms transforming under (1,1) can appear: myTr BY B and
ms Tr BBY . Instead of working this out, we derive a formula for the case of a hadron
multiplet of an arbitrary representation of SU(3).

There can be at most two symmetry breaking mass terms that transform under the

(1,1) representation. For a baryon multiplet Bﬁ ;" of (m,n):

BIr--im anm 'ln Bz Jm¢JlBll An (4.47)

11...0n J1.--Jm i1...0n Ji-Jm?

with some tensor ¢/.
= Expressing the mass terms in terms of operators acting on the hadron multiplets, there
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can be at most two such operators.

The generators of a Lie algebra transform under the adjoint representation.
— Arrange the generators of SU(3) in a traceless 3 x 3 matrix G:

I3+ 3Y I |/
G=| I -L+iy U_|. (4.48)
Vi u, -Y

From the same arguments as in the case of the meson octet, one of the possible operators
is Y, i.e. the component G3. The second operator can be constructed by projecting out
an octet in the Clebsch-Gordan decomposition of the tensor product G;Gﬁn,

- 1 .
Gb = §€ajl€bka']]€Glrn
|
= Gj= 5 (G1G3 + G3G) — GLGT — G1GY)
1 1 1 .
= ZY2 -2 - 5(I+I_ +1.1,)= ZY2 —I% (4.49)

Note that G? is not yet traceless, but this does not affect the mass formula. The masses
of the particles in a SU(2) multiplet of isospin ¢ and hypercharge y are thus

My = my +may +ms(3y> —i(i + 1)) (4.50)

with parameters mq, ms, mg. This is the Gell-Mann—Okubo mass formula.

In case of the baryon octet we obtain

mNEM%,1=m1+mz—§m3, my = Moo = ma,
1
mEEM%ﬁl:ml—mg—?ng, ngMLO:TTll—ng
=  myg+ 3my = 2my + 2mz=. (4.51)

This relation is fulfilled to better than 3 %e.

Comment: In a similar way it is possible to derive relations between magnetic moments
of hadrons (though not as a generic formula for arbitrary representations).



Chapter 5

Lie groups and Lie algebras

5.1 Lie groups

Definitions:

7

= a smooth manifold G that is also a group with the property that the
L are smooth.

e “Lie group
group product G x G — G and the inverse map G — G : g — g~

Loosely speaking, a “smooth manifold” is a set of points that looks locally like
a neighbourhood of some point of R”, and “smooth” mappings are meant to be
infinitely many times differentiable (for precise definitions, see, e.g., Ref. [2]).

e “Matrix Lie group” = closed subgroup of GL(C").

“Closed” means here: If {A,,} is some sequence of matrices in G converging to some
matrix A, then either A € G or A is not invertible.

This lecture focuses on matrix Lie groups:
e do not exhaust all Lie groups, but by far the most important in physics;

e are easier to handle (manipulations made very explicit).

Examples for groups that are not Lie groups:
e GL(Q") = invertible n x n matrices with coefficients € Q.
o G = {diag(e",e") |t € R}, with fixed a € R, but a ¢ Q.

For an example of a Lie group that is not a matrix Lie group and has no faithful finite-
dimensional representations, see chap. 4.8 in [6].

77



78 5. Lie groups and Lie algebras

Characterization of a Lie group G

e Group multiplication encoded in analytical mappings fa (5 ! ) ) of group parameters
0,6

The existence of g(g )~1, in particular, implies the local invertibility of fa:

-
©°4(0) = 8fA8(g, .0) g non-singular, @(6) =1,
s -
U(@)=06)" (5.2)

e Locally a Lie group is fully determined by its “Lie algebra” (Lie’s theorems).
— General Lie groups treated below!

Special case of matrix Lie groups (previous chapters):
Lie algebra spanned by the generators T for infinitesimal group elements

U00) =1 — 00,74 + O(56%), (5.3)

with the commutators [T4, T8] = TAT® — TBT4 as product of generators.

Note: In general Lie algebras there is no matrix multiplication to define TAT?%.

e Global properties of the group parameter space are necessary to define a Lie group
uniquely.
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Important global properties:

e “Compactness”  Group parameter space is compact in the topological sense.

Compact groups have similar properties as finite groups, in particular wrt. repre-
sentation theory (finite-dim. representation can be chosen unitary).

— Finite representations can directly represent qm. states.

Examples:
— Compact:  O(N), SO(N), U(N), SU(N).
— Non-compact:  translational group, Euclidean groups, Lorentz group.

e “Connectedness™  Each element is connected to the identity element by a con-
tinuous path in G.

— Group parameter space decomposes into disjoint, isomorphic sets G;, G = U;G},
but only one component (the “identity component” GGy) contains the unit element.

Some properties:

— The components G, are no groups (e ¢ G,4).
— () is an invariant subgroup of G.

— The factor group Dg = G/Gy is a (finite or infinite) discrete group.
Examples:

— Connected:  SO(N), U(N), SU(N).

— Not connected: ~ O(N), Lorentz group.

e “Simple connectedness™  Each closed path in G can be continuously contracted
to a point.

Each connected Lie group G has a “universal covering group” which is locally iso-
morphic (isomorphic Lie algebras) and simply connected.

(Subtlely: The universal covering group of a mtrix Lie group might not be a matrix
Lie group.)

If a Lie group has m independent non-equivalent closed curves (“m-connected group”),
m-valued representations are possible.

— Universal covering groups only have single-valued representations.
Examples:

— Simply connected: ~ SU(N).

— Not simply connected: ~ SO(N).

— Recall:  SU(2) is universal covering group of SO(3).
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Local properties (Lie’s theorems and their converses)

In addition to the Lie group G itself, consider its realization as transformations on some
vector 7 € RV:

i =F,(0.%), x,=F,0,%), a=1,...,N. (5.4)

Infinitesimal trafo 66 near identity (6 = 0):

To +dz, = F(60,7), dz, =60, ul(Z), ul(Z) = %ﬂjf) e (5.5)
Infinitesimal trafo df near finite 6: df and 60 are related by 04 +dfs = f A(ég, 0).
= d0, = 605054(0), 605 =do, U 5(0) (5.6)
according to (5.2).
= ! +da), = F,(0+ 40, %) = F,(60,%"),
Az’ = uP(Z') 605 = A0, U 5(0) uP(z"). (5.7)
Lie’s theorems:
e Lie’s 1st theorem:
g;”ib — (0 uB(7) (5.8)
with analytical functions 45 (0) and u?(z").
Note:  decoupling of 0 and 7’ dependences in evolution in 64!
e Lie’s 2nd theorem:
The generators
xXA40) = —i05(0) i, XA@) = —iu(2) 0 (5.9)
005 oz,

obey the commutation relations:
(XA0), XP0)] =if*P.x°0),  [XA@),XP@) =if P X7  (5.10)
with the “structure constants”, which neither depend on 0 nor on 7.

e Lie’s 3rd theorem:

The structure constants obey
fABL = —fPA. (antisymmetry) (5.11)
0= fAB fPCL 4 fPALFBC L+ fPP A9, (Jacobi identity) (5.12)

Both equations immediately follow from the definitions of the generators, in partic-
ular the second is due to [[X4(0), XB(0)], X ()] + cyclic = 0.
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Proof of Lie’s 2nd theorem:
Take derivative of (5.8) wrt. O¢:

a?j?éc - agc |95 (6) uZ (7(0)
= D80 () + w o) s
= aw;é(g) 2 (@(0)) + v 5(0) %ﬁ V(0 up (2). (5.13)
Using 608:?50 - 6082?5,4 and renaming indices, we get
(6\11;50(5) : a@§£(5)> (@) = W) V(0 | @) - G ()]
(5.14)

Aim: separation of variables § and Z’, but problem with «Z(Z’) term on Lh.s., which is
not necessarily invertible.

< Take special case for . = F,(f, Z) interpreting 7’ as 6':

70, utME) - 040"
A (o C (0
¢ 00 4
> - [06eP > 00 .
_ A C E B N E ~D /
- (@) 0 0) | 07 (@) - S 00 )
- o [ OUAL0)  9UCL()
H I c\v) G
functi;rnofg
00! - 0ef >, S
= [ 8«9’E 00" — 8«9’E@IF<9 )] UEL(0") = const. = —fH1,. (5.15)
F F
functi;gofg’
The remaining steps are fully straightforward:
e Calculate commutators of X4(6):
> > - 0 > 0
A B _ | _:0A 7 _iB 7
[.X @), x (9)] _{ 100 (F) 5,10 D(e)aeD]
. 008 4(0) . 904L(0)) 0 -
A E B E : pAB F
N = X .

4

= fAB . OF 5(f) accorcing to (5.15)
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e Calculate commutators of X4 (7):

(XA(3), XA(7)] = {—iug‘(a‘:’) 8ia,—iubB(f) &CJ

ouB () oA(T)\ 0
o Az c B/ = c
—( ) 2D () 2D )8%

OVCL@) VPO 4 o p o g O
o (— .t e 0%c(0)0 D(Q)Uc(x)a—xc
=fAB, acc;::ing to (5.15)

Converse statements of Lie’s theorems:

e Converse of the 1st theorem:
If functions f4(6’,6) and F,(6,7) that arc analytic around § = 6’ = 0 and Z = 0
exist, then there is a corresponding “local Lie group” and “local Lie transformations”
(i.e. in the vicinities of the group identity and of points Z = 0) with the generators
XA4(0) and X4A(Z).

e Converse of the 2nd theorem:

The Lie algebra of the generators X4(f) and X4(Z) determines a local Lie group
up to (local analytic) isomorphism (i.e. up to a linear transformation in the Lie
algebra).

e Converse of the 3rd theorem:

An abstract Lie algebra (see Section 5.4) determines a simply connected Lie group
uniquely up to isomorphism.

Extension:  For each given finite-dimensional Lie algebra £ there is even a matrix
Lie group with £ as Lie algebra.

Implications:

e All simply connected Lie groups (universal covering groups) can be classified by
classifying Lie algebras.
The classification of matrix Lie algebras provides also a classification of all abstract
Lie algebras.

e All Lie groups for a given Lie algebra can be obtained from the corresponding
universal covering group GG by determining the discrete, invariant subgroups G, of
G and deducing the factor groups G/Gy.

Note:  Since G is simply connected, the subgroups G, consist of elements that
commute with all g € G, i.e. the G4 are the subgroups of the centre of G.
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Special case: matrix Lie groups

Matrix transformation:

83

T =F0,7)=U0)7 (5.16)
Construction of generators:
ou (0
a(F) = 09< ) L I =-iT7, T4 = N x N matrix (5.17)
A =0
— Generators for transformation (5.16):
e as differential operators:
0 0
XA(7) = —iu (D) 5 = —Ti o (5.18)
e as matrices: The T obey the Lie commutators:
ﬁ - 0 0 0
[XA(x), XB(x)] = Tﬁ) Ty a—xa’ Tcg Tq a—xcj| = Tc:?) Tcg |:IL‘b a—xa, Ty 7
:$b6ad8::$d6cbaa
0 0 0
— TBTAC o TATBa :—TATBa
( )b?Uba ) ( )dxdaxa [ ]bxb&ra
=if*"P. X@) = —if*P TG ai'
xa
= [T TP =if*5,T°. (5.19)
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5.2 One-parameter subgroups, exponentiation, and BCH
formula

Problem:  Functions ¢} = fA(g g ) in general hard to get, but
e one-parameter subgroups admit canonical form 6" = 6’ 4 0,

e general case ruled by Baker—Campbell-Hausdorff (BCH) formula.

Theorem on one-parameter subgroups

Each direction in group-parameter space of a Lie group G, defined by some unit vector

—

n = (na), determines a one-parameter subgroup Gy with the multiplication property
g\ + ) = g(N) g(A), where g(A) = g(0 = Aii).
The corresponding Lie group transformation on some vector & € R¥ is given by

TN =UNZ, U =exp {idnaX(7)}, (5.20)
with the generators X (%) of G at the start point #(0) = & of the trajectory:

0

XA() = —iuA (@) o

a

(5.21)

Proof:

Subgroup defined by constructing a trajectory Z(A) with #(0) = & which corresponds to
some Lie group transformation with 6 = An:

e Lie’s 1st theorem for one-parameter group Gj:

dxgi” = naul (Z(N), @& =I(N), (5.22)

— —

where ©(0) = ¥(0) = 1, since \” =N 4

e As lst-order ordinary differential equation, (5.22) has a unique solution for given
Z(0) = 7.
— Check that (5.20) solves (5.22):  Z(0) = & is obvious.

dZ(\) AU
d dx

F=UN) i XNZD) T =U\) naa (D). (5.23)
= Still to show:

UN) nait(Z) = naa (Z(N)). (5.24)
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e Proof of (5.24) with auxiliary relation for linear operators A, B:  (Exercise!)

>

exp(A) B exp(—A) = exp(ad)(B), (ady)¥(B) = LA, [.., [é, B],...]]. (5.25)

k commutators

Choose A = iAn  X4(Z) and B = wy;:

adu(B) = [A, B] = iAn i’ (%) <% xb) = function of Z (multiplicative op.),
7

(ada)*(B) = ((i)\nAﬁA(f) 8:?) kxb).
< exp(ada)(B) = UN) 2y = ()

I
@
”
=
RS
S/
D
»
=
|
=
I

UN) 2y UN) (5.26)
A zyU(N) ™! =z, (N) implies (5.24):
A na@ (@) UN) 1= naa? (UN) ZUN)T) -1

#
Special case: matrix Lie groups
T'=F0,7)=U(0)7. (5.27)
Transformation operator for one-parameter Lie group: 0= \i.
U(N) = exp {i)\nAXA(f)} = exp {—i)\nAT;}7 Tp ai%} . (5.28)

—

— Derivation of matrix transformation U(0) = U(A\i7): (¥ = x,€,)

. a — . — . —
—19AT;}, Tp . T = —19AT;}, 2y €, = —i0, T4 z,
a

a k
_.0 TA —
( 10 4 abxb 8xa) xXr

= UN)T

(—i0.74)" 7

exp {1074} 7. = U(0) = exp {107} . (5.29)

Convergence and consistency of exp

—

e The exponential form of the transformations U (\) and U(f) always converge.

e In the identity component of compact groups, all group transformations can be
written in exponential form. For non-compact groups, in general a product of a
finite number of exponentials is required.
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Non-canonical parametrizations of group elements
The canonical form of matrix Lie group elements
U(0) = exp { 0,7} (5.30)
is sometimes inconvenient to calculate matrix elements (1| U(6) |¢)!
— Often non-canonical forms like
Uloy, g, . ..) = exp{—ioy T} exp{—ia,T?} ... (5.31)
are more convenient if some of the new generators T are

e diagonal (exp easy to compute) or

e nilpotent (exp series truncates).

Example:  Euler-angle parametrizations of SO(3) and SU(2) elements:

—

D(0) = exp{—igﬂ = D(a,B,7) = exp{—ia Jg} exp{—iﬁ JQ} exp{—iv Jg},

with J3 = diagonal in the usual representations.

Baker—Campbell-Hausdorff (BCH) formula

Given two elements X, Y in the Lie algebra £ of a Lie group G sufficiently close to 0, the
following relation holds:

1
—iln (e e™) =X +/ dt g (e * ) (V) € L, (5.32)
0
with
In 2 . :
g(z) = -1/ = analytic function for |z — 1] < 1. (5.33)
—-1/z

= BCH formula explicitly constructs the group element e? = eX ¥ for given X,V

Differential form:

o 1 . .
In (¥ oY) =iX 1Y - J[X,Y] - SIX XY+ S Y]+, (5.30)
where ... stands for multiple commutators with at least 4 operators X, Y.

< Form useful to obtain local information on functions f4(6”,6) for small §", 4.
Comments:
e BCH formula and its proof rather non-trivial (see, e.g., [6]).

e Special case:  (proven in Exercise 1.4)

X = XY XYL X (X Y]] = [V, [X, Y]] = 0. (5.35)
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5.3 Invariant group integration

Aim:  generalization of > F(g) = >_, F(g'g) Vg' € G (= finite group), which
e is valid due to the rearrangement lemma,
e attributes equal weight (=1) to each element g € G,

—

to Lie group with elements g = g(0):

S P = [ duy Flo) = [ 8 pld) Flg(d). (5.36)
G SN~
9 density function
— “Left invariance” requirement:  dy, = dypy,, V¢ € G.
—~ =~
volume element at g volume element at g’g

Construction of p():

g'=dg.  g(0")=g(0")g(0),
0 = fal6,6), 6a4=fa(0,6) = fa(6,0), since g(0)=e. (5.37)

Taking § — 6 — infinitesimal yields

78 5 fa(0',0) 7
npn/’ n ) — n /
d = d"0, det ( 90 = d"oJ@é’. (5.38)
volume element left volume 6=
translated from 0 to 6" element at 0
= Definition: .
- p(0) > .
p(0) = —~, p(0) = convention. 5.39
() @) (0) (5.39)
Check invariance of dy,:
Aptgry = d"0" p(6") = d"0 p(0) = d"0 p(F) = dp,. (5.40)

Theorem for compact groups:

a) [du, = Vi < oo exists (“Haar measure”), usual convention: Vg = 1.
Fixing Vi, the Haar measure is unique.

b) The “left-invariant” measure dy, is also “right invariant”, i.e.
/ dug F(g) = / dug F(g'g) = / duy F(gg') V9" € G. (5.41)
G G G

For a proof of a), see math. literature.
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A sketchy proof of b) in 3 steps:

S~YR

1. Show that dj; = djgge-1 for infinitesimal g, i.e. g = g(5§), 00 = inf.

g=¢gg " = inf. with g = 9(55) and 00 = M 60 with some matrix M.

< Consider g™ = (¢")™g(g'"1)™ = g(66 ™), where 66 ™ = M™ 56 :
If G is compact, there are two possibilities:

(i) g has finite order N, then M" = 1.
(ii) § has infinite order, then lim §™ =

m—0o0

() and thus M have to exist.

A~
—

9=
= In either case det M = 1 and thus d"@ d"8, so that
dpy = A0 p(0) = d"G p(0) = dpg = dpg g1 V9 € G. (5.42)
2. Generalization of dug = dpg g1 to any g:
Let g be inf. and ¢ = gg, then using (5.42) for § and left invariance of dy,:

dpg = dpgg = dpg (5.42) dptgag—1 = dpgg—1 = duggg—1 = dpigg—1 = dpggg—1. (5.43)

3. Proof of right invariance of dug:  dpgy = dptg—14¢ ( = : dptg. #
5.43

Example: Haar measures of SU(2) ans SO(3)
A suitable parametrization of SU(2) matrices:

U(f)zxojl—ifﬁ:(%_lx?’ ‘1‘““”2), o =+V1- 72 (5.44)

—il‘l + To Zo + i[L‘g

—

Relation to the form (3.18) with “rotation vector” 6 = 6¢ (¢? = 1):

=

e (5.45)

:Eozcosg, r=-si

Variations of U before and after translation to U(Z):

U(67) = < | —idx3 —15x‘1 - 5$2> ’

—10x1 + 019 i0xs

U(F' + 67") = :E’O /— i:pglJr 5:%/0 —idxly  —iz] - xh —1i0x) - oty bal = —aloa
—iz| + 2l —i6x) + 0xly x4 ixh + dxf + 102 (5.46)

Transformation of differentials and volume element from U(Z’ + dz') = U(2") U(6%):

/

/ /
Lo —T3 Iy
— —/ —»12 —»/
6t=| af x) —a|0T = &T=|ro(a} + z0w,)| LPT \/ d*z
—xh oy x J(w )
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= Haar measure of SU(2):

/ 4 1 / a3z /d4 51 2)
Hu = 535 s =3 r — 15—
SU(2) ™ Jaa VI— T2 ¢—5 '

1
1 27
= — /dQ/ dé (1 —cosf), 2 = solid angle of €. (5.48)
0

= Haar measure of SO(3):  (only zp = +V1 —22,ie. 0<0 <)

1 37 1 ™
dpy = — — = — /dQ/ df (1 — cosf). (5.49)
/So<3> ™ Jig<r VI — 22 |y yimgz AT 0

Reparametrization in terms of Euler angles:

21 = sin g sin¢g, o =sin g cos ¢, w3 =sin g siny, xy= cos g cos X, (5.50)
0<¢p=1(y—a)<2r - 0<a<2n,
0<x=1i(y+a)<2r 0 <~ <dm,
0<pB<nm, x9<0 included. (5.51)

A3z _do dsm sin B dsin y cos B

= 2 — dodsin 2 sin 8 dy = 1dad cos 8 d~.
V1—22 cosgcosx ¢ 2 2 X7 Py

1 21 1 4
= dpy = —/ da / dcos 3 / d~, 5.52
/SU(2) 1672 Jq —1 0 ( )
1 2 1 2m
/ duy = —2/ da / dcos 8 / d. (5.53)
S0(3) 812 Jo -1 0

Implications for compact groups: (similarity to finite groups!)

e All finite-dimimensional representations can be taken unitary, and all irreducible
representations are finite dimensional.

e Orthogonality relations of (unitary) irreducible representations DU

/ dpry DD (9)* DB (g) = b1 0o 5bd - n; = dim DY, (5.54)
G n;’
e Completeness relation (“Peter-Weyl theorem”):
30— 6"
Zn Tr { DY) (g)t DY)( )}:5(9—9')5%, (5.55)
p

where ) ;nj runs over all inequivalent irreducible unitary representations.
= Any (square-integrable) function F'(¢g) on G can be expanded:

=S, 19 =3 [P PR 650

j7a/7b
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5.4 Lie algebras

Definitions:  (more abstract algebraic versions)
e “Algebra” A = vector space with a bilinear product operation:
a,be A = aobe A, (5.57)
a,...,deA; a,...,0 e K=R,C
= (aa+ pb)o (yc+dd) =ay(aob) +ad(aod)+ fy(boc)+ pi(bod). (5.58)

e “Lie algebra” £ = finite-dimensional algebra with a “Lie product” [.,.] as product
operation:

[z,2] =0 Ve el = |[zr,y=—y,x] Vo,ye€L, (5.59)

Jacobi identity: [z, [y, z]] + cyclic =0 Vz,y,z € L. (5.60)

d; = dim £ = dimension of L as vector space.
Example:  [z,y] = x oy —y oz for an associative product o.

In a given basis {T4}4™E of £, each 2 € L can be written as z = 24T, and the
closure of £ under [.,.] implies

[TA, TB] = ifABOij7 fABC — _J['BAO7 (561)
and the Jacobi identity implies f48. P, + cyclic = 0.

e A “complexification” L¢ of a real Lie algebra £ is spanned by complex linear com-
binations of a basis of generators {74} of L.

Adjoint representation and Killing form:
e “Adjoint representation” (I'4)%, = —if48., ad, = z4T4.
— [TA TB] =if48,TS by Jacobi identity.

Note:  {ad,} provide a representation with £ as representation space itself:

ad, (y) = [z, y], (5.62)
ad,,(2) = [ad,, ady](2). (5.63)
e “Cartan—Killing form” g:
g’ =Tr (TzﬁTzﬁ) = — 15 fPPe = g"A (5.64)
Notation:
(x,y) = Tr (ad,, ady) = zayp Tr (TaﬁTgﬁ) = zaypg L. (5.65)

e [ decomposes into a “direct sum” of two Lie algebras, £L = L, & L,
if [x1,29) = 0Vay € Lq,29 € L. This implies:
fAPo=0 if T*e L, TP € Ly or vice versa, (5.66)
(l‘l,ZL‘Q) =0 if 2 € Ll,l‘g € L. (567)
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Extension of some group properties to Lie algebras:
e “Invariant Lie subalgebra” (=“ideal”) H = subalgebra with [H, L] C H.
e “Simple Lie algebra” = Lie algebra with dim > 1
without a proper ideal (i.e. # {0}, £).

e “Semisimple Lie algebra” = Lie algebra with dim > 1
without a proper abelian ideal.

e “Compact Lie algebra” = real Lie algebra corresponding to a compact Lie group G.

— (G = compact. = finite-dim. representations can be chosen unitary:
u = exp {i04T*} = unitary.
u=ut = (TA)Jr = T4 = hermitian.

— (Taﬁ‘i)Jr =T4 = fA8,=real and [fAB,=—f49,.

Some facts about (semi)simplicity: (some proofs beyond the scope of this lecture)

a) L = semisimple < (¢?P) = non-singular.  (“Cartan’s criterion”)
= Define inverse of g:  ¢g*Bgpc = 04.

— ¢ acts as metric to raise/lower indices:
ABC _ (AB  DC AB (CE ¢DF
f =["pg" ="/ R T B

= (fBFDfDAE + fFADfDBE) fCEF (Jacobi id.)

= _fBFDfADEfCEF + fAFDfBDEfCEF

=iTr (TETATS — TaTETS)

= antisymmetric in A, B, C. (5.68)

= ([z,y],2) = Te (TATETS — TETATS) xaypze = if P2 aypc

= ([y,z],:p) = ([va]vy)

= (2, [y, 2]) = ... (5.69)
b) £ = semisimple & compact < (g4P) = positive definite.
Proof of “=""
Use compactness: — g48 = — fAC  fBD  — 4 fAC BC
= (z,7) = IEA$BQAB = ($AfACD) (xBfBCD) = ($AfACD)2 > 0.
But:  (z,2) > 0 for x # 0 due to semisimplicity of L, see a). #

c) Every complex semisimple Lie algebra can be obtained as complexification of a
(real!) compact semisimple Lie algebra.
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d) £ = simple = adjoint representation is faithful (=isomorphic to L).
Proof:
ker (ad,) ={z € L | ad,(y) = [x,y] =0Vy € L, ie. ad, = 0}

= centre of L (= set of commuting elements)
— defines an ideal Z of L.
But: £ =simple = Z={0}or L
impossible, otherwise £ = abelian
= ker (ad,) = {0}. #
e) L =semisimple < L=L,&---BL,
with £, = simple and [Ly, £] = Ly (=ideal).

Proof: based on a).

“="  — Be Z an ideal of £ (if there is none, there is nothing to show).
— [Z,L] CT.
— Def.:  C = complement of Z w.r.t. g, i.e. (C,Z)=0.
= ([C,7],7) = ([Z,7],C) =0
(c.1.7) = (L1.0)

- = [0.Z] = {0},
([C’ 1], C) =0 since g = ingul
| , g = non-singular.
C Z, ideal!
= L=1dC.
— 7 and C' are semisimple, since the restrictions of g on Z or C' are non-
singular:

reLl, x=xr+xc, v7 €L, vrc € C  y analogously.

= (z,y) = (z1,y1) + (Tc, yo)-
— Repeat decomposition of Z and C' recursively until only simple subalgebras
remain.

Ce L= L@@ L, [Lr L) =0 for k#L

Let z = Z Tk, T € L, y = analogously.

k=1
n

— (z,y) = Z (2, yr) = non-singular. = L = semi-simple.

k=1 = non-singular metric on L, since Ly is simple.

Recall:  If T4 € Ly, then fAB, =0if TP ¢ L.
= g¢4P ’ L yields metric on Ly. 4
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f) £ = semisimple < L =L, L],
l.e. each element can be written as commutator.
Proof of “=": based on previous property e).

L = semisimple = L1 ®---® L, Ly = simple = ideal, [Ly, L] =0 for k # L.
— (L, L] =L, L] [L,, L) =L,
~—— ——

=L =L,
since [Ly, L] is an ideal of £, that must be £, or {0},
but {0} is not possible. 4

g) L = compact = L = “reductive”, i.e. direct sum of an abelian
and a semisimple Lie algebra

— Labelian > Lsemisimple-



94

5. Lie groups and Lie algebras



Chapter 6

Semisimple Lie algebras

6.1 Cartan subalgebra, root vectors, and Cartan—Weyl
basis

Consider complex semisimple Lie algebra £ resulting from complexification of a (real!)
compact semisimple Lie algebra. (Always assumed in Chapter 6.)

— W.l.o.g. we can assume:

e structure constants f4Z, real,
e generators hermitian: T4 = (T;}i)f,

e Cartan-Killing form g = positiv definite on real vector space spanned by {T4}.

Construction of “Cartan subalgebra” H
1. Find maximal set { H’ }i—y of linearly independent T, 4 that mutually commute:
[H, H*] =0, r = “rank of £” = independent of choice of {H7};_,,  (6.1)
H = subalgebra spanned by {H’}, r = dim H.

2. Simultaneous diagonalization of all H” in adjoint representation:
(adps) = (ng)AB = —ifi4, < 645 for fixed ;. (6.2)
= ady, (T7) = [H),TA] = if/ 515 < T4, (6.3)
Renaming X = T4 ¢ H in this basis, define
adm; (X*) = [H?, X% = f/(a) X" (6.4)
— FEach generator X ¢ H is characterized by a

“root vector” B(a) = ('(a),...,B"(a)) #0 (0 would mean X € H),  (6.5)
® = set of all root vectors (a) # 0. (6.6)

95
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Notation: Eéa) = X with 8 = f(a).

Comments:

e The generators X* are not hermitian anymore after the diagonalization of
all H7.

e This step requires that the number field of L is closed.
— Take field C, not R!

3. Inspect general H = h;H? € H:

[H, X% = h; [H, X?] = h;(a) X*, (6.7)
~——
B(H) = “linear form” on H (=linear map H — C)

ie. B € H* = dual space of H.

Note:  Construction of ‘H in adjoint representation can be transferred to whole £
if £ is simple, since the adjoint representation is faithful.
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Properties of roots:

a) If f(a) is a root, then also —f(a). = d—1r = even.

Proof:
[H, X“] = p/(a) X", }T and use 3(a) = B(a)*, H = (H]A)Jr
(x) 1| = i(a) (x),
A7, (X)T] = =87(a) (X' (6.8)

b) If B(a) + B(b) # 0, then either [X*, X*] =0,
or (X X"] # 0 is eigenvector to root B(a) + B(b).
Proof:

[H, [Xx° X*]] =[x [H, X"]] + [X°, [X*, H]] (Jacobi id.)
= B (b) [X*, X"] — B (a) [X*, X"
= (F(a)+ B (1) [X*, X"]. (6.9)

J

~
# 0 for some j-value

= If [X X*] # 0, then it is an eigenvector to root 8(a) + 3(b). #
c) (H7,X%) = 0.
Proof:
0= ([H’, H"], X (since [H?, H*] =0)

Hj k a — k j ay
(17, [H*, X°]) = §*(a) (H, X°)
# 0 for some k-value

= 0= (H’,X"). (6.10)

d) (X, X*) =0 if B(a)+ B(b) #0.
Proof:

([, 1), X°) = =4 (@) (X°, X")
= (X, [H,X"]) =+p7(b) (X, X").
= 0= (F(a)+ 5 (b)) (X4, X").

. >

~
# 0 for some j-value

= 0= (X*X"). (6.11)
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e) g9 =Tr{H'H’} in adjoint representation is non-singular and positive definite
(=restriction of Cartan—Killing form to H).

< Define:

gijgjk =0, By = gjkﬁk, (6.12)
(a, B) = gjra? B = oy B". (6.13)
——
< positive definite scalar product on the root space H*
Proof:
9= (9"") = (¢") ® (9"), since {H7} L {X"}.
= (¢%) is non-singular and positive definite, since (gAB) is. #
f) Restricted Killing form calculable from root vectors:
(H,H)=> a(H)a(H) VHH €H. (6.14)

acd

Proof:  Exercise!

g) All roots B(a) are different (no degeneracy of X!),
i.e. exactly one eigenvector Eg = Eéa) corresponds to a root S(a).

Proof in 3 steps:
e Step 1:
[X*, X"] € H for B(a) + B(b) = 0, according to proof of b), i.e

(X X" =c¢j(a,0)H | (..., H")
= (Hk, [X“,Xb}):c(a b) (H, Hk)—cj(a b)g’* = ¥ (a,b)
= ([0 X = ) (X0 ). (6.15)

,d(a b)
Note:  d(a,b) # 0 for at least one pair a, b!
Otherwise (X% X)=0VX € L,

i.e. contradiction to non-singularity of metric.

= [X* X"] = B;(a)H?d(a,b) # 0 for some chosen index pair a,b. (6.16)
e Step 2:  Choose one specific generator B« and define subspace A C L:
A= [Eiag,%,va,...,vka} , (6.17)

V,, = subspace spanned by all generators E((Xb) with root 5(b) = «,

k = largest integer k, so that k« is a root.

Observation: A is invariant under multiplication by all generators in
A= {E%H,va}, ie. [X,A] C A VX €A

— Verification by calculating all commutators!
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e Step 3:  Consider (6.16) on subspace Al
Identify o = —f(a), then X, X° {H7} € A.
W
= (6.16) defined also on restriction A of L.
— Evaluate trace of (6.16) on A in adjoint representation!

Recall diagonal block structure:

Vs H Vg
N AN~
g1

0-1
because
ady; (H*) = [H/,H*] =0,
ady; (E}ﬁ) - [HJ‘,E;“} — BB)ED. (6.19)
= Tr{(6.16)} = Tr {[X*,X"]} =0 (due to cyclicity!)

—Tr{ﬁ] VH?d(a } Bj(a ab)~1j4r{Hj}

= —a; -d(a,b) - {— T4+ 0 +ozj-dimVa+...+kaj-dikaa}
~—~ N~~~ ——— ————
o B M o Vo < Via
k
—— il - d(ab -{—1+ l-dimva}. 6.20
J (a,b) ; z (6.20)
= (a,0)#0 #0 >0
= Unique solution: k=1 with dimV, = 1. #

= Standard form of a Lie algebra: “Cartan—Weyl basis”:
Generators: H/,E,,E_, = (Eaé)T
with H* = o;H’ and (E,, E_,) =1 (i.e. d(a,b) set to 1).

Commutators:
[H’,H*] =0, (6.21)
[H) Eyo] = £ d’Eq,, (6.22)
(B, E_,) = H®, (6.23)
[Ew, Es) = NogBorp ifa+[#0, (6.24)
(6.25)

Nopg = 0if a + 8 is not a root.
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6.2 Geometry of the root system
Root strings:
Definition: ~ “f-string through root «”

Spo = {roots a+kf | k=—p,—p+1,...,q; p,q € Ny,
but o — (p+ 1) and a + (¢ + 1) are not roots}. (6.26)

In root space:

—

(E_g,[E_g,....[E_g.Ea]...] 3

\

Ss.o as sl(2,C) representation space:
Ss.o = representation space of sl(2, C) spanned by E.g, 3;H) = H”:
e sl(2,C) algebra:
By, E_5) = H”, (6.27)
[H?, Evg) = £8,# Esg = £(5, f) Exp. (6.28)
e [, 5 — shift operators on Sg., from o+ kS to o + (k£ 1)6:
[Exp, Eatip] o Eat s (6.29)

® Foikp are eigenvectors of adg, ;:

[H”, Eairg) = Bj(a + kB) Eayns = (o, B) + K(B, B)] Eayrs- (6.30)
eigenvalues: “weights”
= highest sl(2, C) weight = (o, 8) + ¢(8, B)
= —(lowest weight) = — [(, 8) — p(5, 8)]. (6.31)
(o, 8)
= 2 =p—q=necZi. 6.32
(5.9) (032
Apply the same arguments to S,.5 (with p', ¢ instead of p, q):
0By i=wen (6.33)

(@, a)
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= Condition on angle 0,3 between roots «, 3 in root space:

2 /
0§00529a55%:ﬂ<1.

(a,0)(B,6) 4 —

In particular, n and n’ have the same sign (if both are non-zero)!

Constraints on Sg,, and S,.5 from (6.32)—(6.34):

a) Assume special case f =c-a, c € R:

(o, 8) 2 212
2 —=nez = =2,1,-,=,—,.
(7 ) C n ‘C‘ 77372757
1 3
2( ’ )_2 c=n' € = Jc=0,=,1,=,2,.
(o, @) 2772

= 2 possibilities:  (w.lo.g. |c|] <1)

(i) || =1,1e. f=4aor f=—
— Nothing new, since £« are trivially roots.

(ii) |¢| = 5, ie. o =+2F or o = —2p.
— Contradlctlon to proof of property g) above!

= With « being a root, +a are the only multiples of a being roots!

b) Possibilities for 3 # +a (0 < cos® 6,5 < 1):

length ratio from (6.32)/(6.33):

S

S

>
o
IS

Wf

101

(6.34)

(6.35)

(6.36)

0 or 0 g not fixed
+1 +1 3 1
27
-1 -1 = 1
+1 +2 x V2
—1 -2 i V2
+1 +3 x V3
—1 -3 5 V3

+ cases with av <> 3, n <> n/
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Determination of |Nyg|: < [Ea, Egl = NogEoys )
e From definition and £, = E:

Nag = —Nago = +N%g_o = =N (6.37)

e Choose 3 (non-vanishing) roots «, f,y with a + f+~v = 0:

[Ea, (B3, E,]] = [Eaa Ng, Eﬁﬂ} = Nﬁ'yajHj'
~—_———— ——

...+cyclic=0 =F_,

= 0= Ng,a; + NyoBj+ Nog v, , since {H’} = independent.

——
= —a; —f;
= 0= 0a;(Ngy — Nog) + Bj(Nya — Nag), but o, are independent.

= Nag = Nﬁﬁf = N,Ya, 1.e. Naﬁ = Ng,,a,[g = N,a,[g,a. (638)

e Jacobi identity on root string Sg.q:
0= [Es [E_p, Basnpl] + [E-p; [Bavrp Esl] + [Eatrs, [Es, E-pl],
—_—— —_—— —_——
= N_gat+kpBat-1)8 = Natig.pElat+1)s = B;HI
0= [N_patksNpatk-18 + NatkpsN_gatins — Bi(@ +kB)’| Eatp,
——
£0
= (,8) +k(B,8) = N parrsNsarx-1)8 T Notks,sN_gat(ki1)8-
Using

N_gatks —N§ o ip

(6.37) —Not-1)8,8 ©637) N3 ot (k1) (6.39)

~ Nl s (6.40)

(6 38)

N_3g, = N_,
pat(k+)s = ~kB.~0 o3

we get the recursive relation
(o, 8) +k(B,B) = F(k —1) = F(k),  F(k) = |Nasussl” (6.41)

e Boundary of recursion (6.41):

[Eﬁa Ea-i—qﬁ] =0 = Nﬁ,oz-i-qﬁ =0 = F(Q) =0,
[E,ﬁ, Ea,pg] =0 = N,[g,a,pg =0 = F(—p - 1) = 0. (6.42)
——
=Ng.a—(p+1)8

= Unique solution for F (k‘)

F(k k) [(o, B) + 2(k +q+1)(B,5)]
k) [30 =)+ 5(k+ g+ D] (B.9),
F(0) = \Naﬁ\Q = 34 ( )(ﬁ B)- (6.43)
Note:  — N, 5 can be chosen real. (If needed, redefine phase of El,.)

— Sign determination of N,z not so trivial, details see below!
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Weyl reflections:

Definition:
_ (a7 6) o : R
og(a) =a — 2(5 B)B = “Weyl reflection” of o w.r.t. the hyperplane L . (6.44)
Check properties:  (see (6.35))
oaﬁ(a):root,sincepgn:2%: —qand g > —n=q—p.

e Projections:

N N ) o
(05(a), B) = (o, B) — n(B, B) = (e, B) 255 B8 = ~(@.p)
(05(a), o5(a)) = (a, @) — 2n(a, B) +1n2(B, B)? = (a, ). (6.45)

29

“Weyl group” = group of all Weyl reflections.
— subgroup of the full symmetry group of the root system (and as such finite).

Note:  The finiteness of a reflection group is non-triviall

Abstract definition of a “root system’:

A “(reduced crystallographic) root system” is a finite set ® of non-zero vectors (“roots”) in
some finite-dimensional real vector space V' with scalar product (.,.), with the following
properties:

(i) The roots span V.
(ii) For each v € &, —«v is the only other multiple of « in ®.
(iii) @ is closed under Weyl reflections, i.e. og(a) € @ V a, 5 € .

(a, B)
(8, 8)

The “rank” of the root system ® is defined to be dim(V').
Pt ={a e ®|a>0} = set of all positive roots.

(iv) “Integrality” 2 €Z Va,ped.

® is “reducible” if it can be decomposed into a sum of mutually orthogonal parts, i.e. if
D=0 + Dy with &, CV;and V =V; & Vo, V1 L V5. Otherwise @ is “irreducible”.

Note & = reducible <« L = semisimple, but not simple.

Serre’s theorem:

There is a one-to-one correspondence between abstract root systems and complex semi-
simple Lie algebras.
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6.3 Simple roots, Cartan matrix, and Chevalley basis

Chevalley relations:
1. Start from auxiliary identity: (Exercise!)

1
(a—i—ﬁ,omLﬁ):p—i‘ for roots «, 8 if a + f = root.

(o, ) q
Outline of proof: (Exercise!)
Use p = 2% + ¢ in auxiliary quantity

- RO, (1B (1 gl

(@, )

()

and show that M = 0 for all possible cases of n, n' ...

(@, )

2. Application of (6.46) to N,z for a + 5 = root:

p+l (a0
q (a+B,a+p)
(o, @)(B,B)
(a+f,a+p)

Ngl? = Salp + 1)(5.5)

1
= 1)
5P +1)

3. Redefinition of generators:

= “Chevalley relations”

[hOm hﬁ] - 07 [hﬁa 6:I:oz] =12 €ta;

(o, )

£(p+ 1Dears if ~ Toot,
[eaaefa]:ha, [60”65]—{ (p+ )6 +8 1 a+p oo

0 otherwise.

Comments:
e In this basis, all structure constants are integers.

e The sign choice in the last relation is non-trivial.
— Details clarified below!

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)
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“Positive” and ‘“simple” roots:

e A root a is “positive” (“negative”) if the first non-vanishing component o’ of the
root vector in the fixed order of H' ..., H" is positive (negative).

e A root v is “simple” if « is positive and cannot be written as linear combination of
other roots with positive coefficients.

Properties of simple roots a(®:

e Differences of simple roots cannot be roots.  (p¥ = pl) = 0)
. , . A 2r 37 5
= (a(’),a(j)) <0, ie Z (a(’),a(])) = %, Iﬂ, % (6.51)

e There are only 4 possible non-trivial chains for two simple roots:

a® a® 400 004 gal) g=0,1,2,3

e There are exactly r = rank(L) simple roots, and they span the whole root space.

e Any (positive) root [ is a linear combination of simple roots with integer (positive)
coefficients:

B=ba™, > b =ht(8) = height of root B. (6.52)
i=1

Two new bases: simple coroots and fundamental weights

— Particularly relevant in representation theory!

e To each root « define a coroot c: 2%
0= (6.53)
(a, @)
“Simple coroots™ @
G =29 g, (6.54)
= 00 aby’ R )
= B={a®W}_, is a basis of H*.
e “Dynkin basis” of H = dual basis to B = B* = {Ay)}i_,.
(d(i), A = 5;-, A(j) = “fundamental weights”. (6.55)
e Some relations:
a=aa® =qga®?, a = (a, A(Z-)) = % (a(i), a(i)) , (6.56)
A= NA N = () av —Q(A’a(j)) = “Dynkin labels” of A 6.57
= (5)» —(,CY )—W— yukin labels™ oI A, ()
‘ "1,
(a0, \) = a;\' = Z aai)\l (o', a®). (6.58)
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Cartan matrix and Chevalley basis:

e “Cartan matrix” A of £

g _ o @,a) @) 50)

92 A12
A21 2 A23

= A= . . with A = integer < 0 fori # j.  (6.60)
. ,
Note:  ith row of A = components of & in Dynkin basis.
e “Chevalley basis” = {h,u} U{e, o}
Mo, exan] = + Aey 0, (6.61)
[eats €atn] = F eatram or 0, if @ +al) is root or not. (6.62)

< Signs fixed by convention, e.g. “+” for o) < o9,

Serre relations:
1— At
(adeia(i)) () (6.63)
Proof:

(a®), a®)

A =1
I=A ! Q(Q(i)’a(i))

= 1—n;; = 1+ ¢;; = smallest positive integer &
so that a¥) + ka® is not a root. +#
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Simple properties of Cartan matrices:

a) A"=2, (6.64)
b) AY =0 & A'=0, (6.65)
c) AY €{0,-1,-2,-3} fori # j, (6.66)
d) if AY € {—2, -3} then A’ = —1 for i # j, (6.67)
e) det(A) > 0. (6.68)

Proof:
e a) and b) obvious from definition of A.

e ¢) and d) follow from properties of root strings (see Section 6.2):
n,n’ <0, since p=p = 0 because of simplicity of roots a®, al9).

e To prove e), factorize A into diagonal matrix D and “Gram matrix” S:
D = diag(ds,....d,), dj=2/(a",a%) >0, det(D)>0,
S =(s45), Sij = (a(i), oz(j)) ,det(S) > 0, since {aP} are linearly independent.

= det(A) = det(SD) = det(S) - det(D) > 0. #
Examples:
9 _1 2 -1 0
Aa) = (2),  Aue = ( o ) Agqw=1| -1 2 -1 |.  (6.69)

0 -1 2

Relation between A and (semi)simplicity of L:

e [somorphic semisimple Lie algebras have the same matrix A up to some possible
renumbering of simple roots (rows,/columns).

e L is notsimple: L = L, & Loy, with £; = semisimple Lie subalgebras of L.
— [Xl,XQ] =0 \V/XZ S *Cz

< A is “reducible” to the following block form by renumbering of roots

A
A= < 1] 0 ), A; = Cartan matrix of £;. (6.70)
0 | Ay
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Reconstruction of all simple roots from A:

l-l IAZ]
[ J I:a‘(is(’ 1'1” elglls[z. -— = .

1 —
e Angles 6;; between roots:  cosf;; = —5\/ Al ATt

= Simple roots determined up to orientation and overall normalization (=convention).

Examples:
2 —1
a) sl(3): A= .
paer a=( 2 7))
Known: 4 =1y, cosbs=—21 e 015 =2

27 3
Definable: 5, =1, oM =&, a?. & >0.

1 -1

<1>:( ) <2):1< )

— « ,  « .
0 2\ /3

b) Gy: A:<_i _z)

Known: Iy =V3l, cosbs = —%\/g, ie. 019 = ‘%’r.

Definable: b =1, oM =438, o?.& >0.

- (J) = g

DO [—=
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Reconstruction of the full root system from A: (“Serre construction”)

Idea:

Each root a > 0 is a unique combination o = a;a® with a;, = integer > 0 and corresponds
exactly to one shift operator e,, which is an eigenvector of all ad,
2(aY), q) ij

_ ’ — . At
adha(j) €y = (@0 a0)) eq = a; A% e,.
— Each a > 0 can be obtained upon recursively constructing all possible root strings of
all simple roots a”), starting from the simple roots themselves, and characterized by the
Dynkin labels a; A%,

Recursive algorithm:

1. Roots of height 1:
These are the simple roots a?, which are known to exist.

Recall (6.61):  ady , ea0 = AVe, .
< Simple root e, is eigenvector to h,) with eigenvalues A%.
— e, is represented by its “weight vector” |A™, ... A™) of Dynkin labels.

2. Roots of height 2:
Consider all root strings of e, ) through e, :

e o) — ¥ ig never a root, i.e. ad, (k) Cald = 0,

)lfAik

e Serre relations: (adea(k) eq = 0.

< Root strings start at o? and have lengths 1 — A* in o®) direction, and
a +a® is a root (i.e. ey am # 0) exactly if —A* > 0.
= All roots of height 2 through a® determined and represented by
|Ai1 —FAkl’...,Air—FAkT).
3. Roots of height (n + 1) from roots of height n (starting with n = 2):

Consider all root strings of e,u through root 8 = b;al? with ht(3) = n:
/B _pa(k)7767vﬁ+qa(k)

e p can be read from roots of lower weight.

' (8,0™)
e Recall (6.32): p—q= QW

— [+ a® is root if ¢ > 0.

= All roots of height (n + 1) through § determined and represented by
|AFL 4 b, AT AR 4 b AT,

Repeat this step until no roots with bigger height are possible.

4. Adding for each positive root « the negative root —a completes the set ® of roots.
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Extension to reconstruct the whole algebra:

Chevalley relations (6.50) fix algebra up to signs in
leases] = £(p+ 1)eqrs if a+ = root.

Sign choice [3]:  Free sign choice for all “extra special pairs” of roots «, 3,
the others follow from algebra.
e An ordered pair {«, #} is “special” if & + 8 = root and o < f3;

e a special pair {«, f} is “extra special” if a < o for all special pairs {o’, '} with

o + 5 =a+p.
Examples:
2 —1
1(3): A= )
o a=( 7 7))

e Height 1: 2 simple roots: o —(2,-1), a® — |-1,2).
e Height 2: 2 relevant Serre relations for ¢ # j:

1-A% 2
(adeau)) €2 = (adea(l)) €2 = [eau), [eau), ea(z)]] =0
= a3 =aV) +a® =root, eq, =+ [e,w,€00)] -
1-Al2
(adea(Q)) ea(l) —_— = 0

= no new information.

= az — |AM + A% A2 4+ A%) = |1,1) is the only root of height 2.
e Height > 3:  check 2 strings through as:

oW string: p=1, ¢=p— (A" + A% =0,
o string: p=1, ¢=p— (A® + 42 =0.

= No roots of height 3!
d = {aM,0®, ay, —a®), —a®, —ay).

Graphical illustration:  (coordinates of a*) see above)

|2771>
4o ip 0 a®  aWa®
qg=1
+ CY(2) ‘—1, 2> 74} ‘17 1) —7> Oé(l)
q=20

0
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b) Gy A:(_i _2)

+ a® |—1,2)
I
4o o
2,-3) ——> [L,-1) —— > [0.1) —— > |-L3) —> 0
q=3 p=1 q=2 p=0 qg=1 p=0 q=0
q= qg=0 g=1
0 0 11,0)
p=1
Vi
Positive roots: 0
‘27 —3> . O{(l), €a1),
‘—1, 2) : a(2), €42,
|1, —1) : as = a4+ o, €az = tade ) €, = —ade, o) €4,
|0,1) : ay = oV +20@ s = Fade o) Cag)
|—1,3) : as = a4+ 30, Ca; = tade o) Cay,
|1,0) : ag = 2aW + 302, as = tade ) €as-

Note: a3 is the only non-simple root corresponding to a special and an
extra special pair of roots.
A root with special and extra special pairs correspond to alternative
paths for their construction.

The full root system:  (coordinates of a*) see above)

a®

a(1)+a(2)
201 +3a(2)

a(l) +2a(2)

a(l) +3a(2)
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6.4 Classification of complex (semi)simple Lie algebras
— Dynkin diagrams

Semisimple complex Lie algebras, root systems, and Cartan matrices:
There is one-to-one correspondences between:

e semisimple complex Lie algebras L,

e abstract root systems ® with Cartan matrices A.
Similarly, there is one-to-one correspondences between:

e simple complex Lie algebras L,

e irreducible root systems ®, with irreducible Cartan matrices A.

Decomposition of semisimple complex L:
L=®;L; L; = simple. (6.71)
Simple components £; correspond to ®; and A;:

b = U; (I)z (I)z = irreducible, (I)z N (I)j = (Z) Vi 7£ j, (672)
A=, A, A; = irreducible. (6.73)

= Classification of simple complex Lie algebras:

e automatically provides a classification of semisimple complex Lie algebras,

e corresponds to a classification of irreducible root systems, which have irreducible
Cartan matrices.

“Dynkin diagrams”
— graphically illustrate Cartan matrices (and thus the corresponding ® and £).
Graphical rules: 7 = dim(A) = #(simple roots).

e Draw a circle O for each simple root (labelled by i = 1,...,r).

e Connect the two circles 7 and j by max{|AY|, |A7"|} lines.

o If (a(i), a(i)) > (a(j), oz(j)) for the two connected roots ¢ and j, then put the ordering

sign > on the line(s) between ¢ and j, e.g.:  O—==0
¢ J
Note:  Singly-connected roots have identical lengths;
different lengths occur for 2 or 3 connecting lines.

= Connected Dynkin diagrams correspond to simple complex Lie algebras.

Examples:

O Oo—oO O—0O—=0
sl(2) sl(3) sl(4)
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Classification simple complex Lie algebras (connected Dynkin diagrams):

Preparation:

e Deconstruction of root systems / Lie algebras:
Removing a simple root (e.g. number ) from the root system (eliminating row 7 and
column 7 from A), leads to an allowed simple or semisimple Lie algebra of rank r —1.

NG
(@@, a®)

;=2 (a",a9) <o,

I7, = #(lines connecting i and j) € {0,1,2,3} for i # j. (6.74)

e Use normalized roots &' = , so that (d(i), éz(i)) =1 and

Restrictions on diagrams:

a) In a set K of k roots, the number Ly of connected pairs of roots is at most k — 1.
Proof:  Define v =Y, ,c @7, so that

0<(aa)=> (a9,a")+ > 24", a") =k+ Y 1.

ek 15 ik
ek #

b) There are no Dynkin diagrams with closed cycles (loops).
Proof:  This follows directly from a). #

¢) No more than 3 lines can originate from a single root.

Proof:  Let &% be a normalized root connected to the & roots &) of the subset K:
1= (@(i)’d(i)) — (d(j)’@(j)) ’ (d(i),d(j)) <0, jeK,
0= (av,a"), jlekK,

where the last condition stems from the absense of loops.
The linear independence of the simple roots implies that

0+£p3= A Z (d(i), d(j)) d(j),

jeK
0<(B,8)=1-> (a9 =1-3"12/4.
jEK jEK

= 4> Z l?j = #(lines connected to 7).

jEK
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Implications of property c) for a 3-fold-connected root i:

e Only 1 diagram possible with a triple line: C==0

e 2 possible substructures for a root ¢ with a double and a single line:

{ !

e 1 substructure for a root ¢ with 3 single lines:

i
— Limitations on lengths of chains indicated by “--+” (= one or no line)?

d) “Shrinking rule”: Replacing a linear chain of singly-connected roots by one root
generates a valid Dynkin diagram.

Sketch of proof:  Label the k singly-connected roots & by i = 1,..., k, so that

(@@%du+n)::_%,
(@(l)a@(]))zoa Zaj:177k_17 ‘Z_~7|>1

i=1,... k-1,

. k=1 A (i . .
Define & = Y./, @9, which is a unit vector,

k k—1
(@,6) =Y (a9,aD) +23 " (a9, a0 =k — (k- 1) =1, (6.75)
=1

i=1
and replace the whole chain C' = {aW}*_ | by & to get a new Dynkin diagram.

To show:  The set {a} U {aW}_, | generates a root system @ of rank r — k + 1.

e Linear independence of {&} U {a®}"_, | and rank of ® obviously ok.

e Check angles between simple roots:
Note that any root 3 € {a®}7_, 41 not in C could be connected to only one
root @U) € O, since there is no loop. But B has the same non-trivial angle
(i.e. # 7/2) with &Y and the new root a:

k—1

(B.a)=>) <B,a(i)) — <B’@(j)) _

=1

— &Y can be replaced by @ in all scalar products with B
= Integrality and Weyl reflections ok!

e Show non-existence of multiples of roots other than 4+« yourself?
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e)

g)

A Dynkin diagram contains at most one double line.

Proof:  According to c), two roots with double lines could only be linked by a
chain of singly-connected roots. Shrinking this chain to a single root as in d), would
lead to a root with 4 lines attached. — Contradiction! #

There are only 3 possible structures with a double line:

Proof:  Consider 2 singly-connected chains {d(j)};-‘zl and {S® 1} with a double
line linking &™) and B(m), where B(k) are just some renamed roots &, so that

(d<ﬂ>,d<ﬂ+1>):(BW,B(HH):—%, j=1,...n—=1, k=1..m-1,
(@™, 3y = — 1 (a0 pWY =0, £k j=1,...n k=1,....m.

(,a) =3 " =3 ii+1) = @

Schwartz’s inequality implies a condition on n and m:

mn(m+1)(n+1) m?n®>  mn(l+m+n—mn)

0 < (@, @) (B, 8) — (a, B)* = 1 5 4
= (m—=1)(n—-1) <2

Note that equality is ruled out, because a and [ are linearly independent.
The 3 different types of solutions for n,m > 1 correspond to the above diagrams,
assuming that the a(¥ are longer than ) (unnormalized roots):

e m =n = 2: diagram on the right.

e m = 1,n € N: diagram on the left.

e n=1,m € N: diagram in the middle.

There are only 4 different types of diagrams with a root connected to 3 other roots:

oo oo

O O O O O O
O O I O O O O i O O O
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Proof: ~ Consider 3 singly—(jonnected chAains {d(j)}?;ll, {B(k)}zn;f, and {40~}
which are linked to the root ¢ by @™, "= and 4®P-1.

As in f), analyze the scalar products of the vectors oo = Z;;l ja, g = Z:;l kB®,
and v = S 150):

o) =" )= Gat) =
.o ="0"D ()= -G =L
(v.7) = w7 (6,7 = (-1 (4% = —p%l-

Calculate the norm of the vector

) (B, (6
N P N o W

which is orthogonal to «, 3, -,

€

(a8 (09 11 1 1
0<(€’€)_1_(a,a>_(6,6>‘(w)‘§(E+5+5‘1)-
1 1 1
= 1< —+—+-.
m n o p

The 4 different types of solutions for n, m,p > 1 correspond to the above diagrams:

e m=n=2 1<peN: upper left diagram.
e m = 2,n=23,p=>5: upper right diagram.
e m =2n=23,p=4: lower right diagram.

e m=2n=23,p=3: lower left diagram.

Finally, there is no restriction on diagrams with only one singly-connected chain
without bifurcations.
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Survey of all finite-dimensional simple complex Lie algebras

< 4 infinite series of “classical Lie algebras” (r = rank)

A.=sl(r+1,C), r>1,
B, =s0(2r+1,C), r >3,
C, =sp(2r,C), r> 2,

D, =so(2r,C), r>4,

and 5 “exceptional Lie algebras” (subscript = rank)
E67 E77 E87 F47 GQ-
Some comments:

e Including all » > 1, leads to redundancies:

Al ~ Bl ~ Cl ~ Dl, BQ ~ CQ, D2 ~ Al D Al, A3 ~ Dg. (676)

e These Lie algebras, classified as complex Lie algebras over C, have many different
real forms over R.

Particularly important are the compact real forms in which
HI = (H),  E_,=(E,)". (6.77)

— Relevant for the exponentiation to associated compact Lie groups!
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a) A, =sl(r +1,C), r>1 o—0O—=~0O:---
e Cartan matrix: 9 1
-1 2 -1
A= -1 2 (6.78)
-1
-1 2
e compact real form: A, —su(r+1), r > 1.
b) B, =so(2r+1,C), r>3 O—0O—Q---
e Cartan matrix: 9 1
-1 2 -1
A= -1 2 (6.79)
)
-1 2
e compact real form: B, —so(2r+1), r > 3.
c¢) C, =sp(r,C), r>2 O==0—0""-
e Cartan matrix: 9 1
-1 2 -1
A= -1 2 (6.80)
S
-2 2
e compact real form:  C, — usp(2r), r > 2.
d) D, =so(2r,C), r>4 O i O O--
e Cartan matrix: 9 1
-1 2
A= o (6.81)
B -1 2 -1 -1 '
-1 2
—1

e compact real form: D, — so(2r), r > 4.
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Series of classical Lie algebras:

a) EG

O O O O O

e Cartan matrix:

2 —1
-1 2 -1
-1 2 -1 -1
A=
-1 2
-1 2 -1
-1 2
b) E;
O O O O O O
e Cartan matrix:
2 -1
-1 -1
A -1 2 -1 -1
-1 2
—1 2 -1
-1 2
C) Eg
O—0—0—0—0—0—0
e Cartan matrix:
2 -1
-1 -1
A -1 2 -1 -1
-1 2
—1 2 -1
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(6.82)

(6.83)

(6.84)



e) GQ

e Cartan matrix:

Oo==0

e Cartan matrix:

6. Semisimple Lie algebras

(6.85)

(6.86)
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6.5 Finite-dimensional representations of complex sim-
ple Lie algebras

6.5.1 Construction of irreducible weight systems
Preliminary considerations:

e L = complex simple Lie algebra with basis { H'}/_; U {E, }acs obeying
(H)Y' = H' E_, = (E,)".
Recall: (compact real form of £) = L. ={X = XT | X € L}.

— Representations of L. exponentiate to unitary representations of
corresponding compact Lie group G.

= Finite-dim. representations of £ determine finite-dim. unitary repr. of G.

— Importance;;l QM and QFT!
e L = overlay of sl(2,C) algebras.
— FEach representation R of £ decomposes into several sl(2, C) representations.
— Make use of construction and properties of sl(2, C) representations!
Properties of finite-dim. representations R of L:
e The repr. space V of R is spanned an orthonormal basis {W}Zi 1, drp=dimV < 0.

e All R(H") are simultaneously diagonalizable.
3 orthogonal subspaces V(y) spanning V' = @®,V/,) with

RH Y vy =XNovpy Yoy €V, ()= .000N) (6.87)
Each set (\) # 0 defines a “weight” X of R:
A= MNAy € H. (6.88)
Notation for a generic “weight vector” v,y € V(y)
) = AL AT = . (6.89)
R(H®)|\) = R(e; H') vy = aiN vy = (o, A) [A) VIA) = vy € V. (6.90)
e Transition between different V) via shift operators E.,:

R(H®) (R(Exa)IN)) = [R(H®), R(Exa)] IN) + R(Exa) R(H®) )
R([H®, Exa]) |N) + R(Exa) (a, A) )

+

= (a

(,0) R(Bx0) [\) + (o, 3) R(Ex) [A)
A a) (R(Es)|N)). (6.9)

= For each weight A, the states R(F1,)|\) are weight vectors |\ £ «) or zero.
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e Each a € ¢ defines some finite weight string through |[\):  (p,q € Np)
IAN—pa), A=(p—1a), ..., [N, ..., |A+qa), (6.92)
0= R(E_,)|\ — pa), R(E,)|A+qa) =0. (6.93)
From sl(2, C) representation theory:
(@, )

(@, )

(a0, A — pa) = —(a, A + qa) = p—q=2 = (q,\) € Z. (6.94)

e Implications on components \*:
Special case:  a = o¥ = simple root.
Z> (a9, x) =\ (6.95)
= Weights A\ = )\iA(i) have integer components in Dynkin basis.
Weights A with \* > 0 are called “dominant”.

e R = finite-dim. = 3 highest weight A, i.e.

R(E)IA) =0  Vae o', (A)=(A',...,A"), A’eN,. (6.96)

= All |A) can be obtained from some A according to
N =[A—a—pF...) =R(E_,)R(E_z)...|A). (6.97)
Note:  |A) = |A — (some rows of A)), because components of a'¥ = ith row of A.

Highest-weight theorem:

For each dominant weight A there is a unique, irreducible, finite-dim. representation R
of £, and each irreducible, finite-dim. representation corresponds to a dominant weight.

Algorithm for determining all weights of R,:
1. Weight of “level 0” = given highest weight A with integer A* > 0.

2. Weights of “level 1™

a) Apply R(E ) for all pos. simple roots o) € &+ to |A).

b) Calculate the new potential root |\) = |A — (ith row of A)).

c¢) Check p = ¢+ A" > 0 with (6.94), i.e. whether |\ — o) is still in the weight
string. (At this level, ¢ = 0 Vi.)

3. Weights of “level 2”7 and higher:  Iterate step 2!

a) Subtract each row of A from each |A) of the previous level.

b) Check p = ¢ + A" > 0 with (6.94), i.e. whether each new potential weight
A — ) is still in the weight string. (q is the largest integer with |\ + ga)
being a weight of lower level.)

Repeat this step until no more weights are obtained.

Comment:  The algorithm does not determine the multiplicity of weight vectors |\).
— Done later (see Section 6.5.3)!
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Specific representations:

¢ “Fundamental representations” = representations with the fundamental weights A
as highest weight, i.e. in components (A) = (1,0,...),(0,1,0,...),....

e Adjoint representation R,q: roots = weights of R.q.

Highest weight A,q = maximal root # = unique, and all A’ > 0.

Examples:

2 -1
e Fundamental representations of sl(3,C) = Ay, A= < )

1 2
|1,0) |0, 1)
—11) -~ N \u, ~1)
|0, —1) |—1,0)

2 -3
e Fundamental representation of Gy for |[A) =|1,0), A= ( )

—1 2
1.0) L .
» _ alh < o
0.1)
\\1,—1>
|—1,2>‘/ \|2,—3>
\M -
\—2,3>‘/ \\1,—2>
\|—1,1> -
\\0,—1>

\|1,—3>
1.0) -~

Note:  This representation coincides with the adjoint representation (see Section 6.4).
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6.5.2 Quadratic Casimir operator and index of a representation

Recall:

e Def.: C = Casimir operator in some representation R of L.
< [C,R(z)] =0 Vz e L.
e Schur’s lemma: R = irreducible = C=Cpr-1,,.

= Casimir operators characterize representations.

Quadratic Casimir operator:

If £ is a semisimple Lie algebra generated by {TA}%ZD then
C = gapTT? (6.98)

is a Casimir operator.
Note:  Evaluating C actually requires to go into some representation,
because T4T? in general is undefined in L.
Proof:
[7°,€) = gap [T, TT"] = gap ( [7°, 7] T% + T4 [1,77] )
—— ——
=ifCADTD :ifCBDTD
—igap f4) (TDTB + TBTD) using symmetry A <> B in 2nd term
= igan 9o fOF (TPT% + TPT°)
i

=3 (948 9pE + 9ap 9BE) O (TDTB +T5TP ) using symmetry B < D

1
= —gap gpu( fO + f°74) (TPTP + TPTP) renaming A <> F
—

2
= 0 due to antisymmetry of f¢4F cf. (5.68)
= 0.
i
C in Cartan-Weyl basis {H'}_; U{FE, }aca:
C=g;HH + ) EoE_., if (B, E_,) =1 (6.99)

acd

Proof:

This is a consequence of the block structure of the Killing form (g4?):

(97) | 0
(g*") = o1 ; 01=<0 1)- i

0 01 10
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Calculation of Cp is representation Ry : Use E,|A) =0 Vo € O

CIN) = (g H'H? + 3 Baa)|A) = (950N + D [Ba, Boa] )IA)

acd ac®t  _ pa
= ((A8) + 3 (ha) ),
aedt
Defining
1 14 )9
=3 Z a = “Weyl vector”, (6.100)
aedt
this yields
CIA) = (A A+2p)[A),  Cr=(AA+2p)/dg. (6.101)

Index of a representation R:
A statement about invariant bilinear forms on L:

For a simple Lie algebra £, any invariant bilinear form (x,y)" differs by the Killing form
(x,y) = Tr(ad,, ad,) only by a constant factor.

Proof:  Exercise?! (See also Ref. [1].)
< Definition: ~ The “index” Iy of a repr. R with generators {74 }% , is defined by

Tr (TRTE) = In- g™ (6.102)
Connection between I and Cg:

Traa(C) = gap Tr (TATE) = gap 9" = dg,
Trr(C) = gap Tr (TF TF) =Ir- gan g*P = 1Ipd;,
— Crdg. (6.103)
dr dr
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6.5.3 Multiplets of irreducible representations — Freudenthal’s
formula

Goal:  Complete algorithm of Section 6.5.1 by determining the multiplicity ny = dim V{y)
of each weight vector |\).

Idea:  Calculate Tr(C) restricted to subspace V{y) in two different ways.
— Recursion relation for n,.

1. Use result for C'y:

Trr(C)| = Crma = (A A+ 2p)ny. (6.105)

i

2. Use general form of C:

Tra(C)]y,, = TrR(gZ-jHiHj + ZEQE,Q) § (6.106)
acd )
Evaluation of 1st part with basis {|\; 1)}, of Viy:
ny ny
Trr (95 H'HY) |y, = ;gzj M UHHY (X 1) = ;gzj AM l\?; !
=ny (A N). (6.107)

3. Evaluation of 2nd part of (6.106) via sl(2, C) weight strings:

Each a-string corresponds to a multiplet of eigenstates |t, t3) with ¢ = fixed and

T2t ts) = t(t+ 1) |t t3),
T3‘t,t3> :tg‘t,t:g), t3 - —t, —t—Fl,,t (6108)

Relation between T2, T, and H®, E., (o > 0), cf. (6.49):

1 He 2

13 = §ha = o) Ty =exq = lo.a) Eyo,
(A % B 0] = & €40 = +To,  [To,T] = [care_o] = ha = 2T
= FroT2g % (T.T_ +T.T.) = (if Z); E“EE‘QTQ?QEO‘. (6.109)
Since T'2 = t(t + 1) on the weight string, we get
BuBoot BooBo—1(t+1) (,a) = E (6.110)
(a, @)

Identify the state |t,t3 = t) with the highest-weight state |\ + ka) of the string:

H* _ (a, A+ ka) (a, A + ko)
(o, ) A+ k) = (o, @) (o, @)

LIt t) =Ty |t,t) = A+ ka). = t= .
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= Application of E,E_, + E_,FE, to basis state [\;1) € Vj\:

(EoE_o+ E_oE,) |\1) = <t(t +1) (o, ) — ()" ) A )

)

(@
- <t(t+ 1) (a,a) — (a’)\)z) A1)

(@, @)

= (k(k+1) (o, ) + (2k + 1) (o, N)) |As ). (6.111)

Note:  k-value depends on [, k = ki, i.e. k differs for different |\;1):

e n, — (# states |A;1) with arbitrary k),

® Ny — Nyra — (# states |A;1) with k& = 0),

® Nytka — May(ki1)a — (# states |A;1) for given k = k),
® 1) ro = 0 for sufficiently large k.

= E?ﬁl f(k) = Zzo:o(n,vrka - nA+(k+1)a)f(/f)

Evaluation of remaining part of Trr(C)|v,,:

Trp ( N E.E., )
acd

= Trp (B b E_E
Vi, Z rR( « at « O‘)’V(A)

=y iu; | E;E_o + E_oEo |\ 1)

acr 11
= Z fjm — Maigurn) (RCk+1) (@,0) + (2K +1) (a, 1))
- ez¢+ ki:o rtha (k;(k; +1) (a, ) + (26 +1) (o, )\))

= ;; kf; Pasiprna (k= DE (,0) + 2k = 1) (a, 1))
= ny Z};(Q,A) + Z};gm,m (Qk (o, @) + 2 (av, A))
=nx(20,0)+2 ) inHm (a, A + kav). (6.112)

acedt k=1
4. Final relation upon combining (6.105), (6.107), and (6.112):

e 2 Zaec1>+ EZO:l Natka (0, A + ka)
' (A= XA+ A+2p)

(“Freudenthal’s formula”)  (6.113)
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Algorithm to determine n, for known weights A:

e Proceed recursively in increasing level of A, starting with level 0:  nj = 1.
— R.h.s. of (6.113) can be assumed to be known.

e Evaluation of denominator of (6.113):

— Expand (A — )) in terms of simple roots: A — X = ¢;a?.
— Represent (A + A+ 2p) in Dynkin basis: A+ X+ 2p = d'Ag.
Use non-trivial relation for p:  p = Ag).

= A=MNA+A+2p) = d (a(i), Aj) =320 cd; (o, oz(i)) :
————

= 1(a®,a) 5i

e Evaluation of numerator of (6.113):

— Ntk kKnown from previous steps.

— (a, A + ka) calculable via (6.94):
(a, A+ ka) =k (a,0) + (o, A) = (k+ 3(p — q)) (o, a),
after reading p, ¢ from weight diagram.

e Simple cases:
ny = 1 if there is only one possibility to come to |[\) via E_,E_g---|A) with o, 8 > 0
(or via EoEg -+ [Amin))-

Example of Section 6.5.1 reloaded:  Go representation with |[A) = |1,0).

2 =3 3
— M MY = @ @) = ® @)= 2
A_<_1 2), (a , )—3, (a , )_1, (a , Qv )— 5

e 1, = 1 obvious for all |\) # |0, 0).
o [) = [0,0):

Denominator:
A—X=A=2aW +3a?,

(A+A+2p) = (1,0) +(0,0) +2- (1,1) = (3,2),
S (A= AA+AT2) = 2(2:3-3+2:3) (a®,a®) =12,

6 numerator contributions from 6 positive roots «:
ko E'p q (,a) 2nyiga (0, A+ ka)
a® 13 6
e
a4+ @
a +2a
a) 4+ 3a@
201 + 30

sum: 24 = N, = % = 2.

g S O Y
—_ = = = =
—_ = = =
w W = = =

2
2
2
6
6




Bibliography

[1] R.N. Cahn, “Semi-Simple Lie Algebras ann Their Representations”, Dover Publica-
tions.

[2] R. Campoamor-Stursberg, M. Rausch de Traubenberg, “Group Theory in Physics”,
World Scientific.

[3] R.W. Carter, “Finite Groups of Lie Type: Conjugacy Classes and Complex Charac-
ters”, Wiley Classics Library, Wiley.

[4] J. Fuchs, C. Schweigert, “Symmetries, Lie Algebras & Represen: A Graduate Course
for Physicists”, Cambridge University Press.

[5] R. Gilmore, “Lie Groups, Lie Algebras, and Some of Their Applications”, Dover Books
on Mathematics.

[6] B.C. Hall, “Lie Groups, Lie Algebras, and Representations”, Springer.

[7] M. Hamermesh: “Group Theory and Its Application to Physical Problems”, Dover
Publications.

[8] P. Ramond, “Group Theory: A Physicist’s Survey”, Cambridge University Press.
[9] W.-K. Tung: “Group Theory in Physics”, World Scientific.
[10] B.G. Wybourne, “Classical groups for physicists”, Wiley.

[11] A. Zee, “Group Theory in a Nutshell for Physicists”, Princeton University Press.

129



