Exercises to Group Theory for Physicists - Sheet 11

Prof. S. Dittmaier and Dr. P. Maierhöfer, Universität Freiburg, SS19

Exercise 11.1 Baker-Campbell-Hausdorff (BCH) formula (3 points)
The general BCH formula for two sufficiently small elements X, Y in a Lie algebra \mathcal{L} reads:

$$
\begin{equation*}
-\mathrm{i} \ln \left(\mathrm{e}^{\mathrm{i} X} \mathrm{e}^{\mathrm{i} Y}\right)=X+\int_{0}^{1} \mathrm{~d} t g\left(e^{\mathrm{i} \mathrm{ad}_{X}} e^{\mathrm{itad}} \mathrm{t}_{Y}\right)(Y), \quad g(z) \equiv \frac{\ln z}{1-1 / z} \tag{1}
\end{equation*}
$$

a) Derive the differential form

$$
\begin{equation*}
\ln \left(\mathrm{e}^{\mathrm{i} X} \mathrm{e}^{\mathrm{i} Y}\right)=\mathrm{i} X+\mathrm{i} Y-\frac{1}{2}[X, Y]-\frac{\mathrm{i}}{12}[X,[X, Y]]+\frac{\mathrm{i}}{12}[Y,[X, Y]]+\ldots, \tag{2}
\end{equation*}
$$

of the BCH formula (up to the terms included here) starting from (1).
b) Suppose that X, Y are upper triangular matrices with zeroes on the diagonal. What happens to the differential form (2) of the BCH formula in this case?

Exercise 11.2 Example for a non-compact Lie group (6 points)
Consider the matrix Lie group defined by the following matrices

$$
A\left(\theta_{1}, \theta_{2}\right)=\left(\begin{array}{cc}
\theta_{1} & \theta_{2} \tag{3}\\
0 & 1
\end{array}\right)
$$

where the group parameters θ_{1}, θ_{2} are restructed to $\theta_{1} \in \mathbb{R}^{+}, \theta_{2} \in \mathbb{R}$.
a) Derive the generators T^{A} of the Lie group and the structure constants of the group and describe the corresponding Lie algebra. Are there invariant Lie subgroups and invariant Lie subalgebras?
b) Calculate the exponentiation of a general element $\tau_{A} T^{A}, \tau_{1}, \tau_{2} \in \mathbb{R}$, of the Lie algebra. Use this to calculate the group element $\exp \left\{-\mathrm{i} \tau_{A} T^{A}\right\}$. Is every group element A expressible in terms of such an exponential? Answer this question also for the extension of the group to $\theta_{1}<0$.
c) Calculate the left-invariant group measure $\mathrm{d} \mu_{\mathrm{L}}(A)$ as described in the lecture. Calculate the right-invariant group measure $\mathrm{d} \mu_{\mathrm{R}}(A)$ following an analogous reasoning. Do left and right measures agree?

