Exercises to Group Theory for Physicists — Sheet 9

Prof. S. Dittmaier and Dr. P. Maierhöfer, Universität Freiburg, SS19

Exercise 9.1 Isospin symmetry of hadrons (2 points)

- a) The ³H nucleus (a *pnn* bound state) and the ³He nucleus (a *ppn* bound state) form an isospin doublet (I = 1/2). Use isospin symmetry of strong interactions to predict the ratio of the cross sections for $p + d \rightarrow {}^{3}\text{H} + \pi^{+}$ and $p + d \rightarrow {}^{3}\text{He} + \pi^{0}$.
- b) The baryon resonances Δ^{++} , Δ^{+} , Δ^{0} , and Δ^{-} , form an isospin quartet (I = 3/2)and can be produced via strong interactions in pion–nucleon collisions. Assuming isospin symmetry, what is the ratio of the production cross sections for $\pi^{+}+p \rightarrow \Delta^{++}$ and $\pi^{-}+p \rightarrow \Delta^{0}$?

Exercise 9.2 Euclidean group in two dimensions (6 points)

The defining representation of the Euclidean group in two dimensions is given by the matrices

$$D(\vec{\theta}) = D(\vec{a}, \phi) = \begin{pmatrix} \cos \phi & -\sin \phi & a_1 \\ \sin \phi & \cos \phi & a_2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \vec{a} \in \mathbb{R}^2, \quad \phi \in [0, 2\pi).$$
(1)

In the following, the group parameters sometimes will be generically labelled by $\vec{\theta} = (\theta_1, \theta_2, \theta_3) = (a_1, a_2, \phi).$

- a) Is the group compact, connected, simply connected?
- b) Is the group abelian, simple, semisimple?
- c) Give the functions f_A explicitly that encode group multiplication via $\theta''_A = f_A(\vec{\theta'}, \vec{\theta})$, where $D(\vec{\theta''}) = D(\vec{\theta'})D(\vec{\theta})$. Derive the group generators $\mathcal{X}^A(\vec{\theta})$ at an arbitrary group element $D(\vec{\theta})$ from the functions f_A .
- d) Calculate all structure constants $f^{AB}{}_{C}$ from the commutators $\left[\mathcal{X}^{A}(\vec{\theta}), \mathcal{X}^{B}(\vec{\theta})\right] = if^{AB}{}_{C}\mathcal{X}^{C}(\vec{\theta})$, in order to check that they do not depend on $\vec{\theta}$.
- e) The matrices define the following Lie group transformations for the coordinates $x_1, x_2,$

$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} x'_1 \\ x'_2 \\ 1 \end{pmatrix} = D(\vec{\theta}) \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}.$$
 (2)

Derive the group generators $X^A(\vec{x})$ for these transformations from the functions F_a defined by $x'_a = F_a(\vec{\theta}, \vec{x})$ for finite $\vec{\theta}$.

f) Verify that the $X^A(\vec{x})$ obey the Lie algebra commutation relations. What is the physical meaning of the individual operators $X^A(\vec{x})$?