Exercises to Group Theory for Physicists - Sheet 9
 Prof. S. Dittmaier and Dr. P. Maierhöfer, Universität Freiburg, SS19

Exercise 9.1 Isospin symmetry of hadrons (2 points)
a) The ${ }^{3} \mathrm{H}$ nucleus (a pnn bound state) and the ${ }^{3} \mathrm{He}$ nucleus (a ppn bound state) form an isospin doublet ($I=1 / 2$). Use isospin symmetry of strong interactions to predict the ratio of the cross sections for $p+d \rightarrow{ }^{3} \mathrm{H}+\pi^{+}$and $p+d \rightarrow{ }^{3} \mathrm{He}+\pi^{0}$.
b) The baryon resonances $\Delta^{++}, \Delta^{+}, \Delta^{0}$, and Δ^{-}, form an isospin quartet $(I=3 / 2)$ and can be produced via strong interactions in pion-nucleon collisions. Assuming isospin symmetry, what is the ratio of the production cross sections for $\pi^{+}+p \rightarrow \Delta^{++}$ and $\pi^{-}+p \rightarrow \Delta^{0}$?

Exercise 9.2 Euclidean group in two dimensions (6 points)

The defining representation of the Euclidean group in two dimensions is given by the matrices

$$
D(\vec{\theta})=D(\vec{a}, \phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & a_{1} \tag{1}\\
\sin \phi & \cos \phi & a_{2} \\
0 & 0 & 1
\end{array}\right), \quad \vec{a} \in \mathbb{R}^{2}, \quad \phi \in[0,2 \pi) .
$$

In the following, the group parameters sometimes will be generically labelled by $\vec{\theta}=$ $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(a_{1}, a_{2}, \phi\right)$.
a) Is the group compact, connected, simply connected?
b) Is the group abelian, simple, semisimple?
c) Give the functions f_{A} explicitly that encode group multiplication via $\theta_{A}^{\prime \prime}=f_{A}\left(\vec{\theta}^{\prime}, \vec{\theta}\right)$, where $D\left(\vec{\theta}^{\prime \prime}\right)=D\left(\vec{\theta}^{\prime}\right) D(\vec{\theta})$. Derive the group generators $\mathcal{X}^{A}(\vec{\theta})$ at an arbitrary group element $D(\vec{\theta})$ from the functions f_{A}.
d) Calculate all structure constants $f^{A B}{ }_{C}$ from the commutators $\left[\mathcal{X} A(\vec{\theta}), \mathcal{X}^{B}(\vec{\theta})\right]=$ if ${ }^{A B}{ }_{C} \mathcal{X}^{C}(\vec{\theta})$, in order to check that they do not depend on $\vec{\theta}$.
e) The matrices define the following Lie group transformations for the coordinates x_{1}, x_{2},

$$
\left(\begin{array}{c}
x_{1} \tag{2}\\
x_{2} \\
1
\end{array}\right) \rightarrow\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
1
\end{array}\right)=D(\vec{\theta})\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right) .
$$

Derive the group generators $X^{A}(\vec{x})$ for these transformations from the functions F_{a} defined by $x_{a}^{\prime}=F_{a}(\vec{\theta}, \vec{x})$ for finite $\vec{\theta}$.
f) Verify that the $X^{A}(\vec{x})$ obey the Lie algebra commutation relations. What is the physical meaning of the individual operators $X^{A}(\vec{x})$?

