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Exercise 9.1 Isospin symmetry of hadrons (2 points)

a) The 3H nucleus (a pnn bound state) and the 3He nucleus (a ppn bound state) form
an isospin doublet (I = 1/2). Use isospin symmetry of strong interactions to predict
the ratio of the cross sections for p + d → 3H + π+ and p + d → 3He + π0.

b) The baryon resonances ∆++, ∆+, ∆0, and ∆−, form an isospin quartet (I = 3/2)
and can be produced via strong interactions in pion–nucleon collisions. Assuming
isospin symmetry, what is the ratio of the production cross sections for π++p → ∆++

and π− + p → ∆0?

Exercise 9.2 Euclidean group in two dimensions (6 points)

The defining representation of the Euclidean group in two dimensions is given by the
matrices

D(~θ ) = D(~a, φ) =







cos φ − sin φ a1

sin φ cos φ a2

0 0 1





 , ~a ∈ R
2, φ ∈ [0, 2π). (1)

In the following, the group parameters sometimes will be generically labelled by ~θ =
(θ1, θ2, θ3) = (a1, a2, φ).

a) Is the group compact, connected, simply connected?

b) Is the group abelian, simple, semisimple?

c) Give the functions fA explicitly that encode group multiplication via θ′′

A
= fA(~θ ′, ~θ ),

where D(~θ ′′) = D(~θ ′)D(~θ ). Derive the group generators X
A(~θ ) at an arbitrary

group element D(~θ ) from the functions fA.

d) Calculate all structure constants fAB
C from the commutators

[

X A(~θ ), X B(~θ )
]

=

ifAB
C X C(~θ ), in order to check that they do not depend on ~θ.

e) The matrices define the following Lie group transformations for the coordinates
x1, x2,







x1

x2

1
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x′

1

x′

2
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 = D(~θ )







x1

x2

1





 . (2)

Derive the group generators XA(~x) for these transformations from the functions Fa

defined by x′

a
= Fa(~θ, ~x) for finite ~θ.

f) Verify that the XA(~x) obey the Lie algebra commutation relations. What is the
physical meaning of the individual operators XA(~x)?


