Exercises to Group Theory for Physicists - Sheet 6
 Prof. S. Dittmaier and Dr. P. Maierhöfer, Universität Freiburg, SS19

Exercise 6.1 Real, pseudoreal, and complex representations of Lie groups (3 points)
Let D be a finite-dim. representation of a Lie group G of dimensions n and

$$
\begin{equation*}
D\left(\theta_{1}, \ldots, \theta_{n}\right)=\exp \left\{-\mathrm{i} T^{a} \theta_{a}\right\} \tag{1}
\end{equation*}
$$

be the corresponding representation matrices, where θ_{a} and T^{a} are the group parameters and generators (in D represenation), respectively.
a) Translate the condition on D for being a real, pseudoreal, or complex representation into a condition on the generators T^{a}.
b) Is the 3 -dim. defining representation of $\mathrm{SO}(3)$ real, pseudoreal, or complex? If (pseudo)real, give the bilinear invariant $(x, y)=x^{\mathrm{T}} S y$, where $x, y \in \mathbb{R}^{3}$.
c) Is the 2-dim. defining representation of $\operatorname{SU}(2)$ real, pseudoreal, or complex? If (pseudo)real, give the bilinear invariant $\langle x, y\rangle=x^{\mathrm{T}} S y$, where $x, y \in \mathbb{R}^{2}$.

Exercise 6.2 Characters of irreducible SU(2) representations (4 points)
Consider Wigner's $D^{(j)}$ functions which are defined by

$$
\begin{align*}
D^{(j)}(\alpha, \beta, \gamma)_{m^{\prime} m} & =\left\langle j, m^{\prime}\right| \exp \left\{-\mathrm{i} \alpha J_{3}^{(j)}\right\} \exp \left\{-\mathrm{i} \beta J_{2}^{(j)}\right\} \exp \left\{-\mathrm{i} \gamma J_{3}^{(j)}\right\}|j, m\rangle \\
& =\mathrm{e}^{-\mathrm{i} m^{\prime} \alpha-\mathrm{i} m \gamma}\left\langle j, m^{\prime}\right| \exp \left\{-\mathrm{i} \beta J_{2}\right\}|j, m\rangle=\mathrm{e}^{-\mathrm{i} m^{\prime} \alpha-\mathrm{i} m \gamma} d_{m^{\prime} m}^{(j)}(\beta) \tag{2}
\end{align*}
$$

where $\vec{J}^{(j)}$ is the angular momentum operator in the $(2 j+1)$-dim. spin- j representation and α, β, and γ are the usual Euler angles as defined in the lecture.
a) Prove that the characters $\chi^{(j)} \equiv \operatorname{Tr}\left\{D^{(j)}\right\}$ of the spin- j representation are given by

$$
\begin{equation*}
\chi^{(j)}(\alpha, \beta, \gamma) \equiv \chi^{(j)}(\theta)=\frac{\sin \left(\theta\left(j+\frac{1}{2}\right)\right)}{\sin \left(\frac{\theta}{2}\right)} \tag{3}
\end{equation*}
$$

where θ is the angle of the single rotation around some axis \vec{e} described by the three Euler rotations, i.e. $D^{(j)}(\alpha, \beta, \gamma)=D^{(j)}(\theta \vec{e})=\exp \left\{-\mathrm{i} \theta \vec{e} \cdot \vec{J}^{(j)}\right\}$.
b) Prove the following orthogonality relation by direct integration,

$$
\begin{equation*}
\int_{0}^{2 \pi} \mathrm{~d} \alpha \int_{0}^{\pi} \mathrm{d} \beta \sin \beta \int_{0}^{2 \pi} \mathrm{~d} \gamma \chi^{\left(j_{1}\right)}(\alpha, \beta, \gamma)^{*} \chi^{\left(j_{2}\right)}(\alpha, \beta, \gamma)=8 \pi^{2} \delta_{j_{1} j_{2}}, \tag{4}
\end{equation*}
$$

using the relation between the angles α, β, γ and θ given in the lecture,

$$
\begin{equation*}
\cos \theta=\cos \beta \cos ^{2}\left(\frac{\alpha+\gamma}{2}\right)-\sin ^{2}\left(\frac{\alpha+\gamma}{2}\right) \tag{5}
\end{equation*}
$$

Please turn over!

Exercise 6.3 Recursion relation for Clebsch-Gordan coefficients (2 points)

We consider a quantum-mechanical system consisting of two parts that are each described by angular momentum eigenstates $\left|j_{k}, m_{k}\right\rangle(k=1,2)$ of \vec{J}_{k}^{2} and $J_{k, 3}$ of the respective angular momentum operators \vec{J}_{k} :

$$
\begin{aligned}
\vec{J}_{k}^{2}\left|j_{k}, m_{k}\right\rangle & =\hbar^{2} j_{k}\left(j_{k}+1\right)\left|j_{k}, m_{k}\right\rangle, & & j_{k}=0, \frac{1}{2}, 1, \ldots \\
J_{k, 3}\left|j_{k}, m_{k}\right\rangle & =\hbar m_{k}\left|j_{k}, m_{k}\right\rangle, & & m_{k}=-j_{k},-j_{k}+1, \ldots, j_{k}
\end{aligned}
$$

The transition from the basis of product states $\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle \equiv\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle$ to the basis $|j, m\rangle$ of eigenstates of \vec{J}^{2} and J_{3} of the total angular momentum \vec{J} is described in terms of Clebsch-Gordan coefficients $\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle$:

$$
\begin{equation*}
|j, m\rangle=\sum_{\substack{m_{1}, m_{2} \\ m=m_{1}+m_{2}}}\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle . \tag{6}
\end{equation*}
$$

With the help of the shift operators $J_{ \pm}=J_{1 \pm}+J_{2 \pm}$ derive the following recursion relations for the Clebsch-Gordan coefficients:

$$
\left.\begin{array}{rl}
\sqrt{j(j+1)} & -m(m-1)
\end{array} j_{1}, m_{1} ; j_{2}, m_{2}|j, m-1\rangle\right)
$$

