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Exercise 6.1 Real, pseudoreal, and complex representations of Lie groups (3 points)

Let D be a finite-dim. representation of a Lie group G of dimensions n and

D(θ1, . . . , θn) = exp{−iT aθa} (1)

be the corresponding representation matrices, where θa and T a are the group parameters
and generators (in D represenation), respectively.

a) Translate the condition on D for being a real, pseudoreal, or complex representation
into a condition on the generators T a.

b) Is the 3-dim. defining representation of SO(3) real, pseudoreal, or complex? If
(pseudo)real, give the bilinear invariant (x, y) = xTSy, where x, y ∈ R

3.

c) Is the 2-dim. defining representation of SU(2) real, pseudoreal, or complex? If
(pseudo)real, give the bilinear invariant 〈x, y〉 = xTSy, where x, y ∈ R

2.

Exercise 6.2 Characters of irreducible SU(2) representations (4 points)

Consider Wigner’s D(j) functions which are defined by

D(j)(α, β, γ)m′m = 〈j, m′| exp
{

−iα J
(j)
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}

exp
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−iβ J
(j)
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}
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−iγ J
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}

|j, m〉

= e−im′α−imγ 〈j, m′| exp
{

−iβ J2

}

|j, m〉 = e−im′α−imγ d
(j)
m′m(β), (2)

where ~J (j) is the angular momentum operator in the (2j + 1)-dim. spin-j representation
and α, β, and γ are the usual Euler angles as defined in the lecture.

a) Prove that the characters χ(j) ≡ Tr{D(j)} of the spin-j representation are given by

χ(j)(α, β, γ) ≡ χ(j)(θ) =
sin

(

θ(j + 1
2
)
)

sin( θ
2
)

, (3)

where θ is the angle of the single rotation around some axis ~e described by the three
Euler rotations, i.e. D(j)(α, β, γ) = D(j)(θ~e) = exp{−iθ~e · ~J (j)}.

b) Prove the following orthogonality relation by direct integration,
∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ χ(j1)(α, β, γ)∗ χ(j2)(α, β, γ) = 8π2 δj1j2

, (4)

using the relation between the angles α, β, γ and θ given in the lecture,

cos θ = cos β cos2
(

α + γ

2

)

− sin2
(

α + γ

2

)

. (5)

Please turn over!



Exercise 6.3 Recursion relation for Clebsch–Gordan coefficients (2 points)

We consider a quantum-mechanical system consisting of two parts that are each described
by angular momentum eigenstates |jk, mk〉 (k = 1, 2) of ~J 2

k and Jk,3 of the respective

angular momentum operators ~Jk:

~J 2
k |jk, mk〉 = ~

2jk(jk + 1)|jk, mk〉, jk = 0, 1
2
, 1, . . . ,

Jk,3|jk, mk〉 = ~mk|jk, mk〉, mk = −jk, −jk + 1, . . . , jk.

The transition from the basis of product states |j1, m1; j2, m2〉 ≡ |j1, m1〉|j2, m2〉 to the

basis |j, m〉 of eigenstates of ~J 2 and J3 of the total angular momentum ~J is described in
terms of Clebsch–Gordan coefficients 〈j1, m1; j2, m2|j, m〉:

|j, m〉 =
∑

m1,m2
m=m1+m2

|j1, m1; j2, m2〉 〈j1, m1; j2, m2|j, m〉. (6)

With the help of the shift operators J± = J1±+J2± derive the following recursion relations
for the Clebsch–Gordan coefficients:

√

j(j + 1) − m(m − 1) 〈j1, m1; j2, m2|j, m − 1〉

=
√

j1(j1 + 1) − m1(m1 + 1) 〈j1, m1 + 1; j2, m2|j, m〉

+
√

j2(j2 + 1) − m2(m2 + 1) 〈j1, m1; j2, m2 + 1|j, m〉.


