Exercises to Relativistic Quantum Field Theory — Sheet 9

— Prof. S. Dittmaier, Universität Freiburg, SS16 —

Exercise 9.1 Relation between the Lorentz group and $SL(2, \mathbb{C})$ (1 point)

The group $\mathrm{SL}(2,\mathbb{C})$ consists of all complex 2×2 matrices A with $\det(A)=1$. Assign to each 4-vector x^{μ} a 2×2 matrix $X=x_{\mu}\sigma^{\mu}$ and $\bar{X}=x_{\mu}\bar{\sigma}^{\mu}$ where $\sigma^{\mu}=(\mathbb{1},\sigma^{1},\sigma^{2},\sigma^{3})$ and $\bar{\sigma}^{\mu}=(\mathbb{1},-\sigma^{1},-\sigma^{2},-\sigma^{3})$. The matrices σ^{μ} and $\bar{\sigma}^{\mu}$ satisfy the relation $\mathrm{Tr}(\sigma^{\mu}\bar{\sigma}^{\nu})=2g^{\mu\nu}$.

a) Show that the inverse of the above assignment is given by

$$x^{\mu} = \frac{1}{2} \operatorname{Tr}(X \bar{\sigma}^{\mu}) = \frac{1}{2} \operatorname{Tr}(\bar{X} \sigma^{\mu}).$$

- b) What is the meaning of det(X) and $det(\bar{X})$?
- c) For two arbitrary matrices A, B of $SL(2, \mathbb{C})$, show that the mappings $X \to X' = AXA^{\dagger}$ and $\bar{X} \to \bar{X}' = B\bar{X}B^{\dagger}$ define Lorentz transformations $x'^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$. (*Hint:* Consider the determinants.)
- d) How are the matrices A, B of c) and the matrices Λ_L and Λ_R of the fundamental representations of Exercise 8.2 related? (Hint: $\Lambda_R^{\dagger} \sigma^{\mu} \Lambda_R = \Lambda^{\mu}_{\ \nu} \sigma^{\nu}$, $\Lambda_L^{\dagger} \bar{\sigma}^{\mu} \Lambda_L = \Lambda^{\mu}_{\ \nu} \bar{\sigma}^{\nu}$.)

Exercise 9.2 Relations for Dirac matrices (1.5 points)

The Dirac matrices γ_{μ} and γ_{5} are defined by

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \qquad \gamma_0 \gamma^{\mu} \gamma_0 = (\gamma^{\mu})^{\dagger}, \qquad \gamma_5 = \gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = -\frac{i}{4!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}.$$

The matrix γ_5 satisfies the relations $\{\gamma^{\mu}, \gamma^5\} = 0$ and $(\gamma_5)^{\dagger} = \gamma_5$. In the chiral basis, γ_5 has the representation

$$\gamma_5 = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}.$$

a) Calculate the following traces:

$$\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}], \qquad \operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}].$$

b) Prove the following trace relations:

$$\operatorname{Tr}[\gamma_5] = \operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma_5] = 0, \qquad \operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_5] = -4i\epsilon^{\mu\nu\rho\sigma},$$
$$\operatorname{Tr}[\gamma^{\mu_1}\dots\gamma^{\mu_{2n+1}}] = \operatorname{Tr}[\gamma^{\mu_1}\dots\gamma^{\mu_{2n+1}}\gamma_5] = 0, \quad n = 0, 1, \dots.$$

c) Reduce the number of Dirac matrices in the following contractions:

$$\gamma^{\alpha}\gamma_{\alpha}, \qquad \gamma^{\alpha}\gamma^{\mu}\gamma_{\alpha}, \qquad \gamma^{\alpha}\gamma^{\mu}\gamma^{\nu}\gamma_{\alpha}.$$

Please turn over!

Exercise 9.3 Lorentz covariants from Dirac spinors (1 point)

a) Prove the following relations:

$$S(\Lambda)^{-1} \gamma^{\mu} S(\Lambda) = \Lambda^{\mu}_{\nu} \gamma^{\nu}, \qquad S(\Lambda)^{\dagger} \gamma_0 = \gamma_0 S(\Lambda)^{-1}.$$

Use this to show that the quantities

$$s(x) = \bar{\psi}(x)\psi(x) = \text{scalar},$$

 $p(x) = \bar{\psi}(x)\gamma_5\psi(x) = \text{pseudo-scalar},$
 $j^{\mu}(x) = \bar{\psi}(x)\gamma^{\mu}\psi(x) = \text{vector},$
 $j_5^{\mu}(x) = \bar{\psi}(x)\gamma^{\mu}\gamma_5\psi(x) = \text{pseudo-vector}$

transform under proper, orthochronous Lorentz transformations $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ as indicated, if the Dirac spinor $\psi(x)$ transforms according to $\psi(x) \to \psi'(x') = S(\Lambda)\psi(x)$.

b) Determine the transformation properties of the quantities defined in a) under the parity operation P, where

$$x'^{\mu} = (x^0, -\vec{x}) = (\Lambda_P)^{\mu}_{\ \nu} x^{\nu}, \qquad S(\Lambda_P) = \gamma_0 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}$$

in the chiral representation of the Dirac matrices.