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— Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, WS14/15 —

Exercise 9.1 Anomalous Zeeman effect (4 points)

We consider a one-electron atom (relative nucleus charge Z) in a weak homogeneous

magnetic field of the strength ~B = B~e3 and consider the interaction Hamiltonian ĤB of
the atom with the magnetic field as perturbation,

ĤB =
µB

~

(
~̂L+ ge~S

)
· ~B,

where µB = e~
2me

is Bohr’s magneton and ge = 2.0023... the gyromagnetic ratio of the
electron. The unperturbed Hamiltonian reads

Ĥ =
~̂p 2

2me

− Ze2

4πε0r̂
+ ĤFS,

where ĤFS is the Hamiltonian responsible for the atomic fine structure (as discussed in the

lecture). The unperturbed energy eigenstates |nljm〉 are eigenstates of the operators ~̂L 2,
~S 2, ~J 2, Ĵ3, with the usual parametrization of their eigenvalues by the numbers l = 0, 1, . . . ;
s = 1

2
; j = l ± 1

2
; m = −j, . . . , j, respectively. The unperturbed energy levels are

Enj = En

[
1 +

(Zα)2

n2

(
n

j + 1
2

− 3

4

)]
, En = −Z

2

n2
ER, n = 1, 2, . . . ,

where α is the fine-structure constant and ER Rydberg’s energy.

a) Derive the energy shift ∆EB of the energy levels induced by ĤB, using 1st-order
perturbation theory and the relation

|j = l ± 1
2
,m〉 = ±

√
l ±m+ 1

2

2l + 1

∣∣∣ml = m− 1

2
,ms =

1

2

〉
+

√
l ∓m+ 1

2

2l + 1

∣∣∣ml = m+
1

2
,ms = −1

2

〉
between the eigenstates |j,m〉 of ~J 2, Ĵ3 and the eigenstates |ml,ms〉 of L̂3 and S3.

b) To prepare an alternative derivation, first show that

~2j(j + 1)〈j,m|~V |j,m〉 = 〈j,m|(~V · ~J) ~J |j,m〉 (1)

for any vector operator ~V , upon exploiting the identity

[ ~J 2, [ ~J 2, ~V ]] = 2~2( ~J 2~V + ~V ~J 2)− 4~2(~V · ~J) ~J.

c) Derive ∆EB using relation (1).

d) Sketch the energy levels Enj + ∆EB as functions of B for all states emerging from
the unperturbed states nlj = 1s1/2, 2s1/2, 2p1/2, 2p3/2.

Please turn over!



Exercise 9.2 Linear Stark effect (3 points)

We consider a one-electron atom (relative nucleus charge Z) in a homogeneous electric

field of the strength ~E = E~e3 and consider the interaction Hamiltonian ĤE of the atom
with the electric field as perturbation,

ĤE = eE x̂3.

For sufficiently strong electric fields, spin effects, atomic fine structure, and other cor-
rections can be neglected in a first approximation, so that the unperturbed Hamiltonian
reads

Ĥ =
~̂p 2

2me

− Ze2

4πε0r̂
.

The unperturbed energy eigenstates |nlml〉 are eigenstates of the operators ~̂L 2 and L̂3,
with the usual parametrization of their eigenvalues by the numbers l = 0, 1, . . . and
ml = −l, . . . , l, respectively.

a) Calculate the first-order energy shift ∆Enlml
of a general s state (l = 0).

b) Calculate the first-order energy shifts ∆Enlml
for the first excited states (n = 2).

c) Calculate the second-order energy shift ∆E
(2)
100 of the ground state approximately

upon replacing En>1 by E2 in the underlying formula.

[Hint: Using 〈x̂2j〉100 = 〈r̂2〉100/3 = a2B/Z
2 saves you the radial integral.]

Exercise 9.3 Linear potential and variational method (2 points)

As in Exercise 8.3, consider a particle with mass m in a one-dimensional potential V (x) =
ε|x| with ε > 0. As trial function for variations we use φ0(x) = exp(−αx2) and φ1(x) =
x exp(−βx2) in the following, where α and β are independent free real parameters and
α, β > 0.

a) Determine an approximation for the ground state energy E0 upon minimizing the
energy expectation value for a wave function ψ(x) formed by an optimal linear
combination of the trial functions. Compare the result with the one obtained in
Exercise 8.3.

b) Determine an approximation for the energy E1 of the first excited state similar to
the procedure for the ground state. Again, compare the result with the one obtained
in Exercise 8.3.

Hint: Symmetry arguments simplify the actual calculations.


