Exercises to Advanced Quantum Mechanics Sheet 7

—  Prof. S. Dittmaier, Dr. H. Rzehak, Universitit Freiburg, WS14/15 —

Exercise 7.1 Landau levels reloaded (4 points)

We reconsider Exercise 6.1, where an electron (electric charge ¢ = —e) is put into a

homogeneous magnetic field aligned along the x3 axis (B = V X A = Bé; with the
convenient choice A = %B x Z for the vector potential A). Our aim is to construct qm.

states that are simultaneous eigenstates of the Hamiltonian H and the component Ly of
orbital angular momentum (possible because [H, Ls] = 0). Since the electron spin and the
movement in the z3 direction are not touched by this issue, we ignore spin effects and the
xr3-dependence in the following.

a)

The part ﬁlg of the Hamiltonian relevant for the movement in the z;-xo-plane can
be written as
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and a' constructed from ﬁj =p; + €A, (:;7), j =1,2. Verify the form (1) of Hy, and
that the operators a, a' obey the usual commutator relations of a harmonic oscillator.

Calculate [izg, aM] and visualize the effects of the operators a, af, L on states |n, mg)
in the n-mg-plane, where n is defined as in Exercise 6.1 and hmg is the eigenvalue
Of L3.

As for the usual harmonic oscillator, the states |n,mg) for n > 0 can be generated
from the ground state |0, ) with n = 0 and some eigenvalue Ay of Lg:
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How are m3 and pu related?

Derive the position space wave function ¥, m, (%) = (Z|n, m3) of the ground states
|0,m3) and give a prescription to calculate 1y, , (Z) for n > 0. Which restrictions
on allowed (n,m3) values result from demanding normalizable energy eigenstates?

[Hint: Cylindrical coordinates are useful: & = (pcos ¢, psin ¢, x3)7]

Please turn over!



Exercise 7.2 Addition of angular momenta — DW/? @ DU/2) & D(/2) (3 points)

Consider a quantum-mechanical system consisting of three spin—% particles, ignoring all
degrees of freedom other than spin. Labelling the respective spin parts of the one-particle
states by | 1) = |3, 2)k. | 1) = |5, —3)» for particle k = 1,2,3, construct linear combina-
tions of the product states | TTT> = | Pl Tzl T)s, ete. that are simultaneous eigenstates
of J? and J;, where J = S, + S, + S is the total spin of the system. How is the product
representation DW/?) @ DU/2) @ D(/2) expressed in terms of a direct sum of irreducible
representations?

Exercise 7.3 Recursion relation for Clebsch—Gordan coefficients (2 points)

We consider a quantum-mechanical system consisting of two parts that are each described
by angular momentum eigenstates |j., mz) (k = 1,2) of J,2 and Ji3 of the respective

angular momentum operators Ji:

j;<:2|j/€7mk:> = h2]k(]k+1)|jk7mk>7 jk :07%7]-’"'7
Jealirsme) = hmgje, mi), mg = —Jk, —Jk + 1,0 ke

The transition from the basis of product states |ji,m1; jo, m2) = |j1, m1)|j2, m2) to the
basis |j, m) of eigenstates of J?2 and Js of the total angular momentum .J is described in
terms of Clebsch—-Gordan coefficients (ji, m1; jo, ma|j, m):

’.]7m> = Z |j17m1;j27m2> <j17ml;j27m2|j7m>'
ey g
With the help of the shift operators J. = Ji+ + Joq derive the following recursion relations
for the Clebsch—Gordan coefficients:

\/j(j + 1) —m(m — 1) (j1, mq; jo, ma|j,m — 1)
= \/j1(j1+1)—m1(m1+1) (41, m1 + 1; Jo, ma|j, m)
+V/j2(j2 + 1) — ma(ma + 1) (j1, ma; jo, ma + 1]j,m).




