Exercises to Advanced Quantum Mechanics Sheet 4

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, WS14/15

Exercise 4.1 The dihedral groups (3 points +1 bonus point)
Enlarge the symmetry group of Exercise 3.3 by a reflection that reverses the x_{2} axis, leaving the x_{1} axis invariant. This construction defines a two-dimensional representation of the dihedral group D_{n}.
a) Determine all group elements of D_{n} in the two-dimensional representation given above. What is the order of D_{n} ?
b) Show that the given two-dimensional representation of D_{n} is irreducible.
c) D_{n} has two one-dimensional inequivalent representations if n is odd and four onedimensional inequivalent representations if n is even. Determine these representations.
d) Outlook: All irreducible representations of D_{n} other than the 1-dimensional representations constructed in 4.1.c) are 2-dimensional. If you can show this, earn one bonus point.

Exercise 4.2 Symmetry group of the ozone molecule (2 points)

Consider an electron in the field of three positively charged point particles that are positioned at the vertices of an equilateral triangle.
a) What is the symmetry group of the Hamiltonian for the electron states? What kind of degeneracy can be expected for energy eigenstates (ignoring possible accidental degeneracies)?
b) What happens to the degenerate and non-degenerate energy eigenstates if a homogeneous electric or magnetic field is applied perpendicular to the triangle spanned by the three positive charges?

Exercise 4.3 Kronig-Penney model (3 points)

Consider the one-dimensional motion of a particle of mass m in a periodic potential of the form

$$
\begin{equation*}
V(x)=\frac{\hbar^{2} P}{2 m a} \sum_{n=-\infty}^{+\infty} \delta(x+n a) \tag{1}
\end{equation*}
$$

where P is a dimensionless constant quantifying the strength of the interaction and a the lattice constant.
a) Derive Bloch's theorem for any potential $V(x)$ with periodicity with respect to $x \rightarrow$ $x+a$, i.e. that there is a basis of energy eigenfunctions $\psi(x)$ with the property

$$
\begin{equation*}
\psi_{k}(x)=\mathrm{e}^{\mathrm{i} k x} u_{k}(x), \quad u_{k}(x+a)=u_{k}(x), \quad k \in \mathbb{R} \tag{2}
\end{equation*}
$$

Do not use group-theoretical arguments here to handle the issue of degeneracy.
b) Derive the conditions on $\psi(x)$ at the positions $x=n a$ upon integrating the Schrödinger equation in the intervals $n a-\epsilon<x<n a+\epsilon$ with some small parameter $\epsilon>0$.
c) Give the equation that determines the allowed energy values E and show that solutions exist only in specific energy intervals (energy bands). Calculate the boundaries of these bands explicitly.

