Exercises to Advanced Quantum Mechanics

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, WS14/15

Sheet 3

Exercise $3.1 \quad$ Virial theorem (1 point)

Consider a spinless particle of mass m in a potential $V(\vec{x})$. Show the relation

$$
\begin{equation*}
2\langle T\rangle_{\phi_{n}}=\langle\hat{\vec{x}} \cdot \nabla V\rangle_{\phi_{n}} \tag{1}
\end{equation*}
$$

for expectation values $\langle\ldots\rangle_{\phi_{n}}$ in (stationary) energy eigenstates $\left|\phi_{n}\right\rangle$, where $T=\hat{\vec{p}}^{2} /(2 m)$ is the operator for the kinetic energy of the particle. What does this relation imply for the expectation values $\langle T\rangle_{\phi_{n}}$ and $\langle V\rangle_{\phi_{n}}$ for central potentials of the type $V(\vec{x}) \propto r^{s}$, where $r=|\vec{x}|$?
(Hint: Evaluate $\langle[\hat{\vec{x}} \cdot \hat{\vec{p}}, \hat{H}]\rangle_{\phi_{n}}$ is two different ways.)

Exercise 3.2 Electromagnetic gauge transformations (3 points)

The Hamiltonian of a non-relativistic, spinless particle of mass m and electric charge q in a classical electromagnetic field is given by

$$
\begin{equation*}
\hat{H}(\hat{\vec{x}}, \hat{\vec{p}})=\frac{1}{2 m}(\hat{\vec{p}}-q \vec{A}(\hat{\vec{x}}, t))^{2}+q \Phi(\hat{\vec{x}}, t) \tag{2}
\end{equation*}
$$

where $\vec{A}(\vec{x}, t)$ and $\Phi(\vec{x}, t)$ are the classical vector and scalar potentials of the electromagnetic field, respectively. Here, $\hat{\vec{x}}$ is the usual position operator and $\hat{\vec{p}}$ its canonical conjugate momentum.
a) The electric and magnetic field strengths $\vec{E}=-\nabla \Phi-\dot{\vec{A}}$ and $\vec{B}=\nabla \times \vec{A}$ are invariant under the gauge transformation:

$$
\begin{equation*}
\vec{A} \rightarrow \vec{A}^{\prime}=\vec{A}+\nabla \chi, \quad \Phi \rightarrow \Phi^{\prime}=\Phi-\dot{\chi} \tag{3}
\end{equation*}
$$

where $\chi=\chi(\vec{x}, t)$ is an arbitrary real function of space and time. Show that the Hamilton operator transforms as

$$
\begin{equation*}
\hat{H} \rightarrow \hat{H}^{\prime}=U \hat{H} U^{\dagger}+\mathrm{i} \hbar \dot{U} U^{\dagger} \tag{4}
\end{equation*}
$$

with the operator $U(\hat{\vec{x}}, t)=\exp \{\operatorname{iq} q \chi(\hat{\vec{x}}, t) / \hbar\}$. Is U unitary?
b) Show that $\left|\psi^{\prime}(t)\right\rangle=U|\psi(t)\rangle$ obeys the time-dependent Schrödinger equation with Hamiltonian \hat{H}^{\prime} if $|\psi(t)\rangle$ obeys the Schrödinger equation with Hamiltonian \hat{H}.
c) Identify the operator $m \hat{\vec{v}}$ corresponding to the cartesian momentum $m \dot{\vec{x}}$ as the operator that produces the expectation value $m \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\hat{\vec{x}}\rangle$. What are the commutators $\left[\hat{x}_{k}, m \hat{v}_{l}\right]$? Consider the two momentum expectation values $\langle\hat{\vec{p}}\rangle$ and $\langle m \hat{\vec{v}}\rangle$. Which of the two is invariant under gauge transformations (3) ?

For a given natural number n, consider the group of discrete rotations about integer multiples of the angle $\frac{2 \pi}{n}$ in two dimensions, which are represented by the matrices

$$
R\left(\phi_{k}\right)=\left(\begin{array}{cc}
\cos \phi_{k} & -\sin \phi_{k} \tag{5}\\
\sin \phi_{k} & \cos \phi_{k}
\end{array}\right), \quad \phi_{k}=\frac{2 \pi k}{n} \quad k=0,1, \ldots, n-1 .
$$

These matrices define a two-dimensional representation of the cyclic group C_{n}.
a) Determine the similarity transformation that reduces the representation (5) to two irreducible representations.
b) The "regular representation" of C_{3} (and analogously for C_{n}) is defined by the following three matrices:

$$
D(e)=1, \quad D(g)=\left(\begin{array}{ccc}
0 & 0 & 1 \tag{6}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad D\left(g^{2}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

where g is the generating element of the group. Similarly to a) fully reduce this representation.
(Hint: Introduce $\epsilon=\mathrm{e}^{2 \pi \mathrm{i} / 3}$, with $\epsilon^{2}=\epsilon^{*}, 1+\epsilon+\epsilon^{2}=0$.)
c) C_{n} possesses n one-dimensional inequivalent representations. Guess them from the pattern observed for C_{3} in b).

Exercise 3.4 Parity operator (2 points)

The parity operator \mathcal{P} is linear and defined by the following action on position eigenstates:

$$
\begin{equation*}
\mathcal{P}|\vec{x}\rangle=|-\vec{x}\rangle . \tag{7}
\end{equation*}
$$

(Spin will not be considered in this exercise.)
a) Show that \mathcal{P} is unitary and acts on position-space wave functions as $\mathcal{P} \psi(\vec{x})=\psi(-\vec{x})$. Derive the operators $\hat{\vec{x}}^{\prime}, \hat{\vec{p}}^{\prime}, \hat{\vec{L}}^{\prime}$, where $A^{\prime}=\mathcal{P} A \mathcal{P}^{-1}$ is the parity-transformed version of an operator A. Here $\hat{\vec{L}}=\hat{\vec{x}} \times \hat{\vec{p}}$ is the usual orbital angular momentum of a single particle.
b) Derive the parity-transformed operators of the electromagnetic potentials and field strengths $\vec{A}^{\prime}(\hat{\vec{x}}, t), \Phi^{\prime}(\hat{\vec{x}}, t), \vec{E}^{\prime}(\hat{\vec{x}}, t), \vec{B}^{\prime}(\hat{\vec{x}}, t)$, upon analyzing Maxwell's equations and the fact that electric charges do not change under parity transformations.

