Exercises to Advanced Quantum Mechanics Sheet 2

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, WS14/15

Exercise 2.1 Three-dimensional harmonic oscillator (3 points)
The Hamilton operator of the three-dimensional isotropic oscillator is

$$
\begin{equation*}
\hat{H}=\frac{\hat{\vec{p}}^{2}}{2 m}+\frac{m \omega^{2}}{2} \hat{\vec{x}}^{2} \tag{1}
\end{equation*}
$$

with $\hat{\vec{x}}$ and $\hat{\vec{p}}$ denoting the cartesian position and momentum operators of a particle of mass m, respectively.
a) Which are the conserved quantities of the system?
b) Using your knowledge about the one-dimensional harmonic oscillator and its eigenstates, determine the energy spectrum and the corresponding eigenstates of the threedimensional system by separating the cartesian variables.
c) What is the degree of degeneracy of the energy levels?

Exercise 2.2 Simplified version of Wigner's theorem (2 points)

a) Show that a linear, invertible operator U that preserves all norms of states in a Hilbert space, i.e.

$$
\begin{equation*}
\|\psi\|=\|U \psi\| \quad \text { for all }|\psi\rangle \in \mathcal{H} \tag{2}
\end{equation*}
$$

is unitary.
(Hint: First show that $\langle U \psi \mid U \phi\rangle=\langle\psi \mid \phi\rangle$ for all $|\psi\rangle,|\phi\rangle \in \mathcal{H}$.)
b) Analogously show that an antilinear, invertible operator U, where antilinearity means

$$
\begin{equation*}
U(a|\psi\rangle+b|\phi\rangle)=a^{*} U|\psi\rangle+b^{*} U|\phi\rangle, \quad|\psi\rangle,|\phi\rangle \in \mathcal{H}, \quad a, b \in \mathbb{C}, \tag{3}
\end{equation*}
$$

is antiunitary (i.e. $U U^{\dagger}=U^{\dagger} U=\mathbf{1}$) if Eq. (2) is fulfilled. Note that for an antiunitary operator the definition of the adjoint operator is changed to $\left\langle U^{\dagger} \psi \mid \phi\right\rangle=\langle\psi \mid U \phi\rangle^{*}$.

Comment:
Wigner more generally showed that the requirement $|\langle U \psi \mid U \phi\rangle|=|\langle\psi \mid \phi\rangle|$ for all $|\psi\rangle,|\phi\rangle$ implies unitarity or antiunitarity of U (including linearity or antilinearity). A detailed, complete proof can be found in: S. Weinberg, The Quantum Theory of Fields, Vol. I, p. 91.

Exercise 2.3 Particle in a homogenous electric field (4 points)

Consider a particle of mass m and electric charge q in a homogenous electric field of field strength ε in x direction. You need not consider the motion in the y and z directions in the following.
a) Formulate the time-independent Schrödinger equation in momentum representation for a fixed energy E. Determine the wave function $\langle k \mid E\rangle=\tilde{\psi}_{E}(k)$ of the energy eigenstate $|E\rangle$, where k is the usual wave number and $\tilde{\psi}_{E}(k)$ is related to the wave function $\langle x \mid E\rangle=\psi_{E}(x)$ in position space as follows,

$$
\begin{equation*}
\tilde{\psi}_{E}(k)=\int_{-\infty}^{+\infty} \mathrm{d} x\langle k \mid x\rangle\langle x \mid E\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x} \psi_{E}(x) \tag{4}
\end{equation*}
$$

Which E values are allowed?
b) Calculate the wave function $\psi_{E}(x)$ in position space from $\tilde{\psi}_{E}(k)$ upon inverting Eq. (4) and express the result in terms of the Airy function

$$
\begin{equation*}
\operatorname{Ai}(\xi)=\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} u \cos \left(\frac{u^{3}}{3}+\xi u\right), \quad \xi \in \mathbf{R} \tag{5}
\end{equation*}
$$

Normalize the wave functions according to

$$
\begin{equation*}
\left\langle E^{\prime} \mid E\right\rangle=\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{E^{\prime}}(x)^{*} \psi_{E}(x)=\int_{-\infty}^{+\infty} \frac{\mathrm{d} k}{2 \pi} \tilde{\psi}_{E^{\prime}}(k)^{*} \tilde{\psi}_{E}(k)=\delta\left(E-E^{\prime}\right) \tag{6}
\end{equation*}
$$

c) Sketch $\psi_{E}(x)$ for a positive charge q graphically, making use of the asymptotics

$$
\begin{equation*}
\operatorname{Ai}(\xi) \underset{\xi \rightarrow+\infty}{\widetilde{m}} \frac{\mathrm{e}^{-\frac{2}{3} \xi^{3 / 2}}}{2 \sqrt{\pi} \xi^{1 / 4}}, \quad \operatorname{Ai}(\xi) \underset{\xi \rightarrow-\infty}{\sim} \frac{\sin \left(\frac{2}{3}(-\xi)^{3 / 2}+\frac{1}{4} \pi\right)}{\sqrt{\pi}(-\xi)^{1 / 4}} \tag{7}
\end{equation*}
$$

respecting the signs of the $\psi_{E}^{\prime \prime}(x) / \psi_{E}(x)$ in the classically allowed / forbidden regions.
d) For the time $t=0$ the particle is described by the wave function

$$
\begin{equation*}
\psi(x, 0)=\left(2 \pi \sigma^{2}\right)^{-1 / 4} \exp \left\{-\frac{x^{2}}{4 \sigma^{2}}+\mathrm{i} k_{0} x\right\} \tag{8}
\end{equation*}
$$

with some real constants σ and k_{0}. Calculate the expectation values $\langle\hat{x}\rangle_{\psi}$ and $\langle\hat{p}\rangle_{\psi}$ for any time t. What is the meaning of σ and k_{0} ?
(Hint: Ehrenfest's theorem may save you from a lengthy calculation.)

