Exercise 11.1 Free-particle Green's function and propagator (2 points + 1 bonus) Green's functions for the time-independent Schrödinger equation are defined by

 $G^{\pm}(E, \vec{x}, \vec{x}') = \langle \vec{x} | (E - \hat{H} \pm i0)^{-1} | \vec{x}' \rangle,$

where \hat{H} is the (time-independent) Hamilton operator of the system. From $G^{\pm}(E, \vec{x}, \vec{x}')$, Green's functions for the forward/backward evolution in time, the so-called retarded/ad-vanced "propagators", are obtained as

$$G^{\pm}(\vec{x},t;\vec{x}',t') = i \int_{-\infty}^{\infty} \frac{dE}{2\pi} e^{-iE(t-t')/\hbar} G^{\pm}(E,\vec{x},\vec{x}').$$

For the motion of a free particle (mass M) in three dimensions, calculate $G_0^{\pm}(\vec{x},t;\vec{x}',t')$ from

$$G_0^{\pm}(E, \vec{x}, \vec{x}') = \frac{i}{(2\pi)^2 |\vec{x} - \vec{x}'|} \int_{-\infty}^{\infty} dk \, \frac{k e^{-ik|\vec{x} - \vec{x}'|}}{E - \frac{\hbar^2 k^2}{2M} \pm i0}$$
$$= -\frac{M e^{\pm ik_E |\vec{x} - \vec{x}'|}}{2\pi \hbar^2 |\vec{x} - \vec{x}'|}, \qquad k_E = \sqrt{2M(E \pm i0)}/\hbar,$$

which was derived in the lecture.

<u>Hint</u>: Do the integration over E first, so that the integration over k can be done with $\int_{-\infty}^{\infty} \exp\{-a(x+b)^2\} dx = \sqrt{\pi/a} \text{ for } a, b \in \mathbf{C} \text{ with } \operatorname{Re}(a) > 0.$

For the derivation of this auxiliary integral (for *complex* parameters a, b!) you may earn a bonus point.

Please turn over !

Exercise 11.2 Spread of free wave packets (3 points)

Consider the one-dimensional propagation of a free wave packet of mass m which is described by any normalized wave function $\psi(x, t)$.

- a) Show that the momentum expectation value $\langle \hat{p} \rangle$ and momentum uncertainty $\Delta p \equiv \sqrt{\langle (\hat{p} \langle \hat{p} \rangle)^2 \rangle}$ are constant in time. How does the position expectation value $\langle \hat{x} \rangle$ develop in t?
- b) Prove that the uncertainties Δx and Δp of position and momentum are related by

$$\Delta x^2 = \frac{\Delta p^2 t^2}{m^2} + at + \Delta x_0^2,$$

where Δx_0 is the spread at t = 0 and a is a constant. Interpret the leading term for large times t.

c) Derive a bound on |a| from Heisenberg's uncertainty principle. Which values can be taken by a if Δx_0 is minimal?

Exercise 11.3 Free-particle wave functions with quantum numbers l, m (3 points)

We consider the separation of the time-independent Schrödinger equation for a free particle of mass M in polar coordinates with the ansatz $\phi_{klm}(r, \theta, \varphi) = R_l(kr)Y_{lm}(\theta, \varphi)$ for the wave function. This leads to the differential equation

$$D^{(l)}R_l(\rho) \equiv \left[\frac{1}{\rho^2}\frac{\mathrm{d}}{\mathrm{d}\rho}\rho^2\frac{\mathrm{d}}{\mathrm{d}\rho} - \frac{l(l+1)}{\rho^2} + 1\right]R_l(\rho) = 0 \tag{1}$$

for the radial function $R_l(\rho) = R_l(kr)$, where $k \ge 0$ is related to the energy eigenvalue by $E(k) = \hbar^2 k^2/(2M)$. As an ordinary 2nd-order differential equation, Eq. (1) possesses two linearly independent solutions for each value of $l = 0, 1, 2, \ldots$

a) Show that the two independent solutions of Eq. (1) are given by

$$j_l(\rho) = (-\rho)^l \left(\frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho}\right)^l j_0(\rho), \qquad j_0(\rho) = \frac{\sin\rho}{\rho},$$

$$n_l(\rho) = (-\rho)^l \left(\frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho}\right)^l n_0(\rho), \qquad n_0(\rho) = -\frac{\cos\rho}{\rho}, \qquad l = 0, 1, \dots,$$

where j_l and n_l are the spherical Bessel and Neumann functions, respectively. <u>Hint:</u> A simple way is based on induction using $R_{l+1}(\rho) = -\rho^l \frac{\mathrm{d}}{\mathrm{d}\rho} \left[\rho^{-l} R_l(\rho)\right]$ and evaluating the commutator of the differential operator $D^{(l+1)}$, as defined in Eq. (1), and the operator $\rho^l \frac{\mathrm{d}}{\mathrm{d}\rho} \rho^{-l}$.

- b) Derive series expansions for j_l and n_l about $\rho = 0$, making use of the respective series for $\sin \rho$ and $\cos \rho$. Give the leading asymptotic behaviour of j_l and n_l for $\rho \to 0$.
- c) Show that the leading asymptotic behaviour of j_l and n_l for $\rho \to \infty$ is given by

$$j_l(\rho) \sim_{\rho \to \infty} \frac{1}{\rho} \sin\left(\rho - \frac{l\pi}{2}\right), \qquad n_l(\rho) \sim_{\rho \to \infty} -\frac{1}{\rho} \cos\left(\rho - \frac{l\pi}{2}\right).$$