Exercises to Advanced Quantum Mechanics

Sheet 11

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, WS14/15

Exercise 11.1 Free-particle Green's function and propagator (2 points +1 bonus)
Green's functions for the time-independent Schrödinger equation are defined by

$$
G^{ \pm}\left(E, \vec{x}, \vec{x}^{\prime}\right)=\langle\vec{x}|(E-\hat{H} \pm \mathrm{i} 0)^{-1}\left|\vec{x}^{\prime}\right\rangle,
$$

where \hat{H} is the (time-independent) Hamilton operator of the system. From $G^{ \pm}\left(E, \vec{x}, \vec{x}^{\prime}\right)$, Green's functions for the forward/backward evolution in time, the so-called retarded/advanced "propagators", are obtained as

$$
G^{ \pm}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right)=\mathrm{i} \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} \mathrm{e}^{-\mathrm{i} E\left(t-t^{\prime}\right) / \hbar} G^{ \pm}\left(E, \vec{x}, \vec{x}^{\prime}\right)
$$

For the motion of a free particle (mass M) in three dimensions, calculate $G_{0}^{ \pm}\left(\vec{x}, t ; \vec{x}^{\prime}, t^{\prime}\right)$ from

$$
\begin{aligned}
G_{0}^{ \pm}\left(E, \vec{x}, \vec{x}^{\prime}\right) & =\frac{\mathrm{i}}{(2 \pi)^{2}\left|\vec{x}-\vec{x}^{\prime}\right|} \int_{-\infty}^{\infty} \mathrm{d} k \frac{k \mathrm{e}^{-\mathrm{i} k\left|\vec{x}-\vec{x}^{\prime}\right|}}{E-\frac{\hbar^{2} k^{2}}{2 M} \pm \mathrm{i} 0} \\
& =-\frac{M \mathrm{e}^{ \pm \mathrm{i} k_{E}\left|\vec{x}-\vec{x}^{\prime}\right|}}{2 \pi \hbar^{2}\left|\vec{x}-\vec{x}^{\prime}\right|}, \quad k_{E}=\sqrt{2 M(E \pm \mathrm{i} 0)} / \hbar
\end{aligned}
$$

which was derived in the lecture.
Hint: Do the integration over E first, so that the integration over k can be done with $\int_{-\infty}^{\infty} \exp \left\{-a(x+b)^{2}\right\} \mathrm{d} x=\sqrt{\pi / a}$ for $a, b \in \mathbf{C}$ with $\operatorname{Re}(a)>0$.
For the derivation of this auxiliary integral (for complex parameters $a, b!$) you may earn a bonus point.

Exercise 11.2 Spread of free wave packets (3 points)

Consider the one-dimensional propagation of a free wave packet of mass m which is described by any normalized wave function $\psi(x, t)$.
a) Show that the momentum expectation value $\langle\hat{p}\rangle$ and momentum uncertainty $\Delta p \equiv$ $\sqrt{\left\langle(\hat{p}-\langle\hat{p}\rangle)^{2}\right\rangle}$ are constant in time. How does the position expectation value $\langle\hat{x}\rangle$ develop in t ?
b) Prove that the uncertainties Δx and Δp of position and momentum are related by

$$
\Delta x^{2}=\frac{\Delta p^{2} t^{2}}{m^{2}}+a t+\Delta x_{0}^{2}
$$

where Δx_{0} is the spread at $t=0$ and a is a constant. Interpret the leading term for large times t.
c) Derive a bound on $|a|$ from Heisenberg's uncertainty principle. Which values can be taken by a if Δx_{0} is minimal?

Exercise $11.3 \quad$ Free-particle wave functions with quantum numbers $l, m \quad$ (3 points)
We consider the separation of the time-independent Schrödinger equation for a free particle of mass M in polar coordinates with the ansatz $\phi_{k l m}(r, \theta, \varphi)=R_{l}(k r) Y_{l m}(\theta, \varphi)$ for the wave function. This leads to the differential equation

$$
\begin{equation*}
D^{(l)} R_{l}(\rho) \equiv\left[\frac{1}{\rho^{2}} \frac{\mathrm{~d}}{\mathrm{~d} \rho} \rho^{2} \frac{\mathrm{~d}}{\mathrm{~d} \rho}-\frac{l(l+1)}{\rho^{2}}+1\right] R_{l}(\rho)=0 \tag{1}
\end{equation*}
$$

for the radial function $R_{l}(\rho)=R_{l}(k r)$, where $k \geq 0$ is related to the energy eigenvalue by $E(k)=\hbar^{2} k^{2} /(2 M)$. As an ordinary 2nd-order differential equation, Eq. (1) possesses two linearly independent solutions for each value of $l=0,1,2, \ldots$.
a) Show that the two independent solutions of Eq. (1) are given by

$$
\begin{array}{ll}
j_{l}(\rho)=(-\rho)^{l}\left(\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} \rho}\right)^{l} j_{0}(\rho), & j_{0}(\rho)=\frac{\sin \rho}{\rho} \\
n_{l}(\rho)=(-\rho)^{l}\left(\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} \rho}\right)^{l} n_{0}(\rho), & n_{0}(\rho)=-\frac{\cos \rho}{\rho}, \quad l=0,1, \ldots
\end{array}
$$

where j_{l} and n_{l} are the spherical Bessel and Neumann functions, respectively.
Hint: A simple way is based on induction using $R_{l+1}(\rho)=-\rho^{l} \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left[\rho^{-l} R_{l}(\rho)\right]$ and evaluating the commutator of the differential operator $D^{(l+1)}$, as defined in Eq. (1), and the operator $\rho^{l} \frac{\mathrm{~d}}{\mathrm{~d} \rho} \rho^{-l}$.
b) Derive series expansions for j_{l} and n_{l} about $\rho=0$, making use of the respective series for $\sin \rho$ and $\cos \rho$. Give the leading asymptotic behaviour of j_{l} and n_{l} for $\rho \rightarrow 0$.
c) Show that the leading asymptotic behaviour of j_{l} and n_{l} for $\rho \rightarrow \infty$ is given by

$$
j_{l}(\rho) \underset{\rho \rightarrow \infty}{\sim} \frac{1}{\rho} \sin \left(\rho-\frac{l \pi}{2}\right), \quad n_{l}(\rho) \underset{\rho \rightarrow \infty}{\sim}-\frac{1}{\rho} \cos \left(\rho-\frac{l \pi}{2}\right) .
$$

