
Exercises to Advanced Quantum Mechanics Sheet 11

— Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, WS14/15 —

Exercise 11.1 Free-particle Green’s function and propagator (2 points + 1 bonus)

Green’s functions for the time-independent Schrödinger equation are defined by

G±(E, ~x, ~x′) = 〈~x| (E − Ĥ ± i0)−1 |~x′〉,

where Ĥ is the (time-independent) Hamilton operator of the system. From G±(E, ~x, ~x′),
Green’s functions for the forward/backward evolution in time, the so-called retarded/ad-
vanced “propagators”, are obtained as

G±(~x, t; ~x′, t′) = i

∫ ∞
−∞

dE

2π
e−iE(t−t′)/~G±(E, ~x, ~x′).

For the motion of a free particle (mass M) in three dimensions, calculate G±0 (~x, t; ~x′, t′)
from

G±0 (E, ~x, ~x′) =
i

(2π)2|~x− ~x′|

∫ ∞
−∞

dk
ke−ik|~x−~x

′|

E − ~2k2
2M
± i0

= −Me±ikE |~x−~x
′|

2π~2|~x− ~x′|
, kE =

√
2M(E ± i0)/~,

which was derived in the lecture.

Hint: Do the integration over E first, so that the integration over k can be done with
∞∫
−∞

exp{−a(x+ b)2} dx =
√
π/a for a, b ∈ C with Re(a) > 0.

For the derivation of this auxiliary integral (for complex parameters a, b!) you may earn a
bonus point.

Please turn over !



Exercise 11.2 Spread of free wave packets (3 points)

Consider the one-dimensional propagation of a free wave packet of mass m which is de-
scribed by any normalized wave function ψ(x, t).

a) Show that the momentum expectation value 〈p̂〉 and momentum uncertainty ∆p ≡√
〈(p̂− 〈p̂〉)2〉 are constant in time. How does the position expectation value 〈x̂〉

develop in t?

b) Prove that the uncertainties ∆x and ∆p of position and momentum are related by

∆x2 =
∆p2t2

m2
+ at+ ∆x20,

where ∆x0 is the spread at t = 0 and a is a constant. Interpret the leading term for
large times t.

c) Derive a bound on |a| from Heisenberg’s uncertainty principle. Which values can be
taken by a if ∆x0 is minimal?

Exercise 11.3 Free-particle wave functions with quantum numbers l,m (3 points)

We consider the separation of the time-independent Schrödinger equation for a free particle
of mass M in polar coordinates with the ansatz φklm(r, θ, ϕ) = Rl(kr)Ylm(θ, ϕ) for the wave
function. This leads to the differential equation

D(l)Rl(ρ) ≡
[

1

ρ2
d

dρ
ρ2

d

dρ
− l(l + 1)

ρ2
+ 1

]
Rl(ρ) = 0 (1)

for the radial function Rl(ρ) = Rl(kr), where k ≥ 0 is related to the energy eigenvalue by
E(k) = ~2k2/(2M). As an ordinary 2nd-order differential equation, Eq. (1) possesses two
linearly independent solutions for each value of l = 0, 1, 2, . . . .

a) Show that the two independent solutions of Eq. (1) are given by

jl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l
j0(ρ), j0(ρ) =

sin ρ

ρ
,

nl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l
n0(ρ), n0(ρ) = −cos ρ

ρ
, l = 0, 1, . . . ,

where jl and nl are the spherical Bessel and Neumann functions, respectively.

Hint: A simple way is based on induction using Rl+1(ρ) = −ρl d
dρ

[
ρ−lRl(ρ)

]
and

evaluating the commutator of the differential operator D(l+1), as defined in Eq. (1),
and the operator ρl d

dρ
ρ−l.

b) Derive series expansions for jl and nl about ρ = 0, making use of the respective series
for sin ρ and cos ρ. Give the leading asymptotic behaviour of jl and nl for ρ→ 0.

c) Show that the leading asymptotic behaviour of jl and nl for ρ→∞ is given by

jl(ρ) ∼
ρ→∞

1

ρ
sin

(
ρ− lπ

2

)
, nl(ρ) ∼

ρ→∞
−1

ρ
cos

(
ρ− lπ

2

)
.


