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Exercise 22 Sfermion sector of the MSSM (5 points)

Assuming “minimal flavour violation” one obtains the following mass terms for sfermions f̃ ,
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where ˆ̃fL/R are the sfermion fields that correspond to fermion fields Ψf in the basis of
fermion mass eigenstates. The coefficients of the mass matrix Zf̃ are given as
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Diagonalization of the mass matrix Zf̃ yields

Lmass,f̃ = −
∑

k=1,2

m2

f̃k

f̃ †
k f̃k, (3)

with new sfermion fields
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where θf̃ is a real mixing angle. Calculate the mass values m2

f̃k

(by definition mf̃1
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)
and show the following useful relations,
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with {cot β, tan β} denoting the alternatives for I3
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2
. What happens in the limiting

cases of

a) small fermion mass mf ,

b) large SUSY parameters MF̃L
, Mf̃R

, Af , and µ, which should scale proportional to a
large scale MSUSY?



Exercise 23 SUSY QCD correction to the quark self-energy (5 bonus points)

The Feynman rules for the quark–squark–gluon interaction are as follows,
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where Uq̃ is the mixing matrix from Exercise 22 and ω± = 1

2
(1 ± γ5) are the chiral

projectors. Calculate the one-loop contribution to the quark self-energy iΣq̄q(p) with
momentum transfer p, induced by exchange of a SUSY particle which is mediated by the
following diagram,
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Parametrize the loop integrals by the following standard functions,
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and decompose the self-energy into its vector-, axial vector-, and scalar parts according
to the relation

Σq̄q(p) = /p Σq̄q
V (p2) + /p γ5 Σq̄q

A (p2) + mq1 Σq̄q
S (p2). (9)

Calculate the limit of large SUSY parameters (here equivalent to p2, mq → 0) analogously
to Exercise 22.


