Exercises on Supersymmetry S	heet 10	
 Prof. S. Dittmaier, Universität Freiburg,	SS15	

Exercise 21 Higgs sector of the MSSM (13 points)

In the MSSM the Higgs sector consists of two complex SU(2) doublets that shall be parametrized as follows:

$$H^{1} = \begin{pmatrix} H_{1}^{1} \\ H_{2}^{1} \end{pmatrix} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}}(v_{1} + h_{1} + i\chi_{1}) \end{pmatrix}, \qquad H^{2} = \begin{pmatrix} H_{1}^{2} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_{2} + h_{2} - i\chi_{2}) \\ -\phi_{2}^{-} \end{pmatrix}, \quad (1)$$

where h_k , χ_k denote real and ϕ_k^+ , $\phi_k^- = (\phi_k^+)^\dagger$ complex fields. The constants $v_k > 0$ describe the vacuum expectation values of the Higgs fields. Each of the scalar fields H^k (k = 1, 2) denotes the component field with lowest (mass) dimension of a chiral superfield $\Phi_{H^k}(x, \theta, \bar{\theta})$, which again forms a SU(2) doublet.

The covariant derivative of the $SU(2)_I \times U(1)_Y$ gauge symmetry for SU(2) doublets is

$$D_{\mu} = \partial_{\mu} + ig \frac{\sigma^A}{2} W^A_{\mu} + ig' \frac{Y}{2} B_{\mu}, \qquad (2)$$

where the hypercharges of the Higgs doublets (as well as their corresponding chiral superfields Φ_{H^k}) are $Y_{H^1} = 1$ and $Y_{H^2} = -1$. Here g and g' are the gauge couplings of the SU(2)_I and U(1)_Y, and W^A_{μ} (A = 1, 2, 3) and B_{μ} the corresponding gauge fields. The matrices σ^A denote the usual Pauli matrices. The gauge fields W^A_{μ} and B_{μ} are component fields of their corresponding vector superfields $V^A_I(x, \theta, \bar{\theta})$ and $V_Y(x, \theta, \bar{\theta})$.

a) The kinetic part of the Higgs superfields in the Lagrangian is

$$\mathcal{L}_{\mathrm{kin},H} = -\frac{1}{2} \sum_{k=1}^{2} \Phi_{H^{k}}^{\dagger} \exp\left\{-g\sigma^{A}V_{I}^{A} - g'YV_{Y}\right\} \Phi_{H^{k}}\Big|_{D}.$$
(3)

In $\mathcal{L}_{kin,H}$, identify the mass terms of the gauge bosons W and Z,

$$\mathcal{L}_{\text{mass},WZ} = M_W^2 W_\mu^+ W^{-,\mu} + \frac{1}{2} M_Z^2 Z_\mu Z^\mu, \qquad (4)$$

where the fields are defined as

$$W^{\pm}_{\mu} = \frac{1}{2} \left(W^{1}_{\mu} \mp i W^{2}_{\mu} \right), \qquad \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} c_{w} & -s_{w} \\ s_{w} & c_{w} \end{pmatrix} \begin{pmatrix} W^{3}_{\mu} \\ B_{\mu} \end{pmatrix}.$$
(5)

Here we abbreviated $s_w = \sin \theta_w$ and $c_w = \cos \theta_w$, which are defined by the relation $\tan \theta_w = g'/g$. How are the gauge-boson masses M_W and M_Z expressed in terms of the parameters v_k , g, and g'?

(Solution:
$$M_W = c_w M_Z = \frac{1}{2}g\sqrt{v_1^2 + v_2^2}$$
.)

b) After elimination of the auxiliary fields in \mathcal{L}_{MSSM} the Higgs fields are subject to self-interactions given by the potential

$$V_{\text{Higgs}}(H^{1}, H^{2}) = (\mu^{2} + m_{1}^{2})H^{1\dagger}H^{1} + (\mu^{2} + m_{2}^{2})H^{2\dagger}H^{2} + m_{12}^{2}(H^{1T}\epsilon H^{2} + H^{1\dagger}\epsilon H^{2*}) + \frac{1}{8}(g^{2} + g'^{2})(H^{1\dagger}H^{1} - H^{2\dagger}H^{2})^{2} + \frac{1}{2}g^{2}(H^{1\dagger}H^{2})(H^{2\dagger}H^{1}), \quad (6)$$

where terms proportional to μ^2 come from the superpotential, those proportional to m_k^2 (k = 1, 2, 12) parametrize a part of the soft SUSY breaking. The parameters μ and m_k are assumed to be real.

Which (two) equations encode the requirement that V_{Higgs} possesses no terms linear in the fields h_k , χ_k , and ϕ_k^{\pm} (ground-state requirement)? Is it possible to satisfy these conditions with $v_k \neq 0$ if the SUSY breaking terms m_k vanish?

c) Calculate the terms in V_{Higgs} that are bilinear in the fields h_k , χ_k , and ϕ_k^{\pm} . These terms define $V_{\text{Higgs,quad}}$. Using the conditions from b) one eliminates m_1 and m_2 .

Our aim is to extract the fields corresponding to mass eigenstates from $V_{\text{Higgs,quad}}$ and the corresponding mass eigenvalues. To this end, first perform the following orthogonal transformation,

$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix}, \qquad \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}, \quad (7)$$

to identify the mass terms for the scalar fields G^0 , G^{\pm} , A^0 , and H^{\pm} ,

$$V_{\text{Higgs,mass}}\Big|_{G^0, G^{\pm}, A^0, H^{\pm}} = \frac{1}{2}M_A^2 (A^0)^2 + M_{H^{\pm}}^2 H^+ H^-.$$
(8)

How is $\tan \beta$ expressed as a function of v_k ? What are the results for M_A and $M_{H^{\pm}}$?

d) The values M_h and M_H for the masses of the remaining two Higgs bosons h and H, where

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}, \tag{9}$$

result from diagonalization of the matrix \mathcal{M}_h^2 that connects h_1 and h_2 in $V_{\text{Higgs,mass}}$,

$$V_{\text{Higgs,mass}}\Big|_{h_1,h_2} = \frac{1}{2}(h_1,h_2)\mathcal{M}_h^2\begin{pmatrix}h_1\\h_2\end{pmatrix} = \frac{1}{2}M_h^2h^2 + \frac{1}{2}M_H^2H^2.$$
 (10)

Calculate M_h and M_H and express the results in terms of the parameters M_A , M_Z , and $\cos(2\beta)$. What is the upper bound for the mass M_h of the (by definition) lightest Higgs boson h if you take M_Z as a fixed input parameter and vary M_A and $\cos(2\beta)$?