Exercises on Supersymmetry
 Sheet 9

- Prof. S. Dittmaier, Universität Freiburg, SS15 -

Exercise 19 Auxiliary relations for conventional gauge transformations (3 points)
A non-abelian local gauge transformation can represented using the unitary matrix

$$
\begin{equation*}
U\left(\omega^{A}(x)\right)=\exp \left\{-i g T^{A} \omega^{A}(x)\right\} \tag{1}
\end{equation*}
$$

where T^{A} denotes the generators of the gauge group and ω^{A} are the group parameters that are real functions of space-time x^{μ}. Show the relation

$$
\begin{equation*}
\exp \left\{-i g T^{A} \omega^{A}(\bar{y})\right\}=U+i\left(\theta \bar{\sigma}^{\mu} \bar{\theta}\right)\left(\partial_{\mu} U\right)-\frac{1}{4}(\theta \theta)(\bar{\theta} \bar{\theta})(\square U) \tag{2}
\end{equation*}
$$

which is an expansion of the generalized exponential as a function of coordinates $\bar{y}^{\mu}=$ $x^{\mu}+i \theta \bar{\sigma}^{\mu} \bar{\theta}$. The exponentials on the r.h.s. of Eq. (2) are functions of x, as defined in Eq. (1).

Exercise 20 Superfield of the non-abelian field-strength tensor (8 points)
In Wess-Zumino gauge the components of a vector superfield of a non-abelian gauge symmetry reads

$$
\begin{equation*}
\left.V^{A}(x, \theta, \bar{\theta})\right|_{\mathrm{WZ}}=-\left(\theta \bar{\sigma}^{\mu} \bar{\theta}\right) A_{\mu}^{A}(x)-i(\theta \theta) \bar{\theta} \bar{\lambda}^{A}(x)+i(\bar{\theta} \bar{\theta}) \theta \lambda^{A}(x)-\frac{1}{2}(\theta \theta)(\bar{\theta} \bar{\theta}) D^{A}(x) \tag{3}
\end{equation*}
$$

with $A=1, \ldots, \operatorname{dim}(G)$. The corresponding (SUSY gauge-covariant) superfield of the non-abelian field-strength tensor is defined as

$$
\begin{align*}
T W_{a}(x, \theta, \bar{\theta}) & \equiv T^{A} W_{a}^{A}(x, \theta, \bar{\theta}) \\
& =\frac{1}{8 g}(\overline{\mathcal{D}} \overline{\mathcal{D}}) \exp \{2 g T V(x, \theta, \bar{\theta})\} \mathcal{D}_{a} \exp \{-2 g T V(x, \theta, \bar{\theta})\}, \tag{4}
\end{align*}
$$

with T^{A} being the generators of the gauge group G which satisfy $\left[T^{A}, T^{B}\right]=i C^{A B C} T^{C}$. Calculate the component form of $T W_{a}$ in terms of the coordinates $y^{\mu}=x^{\mu}-i \theta \bar{\sigma}^{\mu} \bar{\theta}, \eta=\theta$, and $\bar{\eta}=\bar{\theta}$:

$$
\begin{equation*}
T W_{a}(y, \eta)=T \lambda_{a}(y)+i \eta_{a}(T D(y))-i(\eta \eta) \bar{\sigma}_{a \dot{b}}^{\mu}\left(D_{\mathrm{adj}, \mu} \bar{\lambda}^{\dot{b}}(y)\right)+\frac{1}{2} \bar{\sigma}_{a \dot{b}}^{\mu} \sigma^{\dot{c}, \nu} \eta_{c}\left(T F_{\mu \nu}(y)\right) \tag{5}
\end{equation*}
$$

The matrix $D_{\text {adj }, \mu}$ denotes covariant derivative in adjoint representation (of G),

$$
\begin{equation*}
\left(D_{\mathrm{adj}, \mu}\right)^{B C}=\delta^{B C} \partial_{\mu}+g C^{A B C} A_{\mu}^{A} \tag{6}
\end{equation*}
$$

and $F_{\mu \nu}^{A}$ are the components of the non-abelian field-strength tensor,

$$
\begin{equation*}
F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}-g C^{A B C} A_{\mu}^{B} A_{\nu}^{C} \tag{7}
\end{equation*}
$$

