Exercises on Supersymmetry S	Sheet 8	
 Prof. S. Dittmaier, Universität Freiburg,	SS15	

Exercise 17 Superfield of the abelian field-strength tensor (7 points)

The components of the vector superfield of an abelian gauge symmetry in Wess–Zumino gauge reads

$$V(x,\theta,\bar{\theta})\Big|_{WZ} = -(\theta\bar{\sigma}^{\mu}\bar{\theta})A_{\mu}(x) - i(\theta\theta)\bar{\theta}\bar{\lambda}(x) + i(\bar{\theta}\bar{\theta})\theta\lambda(x) - \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta})D(x).$$
(1)

The corresponding (SUSY gauge-invariant) superfield of the abelian field-strength tensor is defined as

$$W_a(x,\theta,\bar{\theta}) = -\frac{1}{4}(\bar{\mathcal{D}}\bar{\mathcal{D}})\mathcal{D}_a V(x,\theta,\bar{\theta}).$$
⁽²⁾

- a) Show that $\bar{W}^{\dot{a}} \equiv \left(W^a(x,\theta,\bar{\theta}) \right)^* = +\frac{1}{4} (\mathcal{D}\mathcal{D}) \bar{\mathcal{D}}^{\dot{a}} V(x,\theta,\bar{\theta}).$
- b) Show that $\mathcal{D}^a W_a = -\bar{\mathcal{D}}_{\dot{a}} \bar{W}^{\dot{a}}$.

(Hint: useful relations are found in Exercise 14.)

c) Derive the component form of W_a from its definition and from $V|_{WZ}$.

(Hint: Parametrize $V|_{WZ}$ first in terms of complex superspace coordinates $y^{\mu} = x^{\mu} - i\theta \bar{\sigma}^{\mu} \bar{\theta}, \eta = \theta$, and $\bar{\eta} = \bar{\theta}$. Then calculate W_a as a function of y, η , and $\bar{\eta}$.)

Exercise 18 Conventional gauge transformation of the chiral superfield (5 points)

A chiral superfield, parametrized by complex coordinates (see also previous exercise),

$$\Phi(y,\eta) = \phi(y) + \sqrt{2}\eta\psi(y) - (\eta\eta)\mathcal{F}(y)$$
(3)

transforms under a conventional abelian gauge transformation according to

$$\Phi(y,\eta) \to \Phi'(y,\eta) = \exp\left\{-iq\omega(y)\right\} \Phi(y,\eta),\tag{4}$$

where q denotes the abelian charge of Φ and $\omega(x)$ an arbitrary real function. Show that every component f(x) of Φ , i.e. $f = \phi, \psi, \mathcal{F}$, transforms as follows:

$$f(x) \rightarrow f'(x) = \exp\left\{-iq\omega(x)\right\} f(x).$$
(5)

Make use of Eq. (4) expressed in the original superspace coordinates x, θ , and $\overline{\theta}$.