Exercise 10 Super Poincaré transformations (6 points)

An important class of super Poincaré transformations (the class without the Lorentz transformations) is given as

$$U(a,\alpha,\bar{\alpha}) = \exp\left\{iaP + i\alpha Q + i\bar{\alpha}\bar{Q}\right\} \equiv \exp\left\{ia^{\mu}P_{\mu} + i\alpha^{a}_{r}Q_{a,r} + i\bar{\alpha}_{\dot{a},r}\bar{Q}^{\dot{a}}_{r}\right\}, \quad (1)$$

where a^{μ} is a constant four-vector and α_r^a (a = 1, 2; r = 1, ..., N), as well as $\bar{\alpha}_{\dot{a},r} = (\alpha_{a,r})^*$, anticommuting spinor-like parameters. P, Q, and \bar{Q} are the usual generators of the relativistic SUSY algebra (graded with grade N). We assume that the central charges vanish, i.e. $Z_{rs} = 0$.

a) Show that

$$U(a,\alpha,\bar{\alpha})^{\dagger} = U(-a,-\alpha,-\bar{\alpha}) = U(a,\alpha,\bar{\alpha})^{-1}.$$
(2)

b) Prove the law of composition,

$$U(a^{\mu},\alpha,\bar{\alpha}) U(a^{\prime\mu},\alpha^{\prime},\bar{\alpha}^{\prime}) = U(a^{\mu}+a^{\prime\mu}+i\alpha\bar{\sigma}^{\mu}\bar{\alpha}^{\prime}+i\bar{\alpha}\sigma^{\mu}\alpha^{\prime},\alpha+\alpha^{\prime},\bar{\alpha}+\bar{\alpha}^{\prime}), \quad (3)$$

where $\alpha \bar{\sigma}^{\mu} \bar{\alpha}' = \alpha_r^a \bar{\sigma}_{ab}^{\mu} \bar{\alpha}'_{r}^{b}$ and $\bar{\alpha} \sigma^{\mu} \alpha' = \bar{\alpha}_r^{\dot{a}} \sigma_{ab}^{\mu} \alpha'_{r}^{b}$. (Hint: First consider the commutators of aP, αQ , $\bar{\alpha} \bar{Q}$, a'P, $\alpha'Q$, $\bar{\alpha}'\bar{Q}$ and make use of the Baker–Campbell–Hausdorff formula afterwards.)

c) Is the product of U's commutative? Is it associative?

Exercise 11 SUSY Oscillator (6 points)

The Hamilton operators

$$H_B = b^+ b^- + \frac{1}{2}, \qquad H_F = f^+ f^- + \varepsilon$$
 (4)

together with the creation and annihilation operators b^{\pm} and f^{\pm} ,

$$[b^{\pm}, b^{\pm}] = 0, \quad [b^{-}, b^{+}] = 1, \qquad \{f^{\pm}, f^{\pm}\} = 0, \quad \{f^{-}, f^{+}\} = 1, \tag{5}$$

define Bose- and Fermi oscillators. The parameter ε shall initially be an arbitrary constant. Bose- and Fermi oscillators can be combined into a SUSY oscillator as follows:

$$H = H_B + H_F$$
 with $[b^{\pm}, f^{\pm}] = [b^{\pm}, f^{\mp}] = 0.$ (6)

a) The energy eigensystem of the Bose and Fermi oscillators are given as

$$H_B|m\rangle_B = (m + \frac{1}{2})|m\rangle_B, \qquad |m\rangle_B = \frac{(b^+)^m}{\sqrt{m!}}|0\rangle_B, \qquad m = 0, 1, 2, \dots,$$
(7)

$$H_F|n\rangle_F = (n+\varepsilon)|n\rangle_F, \qquad |1\rangle_F = f^+|0\rangle_F, \qquad n = 0, 1, \qquad (8)$$

where the ground states are characterized by $b^-|0\rangle_B = f^-|0\rangle_F = 0$. Determine the energy eigenstates of the SUSY oscillator by considering the product states $|\ldots\rangle = |\ldots\rangle_B |\ldots\rangle_F$. What is the degree of degeneracy of the eigenstates?

b) Calculate all (anti-)commutators of H and

$$Q^+ = b^- f^+, \qquad Q^- = (Q^+)^\dagger = b^+ f^-.$$
 (9)

For which value of ε does H and Q^{\pm} constitute a SUSY algebra?

c) How do the operators b^{\pm} , f^{\pm} , and Q^{\pm} act on the energy eigenstates of the SUSY oscillator? Illustrate this in the (m, n)-plane, where m and n are defined in Eqs. (7) and (8).