Exercises on Supersymmetry
 Sheet 4

- Prof. S. Dittmaier, Universität Freiburg, SS15

Exercise 10 Super Poincaré transformations (6 points)
An important class of super Poincaré transformations (the class without the Lorentz transformations) is given as

$$
\begin{equation*}
U(a, \alpha, \bar{\alpha})=\exp \{i a P+i \alpha Q+i \bar{\alpha} \bar{Q}\} \equiv \exp \left\{i a^{\mu} P_{\mu}+i \alpha_{r}^{a} Q_{a, r}+i \bar{\alpha}_{\dot{\alpha}, r} \bar{Q}_{r}^{\dot{a}}\right\} \tag{1}
\end{equation*}
$$

where a^{μ} is a constant four-vector and $\alpha_{r}^{a}(a=1,2 ; r=1, \ldots, N)$, as well as $\bar{\alpha}_{\dot{\alpha}, r}=\left(\alpha_{a, r}\right)^{*}$, anticommuting spinor-like parameters. P, Q, and \bar{Q} are the usual generators of the relativistic SUSY algebra (graded with grade N). We assume that the central charges vanish, i.e. $Z_{r s}=0$.
a) Show that

$$
\begin{equation*}
U(a, \alpha, \bar{\alpha})^{\dagger}=U(-a,-\alpha,-\bar{\alpha})=U(a, \alpha, \bar{\alpha})^{-1} \tag{2}
\end{equation*}
$$

b) Prove the law of composition,

$$
\begin{equation*}
U\left(a^{\mu}, \alpha, \bar{\alpha}\right) U\left(a^{\prime \mu}, \alpha^{\prime}, \bar{\alpha}^{\prime}\right)=U\left(a^{\mu}+a^{\prime \mu}+i \alpha \bar{\sigma}^{\mu} \bar{\alpha}^{\prime}+i \bar{\alpha} \sigma^{\mu} \alpha^{\prime}, \alpha+\alpha^{\prime}, \bar{\alpha}+\bar{\alpha}^{\prime}\right) \tag{3}
\end{equation*}
$$

where $\alpha \bar{\sigma}^{\mu} \bar{\alpha}^{\prime}=\alpha_{r}^{a} \bar{\sigma}_{a \dot{b}}^{\mu} \bar{\alpha}_{r}^{\dot{b}}$ and $\bar{\alpha} \sigma^{\mu} \alpha^{\prime}=\bar{\alpha}_{r}^{\dot{a}} \sigma_{\dot{a} b}^{\mu} \alpha_{r}^{\prime b}$.
(Hint: First consider the commutators of $a P, \alpha Q, \bar{\alpha} \bar{Q}, a^{\prime} P, \alpha^{\prime} Q, \bar{\alpha}^{\prime} \bar{Q}$ and make use of the Baker-Campbell-Hausdorff formula afterwards.)
c) Is the product of U 's commutative? Is it associative?

Exercise 11 SUSY Oscillator (6 points)
The Hamilton operators

$$
\begin{equation*}
H_{B}=b^{+} b^{-}+\frac{1}{2}, \quad H_{F}=f^{+} f^{-}+\varepsilon \tag{4}
\end{equation*}
$$

together with the creation and annihilation operators $b^{ \pm}$and $f^{ \pm}$,

$$
\begin{equation*}
\left[b^{ \pm}, b^{ \pm}\right]=0, \quad\left[b^{-}, b^{+}\right]=1, \quad\left\{f^{ \pm}, f^{ \pm}\right\}=0, \quad\left\{f^{-}, f^{+}\right\}=1 \tag{5}
\end{equation*}
$$

define Bose- and Fermi oscillators. The parameter ε shall initially be an arbitrary constant. Bose- and Fermi oscillators can be combined into a SUSY oscillator as follows:

$$
\begin{equation*}
H=H_{B}+H_{F} \quad \text { with } \quad\left[b^{ \pm}, f^{ \pm}\right]=\left[b^{ \pm}, f^{\mp}\right]=0 \tag{6}
\end{equation*}
$$

a) The energy eigensystem of the Bose and Fermi oscillators are given as

$$
\left.\begin{array}{rlrl}
H_{B}|m\rangle_{B} & =\left(m+\frac{1}{2}\right)|m\rangle_{B}, & |m\rangle_{B}=\frac{\left(b^{+}\right)^{m}}{\sqrt{m!}}|0\rangle_{B}, & m
\end{array}\right)=0,1,2, \ldots,
$$

where the ground states are characterized by $b^{-}|0\rangle_{B}=f^{-}|0\rangle_{F}=0$.
Determine the energy eigenstates of the SUSY oscillator by considering the product states $|\ldots\rangle=|\ldots\rangle_{B}|\ldots\rangle_{F}$. What is the degree of degeneracy of the eigenstates?
b) Calculate all (anti-)commutators of H and

$$
\begin{equation*}
Q^{+}=b^{-} f^{+}, \quad Q^{-}=\left(Q^{+}\right)^{\dagger}=b^{+} f^{-} . \tag{9}
\end{equation*}
$$

For which value of ε does H and $Q^{ \pm}$constitute a SUSY algebra?
c) How do the operators $b^{ \pm}, f^{ \pm}$, and $Q^{ \pm}$act on the energy eigenstates of the SUSY oscillator? Illustrate this in the (m, n)-plane, where m and n are defined in Eqs. (7) and (8).

