\author{

- Prof. S. Dittmaier, Universität Freiburg, SS15
}

Exercise 4 Relations for Grassmann-valued Weyl spinors (4 points)

Let ξ and η be Grassmann-valued Weyl spinors.
a) Derive the following relations, using the Schouten identity of the antisymmetric metric ϵ :

$$
\begin{array}{ll}
\xi^{a} \eta^{b}=\xi^{b} \eta^{a}-\epsilon^{a b}(\xi \eta), & \xi^{a} \xi^{b}=-\frac{1}{2} \epsilon^{a b}(\xi \xi), \\
\bar{\xi}^{\dot{a}} \bar{\eta}^{\dot{b}}=\bar{\xi}^{\dot{b}} \bar{\eta}^{\dot{a}}+\epsilon^{\dot{a} b}(\bar{\xi} \bar{\eta}), & \bar{\xi}^{\dot{a}} \bar{\xi}^{\dot{b}}=+\frac{1}{2} \epsilon^{\dot{a} \dot{b}}(\bar{\xi} \bar{\xi}) . \tag{2}
\end{array}
$$

b) Prove that the objects

$$
\begin{equation*}
\bar{\xi} \sigma^{\mu} \eta \equiv \bar{\xi}_{\dot{a}} \sigma^{\mu, \dot{a} b} \eta_{b}, \quad \xi \bar{\sigma}^{\mu} \bar{\eta} \equiv \xi^{a} \bar{\sigma}_{a \dot{b}}^{\mu} \bar{\eta}^{\dot{b}} \tag{3}
\end{equation*}
$$

transform as four-vectors and fulfill the following relations,

$$
\begin{align*}
\xi \bar{\sigma}^{\mu} \bar{\eta} & =-\bar{\eta} \sigma^{\mu} \xi \tag{4}\\
\xi^{a} \bar{\eta}^{\dot{b}} & =\frac{1}{2}\left(\xi \bar{\sigma}^{\mu} \bar{\eta}\right) \bar{\sigma}_{\mu}^{a \dot{b}} \tag{5}\\
\left(\xi \bar{\sigma}^{\mu} \bar{\eta}\right)\left(\xi \bar{\sigma}^{\nu} \bar{\eta}\right) & =\frac{1}{2}(\xi \xi)(\bar{\eta} \bar{\eta}) g^{\mu \nu} . \tag{6}
\end{align*}
$$

Exercise 5 Commuting Weyl spinors (2 point)

How do the relations in Exercise 4 change if the anticommutating spinors ξ and η are replaced by commuting spinors x and y ? In particular, which symmetry has the spinorproduct $\langle x y\rangle \equiv x_{a} y^{a}$? Furthermore, compare the definition $\langle\bar{x} \bar{y}\rangle \equiv\langle x y\rangle^{*}$ with the corresponding one for anticommutating spinors. How does it differ?

Exercise 6 Representation of four-vectors by (commuting) Weyl spinors (3 points)

Let k^{μ} be a real four-vector which is mapped onto a 2×2-matrix $K_{\dot{a} b}$,

$$
\left(K_{\dot{a} b}\right) \equiv\left(k^{\mu} \sigma_{\mu, \dot{a} b}\right)=\left(\begin{array}{cc}
k^{0}+k^{3} & k^{1}+i k^{2} \tag{7}\\
k^{1}-i k^{2} & k^{0}-k^{3}
\end{array}\right) .
$$

a) Show that a matrix with the property $K_{\dot{a} b}=\bar{k}_{\dot{a}} k_{b}$, where k_{a} is a commuting Weyl spinor, corresponds to a light-like vector $k^{\mu}\left(k^{2}=0\right)$.
(Hint: Examine the determinant of K.)
b) Show the reversed case, i.e. that every light-like vector can be represented by $\bar{k}_{\dot{a}} k_{b}$. Construct k_{a} with the components of k^{μ} in polar coordinates,

$$
\begin{equation*}
\left(k^{\mu}\right)=k^{0}(1, \cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta) . \tag{8}
\end{equation*}
$$

Which properties of k_{a} are unambiguously fixed, which can be freely chosen?
c) How is the Minkowski product $p \cdot k$ of two light-like vectors p, k expressed in terms of the spinor product $\langle\ldots\rangle$ of the corresponding spinors?

Exercise 7 Wave function of massless Dirac fermions (4 points)

Show that in the representation

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \bar{\sigma}^{\mu} \tag{9}\\
\sigma^{\mu} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \left(\bar{\sigma}_{a \dot{b}}^{\mu}\right) \\
\left(\sigma^{\mu, a b}\right) & 0
\end{array}\right), \quad \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

both wave functions

$$
\begin{equation*}
\Psi_{\mathrm{R}}=\binom{k_{a}}{0}, \quad \Psi_{\mathrm{L}}=\binom{0}{\bar{k}^{\dot{a}}} \tag{10}
\end{equation*}
$$

are solutions of the Dirac equation for a massless fermion with momentum k^{μ} and are suitably normalized, i.e. $\Psi^{\dagger} \Psi=2 k^{0}$. What are the adjoint spinors $\bar{\Psi}_{R / L} \equiv \Psi_{\mathrm{R} / \mathrm{L}}^{\dagger} \gamma_{0}$?

