Exercises on Supersymmetry S	Sheet 1	
 Prof. S. Dittmaier, Universität Freiburg,	SS15	

Exercise 1 Fundamental representations of the Lorentz group (5 points)

The general form of a Lorentz transformation in the two fundamental representations of the Lorentz-group reads

$$\Lambda_{\rm R} = \exp\left\{-\frac{i}{2}(\phi_k + i\nu_k)\sigma^k\right\}, \qquad \Lambda_{\rm L} = \exp\left\{-\frac{i}{2}(\phi_k - i\nu_k)\sigma^k\right\}, \tag{1}$$

with real parameters ϕ_k , ν_k , k = 1, 2, 3 and the Pauli matrices σ^k .

- a) Show that $\Lambda_R^{\dagger} = \Lambda_L^{-1}$ and $\Lambda_L^{\dagger} = \Lambda_R^{-1}$.
- b) Using the identity det $(\exp A) = \exp(\operatorname{tr} A)$ for matrices A show that det $\Lambda_{\rm R} = \det \Lambda_{\rm L} = 1$.
- c) For which transformations is $\Lambda_{R/L}^{\dagger} = \Lambda_{R/L}$ true and for which $\Lambda_{R/L}^{\dagger} = \Lambda_{R/L}^{-1}$?
- d) Calculate $\Lambda_{\rm R}$ and $\Lambda_{\rm L}$ for a pure boost ($\boldsymbol{\phi} = 0$) in direction $\boldsymbol{e} = \begin{pmatrix} \cos \varphi \sin \theta \\ \sin \varphi \sin \theta \\ \cos \theta \end{pmatrix}$ with $\boldsymbol{\nu} = \boldsymbol{\nu} \boldsymbol{e}$, and also for a pure rotation ($\boldsymbol{\nu} = 0$) around \boldsymbol{e} with $\boldsymbol{\phi} = \boldsymbol{\phi} \boldsymbol{e}$.
- e) Within the Weyl–van-der-Waerden calculus covariant spinors ξ_a transform with $\Lambda_{\rm R}$ and contravariant spinors $\bar{\eta}^{\dot{a}}$ with $\Lambda_{\rm L}$. What does that imply for the indices (placement, dotting) of the matrices $\Lambda_{\rm R/L}$ and $\Lambda_{\rm R/L}^*$? Show that the spinor calculus (raising, lowering, dotting of indices) is consistent with the relation $\epsilon \Lambda_{\rm R}^* \epsilon^{-1} = \Lambda_{\rm L}$.

Exercise 2 Relation between $\Lambda_{\rm R}$, $\Lambda_{\rm L}$, and Λ^{μ}_{ν} (4 points)

For four-vectors the general matrix of a Lorentz transformation is

$$\Lambda^{\mu}{}_{\nu} = \exp\left\{-\frac{i}{2}\omega_{\alpha\beta}M^{\alpha\beta}\right\}^{\mu}{}_{\nu}, \qquad \left(M^{\alpha\beta}\right)^{\mu}{}_{\nu} = i\left(g^{\alpha\mu}\delta^{\beta}_{\nu} - g^{\beta\mu}\delta^{\alpha}_{\nu}\right), \tag{2}$$

with antisymmetric parameters $\omega_{jk} = \epsilon_{jkl}\phi_l$ and $\omega_{0j} = -\omega_{j0} = \nu_j$. Verify the following relations between $\Lambda_{\rm R}$, $\Lambda_{\rm L}$, and Λ^{μ}_{ν} ,

$$\Lambda^{\dagger}_{\rm R}\sigma^{\mu}\Lambda_{\rm R} = \Lambda^{\mu}_{\ \nu}\sigma^{\nu}, \qquad \Lambda^{\dagger}_{\rm L}\bar{\sigma}^{\mu}\Lambda_{\rm L} = \Lambda^{\mu}_{\ \nu}\bar{\sigma}^{\nu}, \tag{3}$$

for infinitesimal parameters $\delta \phi_k$ and $\delta \nu_k$ where $\sigma^{\mu} = (1, \sigma)$ and $\bar{\sigma}^{\mu} = (1, -\sigma)$ are the fourdimensional Pauli matrices. Accustom yourself to the notation of the spinor calculus.

Exercise 3 Relation between the Lorentz group and $SL(2, \mathbb{C})$ (5 points)

The group $SL(2, \mathbb{C})$ is the set of all complex 2×2 matrices A with det A = 1. Consider the following mappings of four-vectors x^{μ} onto 2×2 matrices,

$$X^{\dot{a}b} = x_{\mu}\sigma^{\mu,\dot{a}b},\tag{4}$$

$$\bar{X}_{ab} = x_{\mu}\bar{\sigma}^{\mu}_{ab},\tag{5}$$

where $\sigma^{\mu,\dot{a}b} = (\mathbf{1}^{\dot{a}b}, \boldsymbol{\sigma}^{\dot{a}b})$ and $\bar{\sigma}^{\mu}_{a\dot{b}} = (\mathbf{1}_{a\dot{b}}, -\boldsymbol{\sigma}_{a\dot{b}})$ are the entries of the four-dimensional Pauli-matrices which fulfill the relation tr $(\sigma^{\mu}\bar{\sigma}^{\nu}) = \sigma^{\mu,\dot{a}b}\bar{\sigma}^{\nu}_{b\dot{a}} = 2g^{\mu\nu}$.

- a) Show that the relations $x^{\mu} = \frac{1}{2} \operatorname{tr} (X \bar{\sigma}^{\mu}) = \frac{1}{2} \operatorname{tr} (\bar{X} \sigma^{\mu})$ are valid and thus the inverse of the mapping given above.
- b) What is the interpretation of det(X) and det(X)?
- c) Given an arbitrary matrix $A \in SL(2, \mathbb{C})$. Show that the mappings $X \mapsto X' = AXA^{\dagger}$ and $\bar{X} \mapsto \bar{X}' = A\bar{X}A^{\dagger}$ define Lorentz transformations $x'^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$. (Hint: Examine the determinants.)
- d) What is the relation between the matrix A from c) and the matrices $\Lambda_{\rm R}$ and $\Lambda_{\rm L}$ of the fundamental representation? (Hint: Make use of the relations $\Lambda^{\dagger}_{\rm R}\sigma^{\mu}\Lambda_{\rm R} = \Lambda^{\mu}_{\ \nu}\sigma^{\nu}$ and $\Lambda^{\dagger}_{\rm L}\bar{\sigma}^{\mu}\Lambda_{\rm L} = \Lambda^{\mu}_{\ \nu}\bar{\sigma}^{\nu}$.)
- e) In c), you have shown that each $A \in SL(2, \mathbb{C})$ defines a $\Lambda \in L_{+}^{\uparrow}$. Assuming that each $\Lambda \in L_{+}^{\uparrow}$ can be represented by an element of $SL(2, \mathbb{C})$, show that exactly two elements of $SL(2, \mathbb{C})$ correspond to a given Λ .

Group-theoretically this fact is expressed by the isomorphism $L_{+}^{\uparrow} \cong \mathrm{SL}(2, \mathbb{C})/\mathbb{Z}_{2}$. Taking into account that the group $\mathrm{SL}(2, \mathbb{C})$ is simply connected, this means that $\mathrm{SL}(2, \mathbb{C})$ is the *universal covering group* of L_{+}^{\uparrow} .