Exercises on Supersymmetry Sheet 1

\author{

- Prof. S. Dittmaier, Universität Freiburg, SS15
}

Exercise 1 Fundamental representations of the Lorentz group
The general form of a Lorentz transformation in the two fundamental representations of the Lorentz-group reads

$$
\begin{equation*}
\Lambda_{\mathrm{R}}=\exp \left\{-\frac{i}{2}\left(\phi_{k}+i \nu_{k}\right) \sigma^{k}\right\}, \quad \Lambda_{\mathrm{L}}=\exp \left\{-\frac{i}{2}\left(\phi_{k}-i \nu_{k}\right) \sigma^{k}\right\} \tag{1}
\end{equation*}
$$

with real parameters $\phi_{k}, \nu_{k}, k=1,2,3$ and the Pauli matrices σ^{k}.
a) Show that $\Lambda_{\mathrm{R}}^{\dagger}=\Lambda_{\mathrm{L}}^{-1}$ and $\Lambda_{\mathrm{L}}^{\dagger}=\Lambda_{\mathrm{R}}^{-1}$.
b) Using the identity $\operatorname{det}(\exp A)=\exp (\operatorname{tr} A)$ for matrices A show that $\operatorname{det} \Lambda_{\mathrm{R}}=$ $\operatorname{det} \Lambda_{\mathrm{L}}=1$.
c) For which transformations is $\Lambda_{R / L}^{\dagger}=\Lambda_{R / L}$ true and for which $\Lambda_{R / L}^{\dagger}=\Lambda_{R / L}^{-1}$?
d) Calculate Λ_{R} and Λ_{L} for a pure boost $(\boldsymbol{\phi}=0)$ in direction $\boldsymbol{e}=\left(\begin{array}{c}\cos \varphi \sin \theta \\ \sin \varphi \sin \theta \\ \cos \theta\end{array}\right)$ with $\boldsymbol{\nu}=\nu \boldsymbol{e}$, and also for a pure rotation $(\boldsymbol{\nu}=0)$ around \boldsymbol{e} with $\boldsymbol{\phi}=\phi \boldsymbol{e}$.
e) Within the Weyl-van-der-Waerden calculus covariant spinors ξ_{a} transform with Λ_{R} and contravariant spinors $\bar{\eta}^{\dot{a}}$ with Λ_{L}. What does that imply for the indices (placement, dotting) of the matrices $\Lambda_{\mathrm{R} / \mathrm{L}}$ and $\Lambda_{\mathrm{R} / \mathrm{L}}^{*}$? Show that the spinor calculus (raising, lowering, dotting of indices) is consistent with the relation $\epsilon \Lambda_{\mathrm{R}}^{*} \epsilon^{-1}=\Lambda_{\mathrm{L}}$.

Exercise 2 Relation between $\Lambda_{\mathrm{R}}, \Lambda_{\mathrm{L}}$, and $\Lambda^{\mu}{ }_{\nu}$
(4 points)
For four-vectors the general matrix of a Lorentz transformation is

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}=\exp \left\{-\frac{i}{2} \omega_{\alpha \beta} M^{\alpha \beta}\right\}_{\nu}^{\mu}, \quad\left(M^{\alpha \beta}\right)_{\nu}^{\mu}=i\left(g^{\alpha \mu} \delta_{\nu}^{\beta}-g^{\beta \mu} \delta_{\nu}^{\alpha}\right) \tag{2}
\end{equation*}
$$

with antisymmetric parameters $\omega_{j k}=\epsilon_{j k l} \phi_{l}$ and $\omega_{0 j}=-\omega_{j 0}=\nu_{j}$. Verify the following relations between $\Lambda_{\mathrm{R}}, \Lambda_{\mathrm{L}}$, and $\Lambda^{\mu}{ }_{\nu}$,

$$
\begin{equation*}
\Lambda_{\mathrm{R}}^{\dagger} \sigma^{\mu} \Lambda_{\mathrm{R}}=\Lambda^{\mu}{ }_{\nu} \sigma^{\nu}, \quad \Lambda_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \Lambda_{\mathrm{L}}=\Lambda^{\mu}{ }_{\nu} \bar{\sigma}^{\nu} \tag{3}
\end{equation*}
$$

for infinitesimal parameters $\delta \phi_{k}$ and $\delta \nu_{k}$ where $\sigma^{\mu}=(1, \boldsymbol{\sigma})$ and $\bar{\sigma}^{\mu}=(1,-\boldsymbol{\sigma})$ are the fourdimensional Pauli matrices. Accustom yourself to the notation of the spinor calculus.

Exercise 3 Relation between the Lorentz group and SL(2, C)
The group $\operatorname{SL}(2, \mathbf{C})$ is the set of all complex 2×2 matrices A with $\operatorname{det} A=1$. Consider the following mappings of four-vectors x^{μ} onto 2×2 matrices,

$$
\begin{align*}
X^{\dot{a} b} & =x_{\mu} \sigma^{\mu, \dot{a b}}, \tag{4}\\
\bar{X}_{a \dot{b}} & =x_{\mu} \bar{\sigma}_{a \dot{b}}^{\mu}, \tag{5}
\end{align*}
$$

where $\sigma^{\mu, \dot{a} b}=\left(\mathbf{1}^{\dot{a} b}, \boldsymbol{\sigma}^{\dot{a} b}\right)$ and $\bar{\sigma}_{a \dot{b}}^{\mu}=\left(\mathbf{1}_{a \dot{b}},-\boldsymbol{\sigma}_{a \dot{b}}\right)$ are the entries of the four-dimensional Pauli-matrices which fulfill the relation $\operatorname{tr}\left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)=\sigma^{\mu, \dot{a} b} \bar{\sigma}_{b \dot{a}}^{\nu}=2 g^{\mu \nu}$.
a) Show that the relations $x^{\mu}=\frac{1}{2} \operatorname{tr}\left(X \bar{\sigma}^{\mu}\right)=\frac{1}{2} \operatorname{tr}\left(\bar{X} \sigma^{\mu}\right)$ are valid and thus the inverse of the mapping given above.
b) What is the interpretation of $\operatorname{det}(X)$ and $\operatorname{det}(\bar{X})$?
c) Given an arbitrary matrix $A \in \mathrm{SL}(2, \mathbf{C})$. Show that the mappings $X \mapsto X^{\prime}=A X A^{\dagger}$ and $\bar{X} \mapsto \bar{X}^{\prime}=A \bar{X} A^{\dagger}$ define Lorentz transformations $x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$.
(Hint: Examine the determinants.)
d) What is the relation between the matrix A from c) and the matrices Λ_{R} and Λ_{L} of the fundamental representation?
(Hint: Make use of the relations $\Lambda_{\mathrm{R}}^{\dagger} \sigma^{\mu} \Lambda_{\mathrm{R}}=\Lambda^{\mu}{ }_{\nu} \sigma^{\nu}$ and $\Lambda_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \Lambda_{\mathrm{L}}=\Lambda^{\mu}{ }_{\nu} \bar{\sigma}^{\nu}$.)
e) In c), you have shown that each $A \in \operatorname{SL}(2, \mathbf{C})$ defines a $\Lambda \in L_{+}^{\uparrow}$. Assuming that each $\Lambda \in L_{+}^{\uparrow}$ can be represented by an element of $\operatorname{SL}(2, \mathbf{C})$, show that exactly two elements of $\operatorname{SL}(2, \mathbf{C})$ correspond to a given Λ.
Group-theoretically this fact is expressed by the isomorphism $L_{+}^{\uparrow} \cong \operatorname{SL}(2, \mathbf{C}) / \mathbf{Z}_{2}$. Taking into account that the group $\mathrm{SL}(2, \mathbf{C})$ is simply connected, this means that $\mathrm{SL}(2, \mathbf{C})$ is the universal covering group of L_{+}^{\uparrow}.

