Exercises to Relativistic Quantum Field Theory Sheet 9

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, SS14

Exercise 9.1 Relations for Dirac matrices (2 points)

The Dirac matrices γ_{μ} are defined by

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}, \quad \gamma_{0} \gamma^{\mu} \gamma_{0}=\left(\gamma^{\mu}\right)^{\dagger}, \quad \gamma_{5}=\gamma^{5}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=-\frac{i}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}
$$

a) Show the relations

$$
\left\{\gamma^{\mu}, \gamma^{5}\right\}=0, \quad\left(\gamma_{5}\right)^{\dagger}=\gamma_{5}
$$

Calculate the explicit form of γ_{5} in the chiral representation of the Dirac matrices. What is the meaning of the matrices $\omega_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5}\right)$?
b) Derive the following traces:

$$
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right], \quad \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right]
$$

c) Prove the following trace relations:

$$
\begin{aligned}
& \operatorname{Tr}\left[\gamma_{5}\right]=\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right]=0, \quad \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{5}\right]=-4 i \epsilon^{\mu \nu \rho \sigma}, \\
& \operatorname{Tr}\left[\gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}}\right]=\operatorname{Tr}\left[\gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}} \gamma_{5}\right]=0, \quad n=0,1, \ldots
\end{aligned}
$$

d) Reduce the number of Dirac matrices in the following contractions:

$$
\gamma^{\alpha} \gamma_{\alpha}, \quad \gamma^{\alpha} \gamma^{\mu} \gamma_{\alpha}, \quad \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}
$$

Exercise 9.2 Lorentz covariants from Dirac spinors (1.5 points)
a) Prove the following relations:

$$
S(\Lambda)^{-1} \gamma^{\mu} S(\Lambda)=\Lambda_{\nu}^{\mu} \gamma^{\nu}, \quad S(\Lambda)^{\dagger} \gamma_{0}=\gamma_{0} S(\Lambda)^{-1}
$$

b) Using a), show that the quantities

$$
\begin{aligned}
s(x) & =\bar{\psi}(x) \psi(x)=\text { scalar } \\
p(x) & =\bar{\psi}(x) \gamma_{5} \psi(x)=\text { pseudo-scalar }, \\
j^{\mu}(x) & =\bar{\psi}(x) \gamma^{\mu} \psi(x)=\text { vector }, \\
j_{5}^{\mu}(x) & =\bar{\psi}(x) \gamma^{\mu} \gamma_{5} \psi(x)=\text { pseudo-vector }, \\
T^{\mu \nu}(x) & =\bar{\psi}(x) \gamma^{\mu} \gamma^{\nu} \psi(x)=\text { rank- } 2 \text { tensor }, \\
T_{5}^{\mu \nu}(x) & =\bar{\psi}(x) \gamma^{\mu} \gamma^{\nu} \gamma_{5} \psi(x)=\text { rank-2 pseudo-tensor. }
\end{aligned}
$$

transform under proper, orthochronous Lorentz transformations $x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}$ as indicated, if the Dirac spinor $\psi(x)$ transforms according to $\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$.
c) Determine the transformation properties of the quantities defined in b) under the parity operation P, where

$$
x^{\prime \mu}=\left(x^{0},-\mathbf{x}\right)=\left(\Lambda_{P}\right)_{\nu}^{\mu} x^{\nu}, \quad S\left(\Lambda_{P}\right)=\gamma_{0}=\left(\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right)
$$

in the chiral representation of the Dirac matrices.

