Exercises to Relativistic Quantum Field Theory Sheet 8

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, SS14

Exercise 8.1 Fundamental representations of the Lorentz group (1 point)

The general form of Lorentz transformations in the two fundamental representations of the Lorentz group is given by

$$
\Lambda_{\mathrm{R}}=\exp \left\{-\frac{\mathrm{i}}{2}\left(\phi_{k}+i \nu_{k}\right) \sigma^{k}\right\}, \quad \Lambda_{\mathrm{L}}=\exp \left\{-\frac{\mathrm{i}}{2}\left(\phi_{k}-i \nu_{k}\right) \sigma^{k}\right\}
$$

with the real group parameters ϕ_{k}, ν_{k} and the Pauli matrices σ^{k}.
a) Show that $\Lambda_{\mathrm{R}}^{\dagger}=\Lambda_{\mathrm{L}}^{-1}$ and $\Lambda_{\mathrm{L}}^{\dagger}=\Lambda_{\mathrm{R}}^{-1}$.
b) Show that $\operatorname{det}\left(\Lambda_{\mathrm{R}}\right)=\operatorname{det}\left(\Lambda_{\mathrm{L}}\right)=1$ using $\operatorname{det}(\exp \{A\})=\exp \{\operatorname{Tr}(A)\}$ for a matrix A.
c) Which transformations are characterized by $\Lambda_{R / L}^{\dagger}=\Lambda_{R / L}$, which by $\Lambda_{R / L}^{\dagger}=\Lambda_{R / L}^{-1}$?
d) Derive Λ_{R} and Λ_{L} for a pure boost in the direction $\mathbf{e}=\left(\begin{array}{c}\cos \varphi \sin \theta \\ \sin \varphi \sin \theta \\ \cos \theta\end{array}\right)$ with $\boldsymbol{\nu}=\nu \mathbf{e}$, $\phi=0$ and for a pure rotation about the axis \mathbf{e} with $\phi=\phi \mathbf{e}, \boldsymbol{\nu}=0$.

Exercise 8.2 Relation between the Lorentz group and $S L(2, \mathbf{C}) \quad$ (1 point)

The group $S L(2, \mathbf{C})$ consists of all complex 2×2 matrices A with $\operatorname{det}(A)=1$. Assign to each 4 -vector x^{μ} a 2×2 matrix $X=x_{\mu} \sigma^{\mu}$ and $\bar{X}=x_{\mu} \bar{\sigma}^{\mu}$ where $\sigma^{\mu}=\left(\mathbf{1}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbf{1},-\sigma^{1},-\sigma^{2},-\sigma^{3}\right)$. The matrices σ^{μ} and $\bar{\sigma}^{\mu}$ satisfy the relation $\operatorname{Tr}\left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)=2 g^{\mu \nu}$.
a) Show that the inverse of the above assignment is given by

$$
\begin{equation*}
x^{\mu}=\frac{1}{2} \operatorname{Tr}\left(X \bar{\sigma}^{\mu}\right)=\frac{1}{2} \operatorname{Tr}\left(\bar{X} \sigma^{\mu}\right) \tag{1}
\end{equation*}
$$

b) What is the meaning of $\operatorname{det}(X)$ and $\operatorname{det}(\bar{X})$?
c) For two arbitrary matrices A, B of $S L(2, \mathbf{C})$, show that the mappings $X \rightarrow X^{\prime}=$ $A X A^{\dagger}$ and $\bar{X} \rightarrow \bar{X}^{\prime}=B \bar{X} B^{\dagger}$ define Lorentz transformations $x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$.
(Hint: Consider the determinants.)
d) How are the matrices A, B of Exercise 8.2 c) and the matrices Λ_{L} and Λ_{R} of the fundamental representations of Exercise 8.1 related?
(Hint: $\Lambda_{\mathrm{R}}^{\dagger} \sigma^{\mu} \Lambda_{\mathrm{R}}=\Lambda^{\mu}{ }_{\nu} \sigma^{\nu}, \Lambda_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \Lambda_{\mathrm{L}}=\Lambda^{\mu}{ }_{\nu} \bar{\sigma}^{\nu}$.)

Exercise 8.3 Connection between $\Lambda_{\mathrm{R}}, \Lambda_{\mathrm{L}}$, and $\Lambda^{\mu}{ }_{\nu} \quad$ (1 point)
The general matrix representing a Lorentz transformation of a four-vector is given by

$$
\Lambda_{\nu}^{\mu}=\exp \left\{-\frac{i}{2} \omega_{\alpha \beta} M^{\alpha \beta}\right\}_{\nu}^{\mu}, \quad\left(M^{\alpha \beta}\right)^{\mu}{ }_{\nu}=i\left(g^{\alpha \mu} \delta_{\nu}^{\beta}-g^{\beta \mu} \delta_{\nu}^{\alpha}\right)
$$

with the antisymmetric parameters $\omega_{j k}=\epsilon_{j k l} \phi_{l}$ and $\omega_{0 j}=-\omega_{j 0}=\nu_{j}$. The connection between $\Lambda_{\mathrm{R}}, \Lambda_{\mathrm{L}}$ (see Exercise 8.1) and $\Lambda^{\mu}{ }_{\nu}$ is

$$
\Lambda_{\mathrm{R}}^{\dagger} \sigma^{\mu} \Lambda_{\mathrm{R}}=\Lambda_{\nu}^{\mu} \sigma^{\nu}, \quad \Lambda_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \Lambda_{\mathrm{L}}=\Lambda_{\nu}^{\mu} \bar{\sigma}^{\nu},
$$

where $\sigma^{\mu}=\left(\mathbf{1}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbf{1},-\sigma^{1},-\sigma^{2},-\sigma^{3}\right)$. Verify these relations for infinitesimal transformations with the parameters $\delta \phi_{k}, \delta \nu_{k}$.

