Exercises to Relativistic Quantum Field Theory Sheet 7

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, SS14

Exercise 7.1 2-particle phase space (1 point)
We consider two particles with masses $m_{1,2}$ and four-momenta $p_{1,2}\left(p_{1,2}^{2}=m_{1,2}^{2}\right)$. The total momentum is, thus, given by $k=p_{1}+p_{2}$. The integral over the 2 -particle phase space is defined as

$$
\int \mathrm{d} \Phi_{2}=\left.\int \frac{\mathrm{d}^{3} p_{1}}{(2 \pi)^{3} 2 p_{1}^{0}} \int \frac{\mathrm{~d}^{3} p_{2}}{(2 \pi)^{3} 2 p_{2}^{0}}(2 \pi)^{4} \delta^{(4)}\left(k-p_{1}-p_{2}\right)\right|_{p_{1,2}^{0}=\sqrt{m_{1,2}^{2}+\mathbf{p}_{1,2}^{2}}}
$$

a) Consider the decay of a particle of mass M and momentum $k\left(k^{2}=M^{2}\right)$ into two particles with momenta $p_{1,2}$. Show that the phase-space integral can be evaluated in the centre-of-mass frame as follows,

$$
\int \mathrm{d} \Phi_{2}=\frac{1}{(2 \pi)^{2}} \frac{\sqrt{\lambda\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{8 M^{2}} \theta\left(M-m_{1}-m_{2}\right) \int \mathrm{d} \Omega_{1}
$$

where Ω_{1} is the solid angle of particle 1 , and $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z$.
b) What is the phase-space integral of a $2 \rightarrow 2$ particle scattering reaction with incoming momenta $k_{1,2}$. What is the counterpart of M in this reaction?

Exercise 7.2 $\quad S$-operator for two interacting scalar fields (2 points)

Consider a theory of a complex scalar field ϕ (particle ϕ and antiparticle $\bar{\phi}$) and a real scalar field Φ (particle Φ) with the Lagrangian density given by

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)\left(\partial^{\mu} \Phi\right)-\frac{1}{2} M^{2} \Phi^{2}+\left(\partial_{\mu} \phi^{\dagger}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi+\lambda \phi^{\dagger} \phi \Phi .
$$

a) Expand the S-operator,

$$
S=T \exp \left(\mathrm{i} \int \mathrm{~d}^{4} x \mathcal{L}_{\mathrm{int}}(x)\right)
$$

up to order λ^{2} and use Wick's theorem to express the result in terms of propagators and normal-ordered products of fields. Note that inside $\mathcal{L}_{\text {int }}$ all products of field operators are normal ordered. Represent the result diagrammatically using the following notation:

- External lines:
- Internal lines:

$$
\stackrel{\Gamma\left(x_{1}\right) \phi^{\dagger}}{ }\left(x_{2}\right)=x_{1}^{\bullet \longleftarrow} x_{2}, \quad \begin{array}{|c}
\\
\Phi\left(x_{1}\right) \Phi \\
\left(x_{2}\right)
\end{array}=x_{1}^{\bullet \cdots \cdots \cdot \bullet} x_{2}
$$

- Vertices:

The λ^{n}-contribution to the S-matrix is obtained by inserting the sum of all terms with n vertices into the integral

$$
\frac{1}{n!} \int \mathrm{d}^{4} x_{1} \ldots d^{4} x_{n}: \ldots:
$$

b) Calculate the S-matrix element $S_{f i}=\langle f| S|i\rangle$ in lowest order between the initial state $|i\rangle=a^{(\Phi)}(k)^{\dagger}|0\rangle$ and the final state $|f\rangle=a^{(\phi)}\left(p_{1}\right)^{\dagger} b^{(\phi)}\left(p_{2}\right)^{\dagger}|0\rangle$, where $a^{(\Phi)}(q)$, $a^{(\phi)}(q), b^{(\phi)}(q)$ are the annihilation operators of the particles Φ, ϕ, and $\bar{\phi}$.
c) Assuming $M>2 m$, calculate the lowest-order decay width

$$
\Gamma_{\Phi \rightarrow \phi \bar{\phi}}=\frac{1}{2 M} \int \mathrm{~d} \Phi_{2}\left|\mathcal{M}_{f i}\right|^{2}
$$

for the decay $\Phi \rightarrow \phi \bar{\phi}$, where Φ_{2} is the 2-particle phase space of the final state (see Exercise 7.1) and the transition matrix element $\mathcal{M}_{f i}$ is connected to $S_{f i}$ via

$$
S_{f i}=(2 \pi)^{4} \delta\left(k-p_{1}-p_{2}\right) \text { i } \mathcal{M}_{f i} .
$$

