Exercises to Relativistic Quantum Field Theory

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg,

Sheet 11
SS14

Exercise 11.1 Pair production of scalars in the Yukawa model (2 points)
Consider the pair production of two identical, neutral scalar particles S that are produced via fermion-antifermion annihilation

$$
f\left(p_{1}\right)+\bar{f}\left(p_{2}\right) \rightarrow S\left(k_{1}\right)+S\left(k_{2}\right),
$$

where the momentum assignment of the respective particles are indicated in brackets. In the centre-of-mass system the momenta are given by

$$
p_{1,2}^{\mu}=E\left(1,0,0, \pm \beta_{f}\right), \quad k_{1,2}^{\mu}=E\left(1, \pm \beta_{S} \sin \theta \cos \varphi, \pm \beta_{S} \sin \theta \sin \varphi, \pm \beta_{S} \cos \theta\right)
$$

where E is the beam energy and $\beta_{f}=\sqrt{1-m_{f}^{2} / E^{2}}, \beta_{S}=\sqrt{1-m_{S}^{2} / E^{2}}$ are the velocities of the respective particles of masses m_{f} and m_{S}. The Dirac fermion f (field ψ) and the scalar S (field ϕ) interact via a pure Yukawa interaction described by the Lagrangian

$$
\mathcal{L}_{I}=-y: \bar{\psi} \psi \phi:,
$$

with y denoting a (dimensionless) coupling constant.
a) Draw all relevant Feynman diagrams for calculating the transition matrix element \mathcal{M} in lowest perturbative order and write down the explicit expression for \mathcal{M}. How does \mathcal{M} behave under the interchange $k_{1} \leftrightarrow k_{2}$ and why?
b) Calculate the spin-averaged squared transition matrix element $\overline{|\mathcal{M}|^{2}}=\frac{1}{4} \sum_{\text {Pol. }}|\mathcal{M}|^{2}$ and show that

$$
\overline{|\mathcal{M}|^{2}}=\frac{y^{4}}{2}\left[\frac{1}{t-m_{f}^{2}}-\frac{1}{u-m_{f}^{2}}\right]^{2}\left[u t+s m_{f}^{2}-\left(m_{f}^{2}+m_{S}^{2}\right)^{2}\right] .
$$

c) Derive both the differential cross section $\mathrm{d} \sigma / \mathrm{d} \cos \theta$ and the total cross section σ.
d) Draw all Feynman graphs for \mathcal{M} of order y^{4}, i.e. in 1-loop approximation, which contribute to this process.

Exercise 11.2 Free photon field in radiation gauge (1 point)
The field operator of the free photon field in radiation gauge $\left(A^{0}=0, \nabla \mathbf{A}=0\right)$ is given by

$$
A^{\mu}(x)=\left.\int \mathrm{d} \tilde{k} \sum_{\lambda= \pm}\left[\mathrm{e}^{-\mathrm{i} k x} \varepsilon_{\lambda}^{\mu}(k) a_{\lambda}(\mathbf{k})+\mathrm{e}^{\mathrm{+} \mathrm{i} k x} \varepsilon_{\lambda}^{\mu}(k)^{*} a_{\lambda}^{\dagger}(\mathbf{k})\right]\right|_{k_{0}=|\mathbf{k}|}
$$

with the creation and annihilation operators $a_{\lambda}^{\dagger}(\mathbf{k})$ and $a_{\lambda}(\mathbf{k})$, which are normalized as in the lecture. The polarization vectors $\varepsilon_{ \pm}^{\mu}(k)$ are defined as

$$
\varepsilon_{ \pm}^{\mu}(\hat{k})=\frac{1}{\sqrt{2}}(0,1, \pm \mathrm{i}, 0) \quad \text { for } \quad \hat{k}^{\mu}=\hat{k}_{0}(1,0,0,1)
$$

and analogously for other directions.
a) Verify the polarisation sum

$$
\sum_{\lambda= \pm} \varepsilon_{\lambda}^{m}(k) \varepsilon_{\lambda}^{n}(k)^{*}=\delta^{m n}-\frac{k^{m} k^{n}}{\mathbf{k}^{2}} \quad \text { for } \quad m, n=1,2,3
$$

b) The field variable that is canonical conjugate to A^{m} is $\Pi^{m}=F^{m 0}$. Calculate the canonical equal-time commutators, i.e. $\left[A^{m}(t, \mathbf{x}), A^{n}(t, \mathbf{y})\right],\left[A^{m}(t, \mathbf{x}), \Pi^{n}(t, \mathbf{y})\right]$, $\left[\Pi^{m}(t, \mathbf{x}), \Pi^{n}(t, \mathbf{y})\right]$. Make use of the "transverse δ-function when appropriate,

$$
\delta_{\mathrm{tr}}^{m n}(\mathbf{x})=\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3}}\left(\delta^{m n}-\frac{k^{m} k^{n}}{\mathbf{k}^{2}}\right) \mathrm{e}^{-\mathrm{i} \mathbf{k} \mathbf{x}}, \quad m, n=1,2,3 .
$$

Exercise 11.3 Massive gauge-boson propagator in covariant gauge
The propagator $D_{\xi}^{\mu \nu}(x)$ of a massive vector boson of masss M in covariant gauge is defined by

$$
\left[g_{\mu \nu}\left(\square+M^{2}\right)+\left(\frac{1}{\xi}-1\right) \partial_{\mu} \partial_{\nu}\right] D_{\xi}^{\nu \rho}(x)=\delta_{\mu}^{\rho} \delta(x)
$$

Calculate the Fourier transform $\tilde{D}_{\xi}^{\mu \nu}(q)$ of the propagator upon inserting

$$
D_{\xi}^{\mu \nu}(x)=\int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \exp \{-\mathrm{i} q x\} \tilde{D}_{\xi}^{\mu \nu}(q)
$$

Here it is useful to employ the decomposition of $\tilde{D}_{\xi}^{\mu \nu}(q)$ into its transverse part $\tilde{D}_{T, \xi}(q)$ and its longitudinal part $\tilde{D}_{L, \xi}(q)$, where

$$
\tilde{D}_{\xi}^{\mu \nu}(q)=\tilde{D}_{T, \xi}(q)\left(g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\tilde{D}_{L, \xi}(q) \frac{q^{\mu} q^{\nu}}{q^{2}}
$$

Determine the limit $\xi \rightarrow \infty$ of $\tilde{D}_{\xi}^{\mu \nu}(q)$.

