E	Exercises	to Relati	ivistic	Quantum	n Field Theory	Sheet	10
	Prof. S.	Dittmaier,	Dr. H.	Rzehak,	Universität Freiburg,	SS14	

Exercise 10.1 Solutions of the free Dirac equation (1 point)

Consider the solutions of the free Dirac equation in momentum space, $u_{\sigma}(k)$ and $v_{\sigma}(k)$ with $\sigma = 1, 2$, which are normalized according to

 $\overline{u}_{\sigma}(k)u_{\sigma'}(k) = -\overline{v}_{\sigma}(k)v_{\sigma'}(k) = 2m\,\delta_{\sigma\sigma'}, \qquad \overline{u}_{\sigma}(k)v_{\sigma'}(k) = \overline{v}_{\sigma}(k)u_{\sigma'}(k) = 0.$

a) Prove the completeness relation

$$\sum_{\sigma=1,2} [u_{\sigma}(k) \otimes \overline{u}_{\sigma}(k) - v_{\sigma}(k) \otimes \overline{v}_{\sigma}(k)] = 2m \mathbf{1}$$

b) Express the matrices

$$\Lambda_{+}(k) = \frac{1}{2m} \sum_{\sigma=1,2} u_{\sigma}(k) \otimes \overline{u}_{\sigma}(k), \qquad \Lambda_{-}(k) = -\frac{1}{2m} \sum_{\sigma=1,2} v_{\sigma}(k) \otimes \overline{v}_{\sigma}(k)$$

in terms of m, k and the unit matrix **1**. Argue that $\Lambda_{\pm}(k)$ are orthogonal projectors onto the subspaces of positive and negative energies, respectively.

c) Show that

$$\overline{u}_{\sigma}(k)\gamma_{\mu}u_{\sigma'}(k) = \overline{v}_{\sigma}(k)\gamma_{\mu}v_{\sigma'}(k) = 2k_{\mu}\,\delta_{\sigma\sigma'}$$

upon evaluating $\overline{u}_{\sigma}(k) \{\gamma_{\mu}, k\} u_{\sigma'}(k)$ in two different ways.

d) Similarly show that

$$v_{\sigma}(k)^{\dagger}u_{\sigma'}(k) = u_{\sigma}(k)^{\dagger}v_{\sigma'}(k) = 0$$

upon using $\gamma_0 \not k = \not k \gamma_0$, where $\ddot{k}^{\mu} = (k_0, -\mathbf{k})$ for $k^{\mu} = (k_0, \mathbf{k})$.

Exercise 10.2 *Polarization sums for Dirac spinors* (0.5 points)

As in Exercise 10.1, the quantities $u_{\sigma}(p)$ and $v_{\tau}(P)$ with $\sigma, \tau = 1, 2$ denote the solutions of the free Dirac equation in momentum space, where $p^2 = m^2$, $P^2 = M^2$. Show that the following polarization sum $\sum_{\sigma,\tau}$ can be written as a trace in Dirac space according to

$$\sum_{\sigma,\tau} \left[\bar{u}_{\sigma}(p) \Gamma v_{\tau}(P) \right]^* \left[\bar{u}_{\sigma}(p) \Gamma v_{\tau}(P) \right] = \operatorname{Tr} \left[(\not P - M) \tilde{\Gamma}(\not p + m) \Gamma \right].$$

Here Γ is an arbitrary 4×4 matrix and $\tilde{\Gamma} = \gamma_0 \Gamma^{\dagger} \gamma_0$.

Please turn over !

Exercise 10.3 Field operator of the free Dirac fermion (1 point)

Consider the following plane-wave expansion of the field operator $\psi(x)$ of the free Dirac fermion,

$$\psi(x) = \int \mathrm{d}\tilde{p} \sum_{\sigma} \left[\mathrm{e}^{-\mathrm{i}px} u_{\sigma}(p) a_{\sigma}(\mathbf{p}) + \mathrm{e}^{+\mathrm{i}px} v_{\sigma}(p) b_{\sigma}^{\dagger}(\mathbf{p}) \right],$$

where $a_{\sigma}^{(\dagger)}(\mathbf{p})$ and $b_{\sigma}^{(\dagger)}(\mathbf{p})$ denote the annihilation (creation) operators of the particle and antiparticle states, respectively, which obey the anticommutation relations

 $\{a_{\sigma}(\mathbf{p}), a_{\tau}^{\dagger}(\mathbf{k})\} = \{b_{\sigma}(\mathbf{p}), b_{\tau}^{\dagger}(\mathbf{k})\} = 2p_0(2\pi)^3 \delta_{\sigma\tau} \delta(\mathbf{p} - \mathbf{k}), \qquad \{a_{\sigma}(\mathbf{p}), a_{\tau}(\mathbf{k})\} = \dots = 0.$

a) Calculate the operator

$$\hat{Q} = Qe \int \mathrm{d}^3 x : \overline{\psi}(x)\gamma_0\psi(x) :$$

of electric charge in momentum space.

b) Derive the commutators $[\hat{Q}, a_{\sigma}^{(\dagger)}(\mathbf{p})]$ and $[\hat{Q}, b_{\sigma}^{(\dagger)}(\mathbf{p})]$ and interpret the result.

Exercise 10.4 Free Dirac propagator (1 bonus point)

The free Dirac propagator is explicitly given by

a) Upon carrying out the k_0 -integration, show that $S_F(x, y)$ can be written as

$$S_F(x,y) = -i\theta(x_0 - y_0) \int \frac{\mathrm{d}^3 k}{(2\pi)^3 2k_0} \,\mathrm{e}^{-ik(x-y)}(m+k) \Big|_{k_0 = \sqrt{m^2 + k^2}} \\ -i\theta(y_0 - x_0) \int \frac{\mathrm{d}^3 k}{(2\pi)^3 2k_0} \,\mathrm{e}^{+ik(x-y)}(m-k) \Big|_{k_0 = \sqrt{m^2 + k^2}}$$

b) We denote the solutions of the free Dirac equation with positive and negative energies $\psi^{(+)}(x)$ and $\psi^{(-)}(x)$, respectively. Show that

$$\theta(x_0 - y_0)\psi^{(+)}(x) = i \int d^3y \, S_F(x, y)\gamma_0\psi^{(+)}(y),$$

$$\theta(y_0 - x_0)\psi^{(-)}(x) = -i \int d^3y \, S_F(x, y)\gamma_0\psi^{(-)}(y).$$