Exercises to Relativistic Quantum Field Theory Sheet 10

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, SS14

Exercise 10.1 Solutions of the free Dirac equation (1 point)
Consider the solutions of the free Dirac equation in momentum space, $u_{\sigma}(k)$ and $v_{\sigma}(k)$ with $\sigma=1,2$, which are normalized according to

$$
\bar{u}_{\sigma}(k) u_{\sigma^{\prime}}(k)=-\bar{v}_{\sigma}(k) v_{\sigma^{\prime}}(k)=2 m \delta_{\sigma \sigma^{\prime}}, \quad \bar{u}_{\sigma}(k) v_{\sigma^{\prime}}(k)=\bar{v}_{\sigma}(k) u_{\sigma^{\prime}}(k)=0 .
$$

a) Prove the completeness relation

$$
\sum_{\sigma=1,2}\left[u_{\sigma}(k) \otimes \bar{u}_{\sigma}(k)-v_{\sigma}(k) \otimes \bar{v}_{\sigma}(k)\right]=2 m \mathbf{1}
$$

b) Express the matrices

$$
\Lambda_{+}(k)=\frac{1}{2 m} \sum_{\sigma=1,2} u_{\sigma}(k) \otimes \bar{u}_{\sigma}(k), \quad \Lambda_{-}(k)=-\frac{1}{2 m} \sum_{\sigma=1,2} v_{\sigma}(k) \otimes \bar{v}_{\sigma}(k)
$$

in terms of $m, \not / k$ and the unit matrix 1. Argue that $\Lambda_{ \pm}(k)$ are orthogonal projectors onto the subspaces of positive and negative energies, respectively.
c) Show that

$$
\bar{u}_{\sigma}(k) \gamma_{\mu} u_{\sigma^{\prime}}(k)=\bar{v}_{\sigma}(k) \gamma_{\mu} v_{\sigma^{\prime}}(k)=2 k_{\mu} \delta_{\sigma \sigma^{\prime}}
$$

upon evaluating $\bar{u}_{\sigma}(k)\left\{\gamma_{\mu}, \not k\right\} u_{\sigma^{\prime}}(k)$ in two different ways.
d) Similarly show that

$$
v_{\sigma}(\tilde{k})^{\dagger} u_{\sigma^{\prime}}(k)=u_{\sigma}(\tilde{k})^{\dagger} v_{\sigma^{\prime}}(k)=0
$$

upon using $\gamma_{0} \nLeftarrow=\tilde{k} k \gamma_{0}$, where $\tilde{k}^{\mu}=\left(k_{0},-\mathbf{k}\right)$ for $k^{\mu}=\left(k_{0}, \mathbf{k}\right)$.

Exercise 10.2 Polarization sums for Dirac spinors (0.5 points)

As in Exercise 10.1, the quantities $u_{\sigma}(p)$ and $v_{\tau}(P)$ with $\sigma, \tau=1,2$ denote the solutions of the free Dirac equation in momentum space, where $p^{2}=m^{2}, P^{2}=M^{2}$. Show that the following polarization sum $\sum_{\sigma, \tau}$ can be written as a trace in Dirac space according to

$$
\sum_{\sigma, \tau}\left[\bar{u}_{\sigma}(p) \Gamma v_{\tau}(P)\right]^{*}\left[\bar{u}_{\sigma}(p) \Gamma v_{\tau}(P)\right]=\operatorname{Tr}[(P-M) \tilde{\Gamma}(\not p+m) \Gamma]
$$

Here Γ is an arbitrary 4×4 matrix and $\tilde{\Gamma}=\gamma_{0} \Gamma^{\dagger} \gamma_{0}$.

Exercise 10.3 Field operator of the free Dirac fermion (1 point)

Consider the following plane-wave expansion of the field operator $\psi(x)$ of the free Dirac fermion,

$$
\psi(x)=\int \mathrm{d} \tilde{p} \sum_{\sigma}\left[\mathrm{e}^{-\mathrm{i} p x} u_{\sigma}(p) a_{\sigma}(\mathbf{p})+\mathrm{e}^{+\mathrm{i} p x} v_{\sigma}(p) b_{\sigma}^{\dagger}(\mathbf{p})\right]
$$

where $a_{\sigma}^{(\dagger)}(\mathbf{p})$ and $b_{\sigma}^{(\dagger)}(\mathbf{p})$ denote the annihilation (creation) operators of the particle and antiparticle states, respectively, which obey the anticommutation relations

$$
\left\{a_{\sigma}(\mathbf{p}), a_{\tau}^{\dagger}(\mathbf{k})\right\}=\left\{b_{\sigma}(\mathbf{p}), b_{\tau}^{\dagger}(\mathbf{k})\right\}=2 p_{0}(2 \pi)^{3} \delta_{\sigma \tau} \delta(\mathbf{p}-\mathbf{k}), \quad\left\{a_{\sigma}(\mathbf{p}), a_{\tau}(\mathbf{k})\right\}=\cdots=0
$$

a) Calculate the operator

$$
\hat{Q}=Q e \int \mathrm{~d}^{3} x: \bar{\psi}(x) \gamma_{0} \psi(x):
$$

of electric charge in momentum space.
b) Derive the commutators $\left[\hat{Q}, a_{\sigma}^{(\dagger)}(\mathbf{p})\right]$ and $\left[\hat{Q}, b_{\sigma}^{(\dagger)}(\mathbf{p})\right]$ and interpret the result.

Exercise 10.4 Free Dirac propagator (1 bonus point)

The free Dirac propagator is explicitly given by

$$
S_{F}(x, y)=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \mathrm{e}^{-\mathrm{i} k(x-y)} \frac{\not k+m}{k^{2}-m^{2}+\mathrm{i} \epsilon} .
$$

a) Upon carrying out the k_{0}-integration, show that $S_{F}(x, y)$ can be written as

$$
\begin{aligned}
S_{F}(x, y)= & -\left.\mathrm{i} \theta\left(x_{0}-y_{0}\right) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} 2 k_{0}} \mathrm{e}^{-\mathrm{i} k(x-y)}(m+\not /)\right|_{k_{0}=\sqrt{m^{2}+\mathbf{k}^{2}}} \\
& -\left.\mathrm{i} \theta\left(y_{0}-x_{0}\right) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} 2 k_{0}} \mathrm{e}^{\mathrm{i} k(x-y)}(m-\not /)\right|_{k_{0}=\sqrt{m^{2}+\mathbf{k}^{2}}}
\end{aligned}
$$

b) We denote the solutions of the free Dirac equation with positive and negative energies $\psi^{(+)}(x)$ and $\psi^{(-)}(x)$, respectively. Show that

$$
\begin{aligned}
\theta\left(x_{0}-y_{0}\right) \psi^{(+)}(x) & =\mathrm{i} \int \mathrm{~d}^{3} y S_{F}(x, y) \gamma_{0} \psi^{(+)}(y) \\
\theta\left(y_{0}-x_{0}\right) \psi^{(-)}(x) & =-\mathrm{i} \int \mathrm{~d}^{3} y S_{F}(x, y) \gamma_{0} \psi^{(-)}(y)
\end{aligned}
$$

