Exercises to Relativistic Quantum Field Theory Sheet 12

Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, SS14

Exercise 12.1 "Massive photon" in the Abelian Higgs model
(1.5 points)

Consider a model with a complex scalar field $\phi(x)$ whose dynamics is governed by the Lagrangian

$$
\mathcal{L}_{\phi}(\phi, \partial \phi)=|\partial \phi|^{2}-V\left(\phi^{*} \phi\right),
$$

where V represents a general potential for the scalar self-interactions. Moreover, the quanta of ϕ carry the electric charge q, so that the full Lagrangian for ϕ including its electromagnetic interaction reads

$$
\mathcal{L}=\mathcal{L}_{\phi}(\phi, D \phi)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

with the covariant derivative $D_{\mu}=\partial_{\mu}+i q A_{\mu}$ and the field-strength tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-$ $\partial_{\nu} A_{\mu}$ of the elmg. field $A^{\mu}(x)$.
a) The potential $V(\phi)$ is assumed to have a minimum for $|\phi(x)| \equiv v / \sqrt{2}$, so that this condition characterizes the ground state of the system ($=$ field configuration of lowest energy). This suggests the following parametrization of ϕ :

$$
\phi(x)=\frac{1}{\sqrt{2}}(v+h(x)) \exp \{i \chi(x) / v\}
$$

where $h(x)$ and $\chi(x)$ are real fields. Express \mathcal{L} in terms of $h(x), \chi(x)$, and $A^{\mu}(x)$.
b) Show that the model respects the gauge symmetry $\phi(x) \rightarrow \phi^{\prime}(x)=\exp \{-i q \omega(x)\} \phi(x)$, $A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x)=A_{\mu}(x)+\partial_{\mu} \omega(x)$ and argue that $\chi(x)$ is an unphysical field, i.e. that it can be consistently set to zero.
c) From \mathcal{L} with $\chi=0$, read off the part $\mathcal{L}_{A A, 0}$ that is responsible for the free motion of A. Derive the Euler-Lagrange equation from $\mathcal{L}_{A A, 0}$ for the free motion of A and identify the mass M_{A} of the quanta of A upon comparing the equation of motion with Proca's equation.

Exercise 12.2 Elmg. scattering of two charged scalars (2 points)

Consider the reaction $S_{1}^{+}\left(p_{1}\right)+S_{2}^{+}\left(p_{2}\right) \rightarrow S_{1}^{+}\left(k_{1}\right)+S_{2}^{+}\left(k_{2}\right)$ in scalar quantum electrodynamics, i.e. the particles $S_{a}^{\mp}(a=1,2)$ are scalar particles with electric charges $\pm Q_{a} e$ and masses M_{a}. The corresponding Feynman rules are given on the back side. In Born approximation only the following diagram is relevant.

In the centre-of-mass frame the particle momenta read

$$
p_{1,2}^{\mu}=\left(E_{1,2}, 0,0, \pm p\right), \quad k_{1,2}^{\mu}=\left(E_{1,2}, \pm p \sin \theta \cos \varphi, \pm p \sin \theta \sin \varphi, \pm p \cos \theta\right)
$$

where $E_{1,2}$ are the energies of the incoming particles, and $p=\sqrt{E_{a}^{2}-M_{a}^{2}}$ the absolute value of their three-momenta.
a) Calculate the squared transition matrix element $|\mathcal{M}|^{2}$ as function of the Mandelstam variables $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-k_{1}\right)^{2}$, and $u=\left(p_{1}-k_{2}\right)^{2}$.
b) Calculate the differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|\mathcal{M}|^{2}
$$

Compare the non-relativistic limit $\left(m_{1}, m_{2} \gg p\right)$ of the result with the classical Rutherford cross section

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Rutherford }}=\frac{\alpha^{2} Q_{1}^{2} Q_{2}^{2}}{4 M^{2} v^{4} \sin ^{4}\left(\frac{\theta}{2}\right)},
$$

where in this limit $v=p / M$ and $M=M_{1} M_{2} /\left(M_{1}+M_{2}\right)$ denote the relative velocity and the reduced mass of the two-body system, respectively, and $\alpha=e^{2} /(4 \pi)$ is the fine-structure constant.
$\underline{\text { Feynman rules for the charged spin-0 particles } S_{a}^{ \pm} \text {: }}$

Vertices:

Propagators and external lines:

$\frac{i}{k^{2}-M_{a}^{2}}$
$\cdots-S_{a}^{+} \quad 1$

$\frac{-i}{k^{2}}\left(g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{k^{2}}(1-\xi)\right)$
$\cdots-S_{a}^{-} \quad 1$

The fields $S_{a}^{ \pm}$are defined to be incoming at the vertices. Outgoing fields $S_{a}^{ \pm}$correspond to incoming fields S_{a}^{\mp} with reversed momenta.

