Introduction to

Relativistic Quantum Field Theory

Prof. Dr. Stefan Dittmaier, Dr. Heidi Rzehak and Dr. Christian Schwinn

Albert-Ludwigs-Universitat Freiburg, Physikalisches Institut
D-79104 Freiburg, Germany

Summer-Semester 2014

Draft: October 1, 2014






Contents

1 Introduction

[ Quantization of Sealar Fieldd

|2 Recapitulation of Special Relativity

2.2 Lorentz group and Lorentz algebrd . ...

2.2.1 Classification of Lorentz transformationd . . . . . .. ... ... ..

I3_The Klein—Gordon equation

B Relativistic wave equatiod . . . . . ... ...

Mummm

11
11
11
12
14
15
15
15
17
19
19
20
22

25
25
26
28
29



CONTENTS



CONTENTS 5

8 Free Dirac fermiongd 99
&Lsghmmmmmmmwm ................... 99

........................ 102

......................... 102
8.2.2 Particle states and Fock spacd . . . . . . . . ... ... ... 103
8.2.3 Fermion propagaton . . . . . . . ... 107

8.2.4 Connection between spins and statisticd . . . . . . ... ... ... 108

19 _Interaction of scalar and fermion fields 109

9.1 Interacting fermion fieldd . . . . . . . .. .. ... ... ... ... ... 109
9.2 Yukawa theorvl . . . . . . .. e 111
0.2.1 Fevnman rules for the Soperatorl . . . .o 111

Mman.nﬂ&.ﬂm&ma&mﬂm&nﬂ ................. 113

anﬁzaﬁmm.b&ﬂmb_qmn_ﬁﬂ_dé 117

[10 Free vector-boson fields 119
119
121
122
122
122
127

M’Mg%mmﬁlﬂ 129
11.1 Electromagnetic interaction . . . . . . . . . . . ... 129

112

Ol Neo O
xpansi o ... L 132
11.2.2 Fevnman rules for S-matrix el S 134
[11.3 Important processes of (spinor) QED . .« « o o o o oo 137
[11.3.1 Elastic ep scattering . . . . . . . . oo 137




CONTENTS



Chapter 1

Introduction

Relativistic quantum field theory
= mathematical framework for description of elementary particles and their interactions

Guiding principles for the construction of field theory and of specific models of interactions:

e relativistic structure of space-time
e principles of quantum mechanics

e empirical knowledge collected in colliders experiments (mainly e*e™, e*p, pp, pp)

Some empirical facts on particle collisions:
e Particle creation and annihilation is possible in collisions.

e Relativistic kinematics (four-momentum conservation, conversion of mass and en-
ergy) is extremely well confirmed.

e The spectrum of observed particles is very rich, but only very few are really elemen-
tary:
— Leptons (spin 1/2): e, Ve, it, U, T, Vs
— Quarks (spin 1/2):  u, d, s, ¢, b, t
—_———

confined in hadrons, i.e. mesons (qq) or baryons (gqq)

Gauge bosons (spin 1):

force carriers of the strong and electroweak interactions
0 +
gluons (confined) 7 Z°, W= bosons

Higgs boson (spin 0):
lends mass to all elementary particles,
recently discovered (full identification ongoing)
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e Four fundamental interactions can be distinguished:

— electromagnetic interaction

} electroweak interaction
— weak interaction

— strong interaction

— gravity (not accessible by collider experiments)

Features of interaction models

(special) relativistic covariance

description of particles by states in Hilbert space o
relativistic quantum field theory

description of particle dynamics by local fields

field quantization

internal symmetries between particles not only global, } .
gauge theories
but also local

The role of symmetries

e space-time symmetry:
Lorentz/Poincaré covariant formulation of field theory
— mass and spin as fundamental properties of particles

e internal symmetries:
— unification of different particles into multiplets of symmetry groups
— further quantum numbers (charge, isospin, etc.)

— connection between symmetry and dynamics by gauging the symmetry:

introduction of gauge bosons

global symmetry » local symmetry

with own dynamics and
couplings to matter fields
The role of field quantization

e resolution of various inconsistencies in relativistic wave equations
(negative-energy solutions, probability interpretation, etc.)

e wave-particle dualism
e creation and annihilation of particles

e connection between spin and statistics
(bosons: spin = 0,1,...; fermions: spin = 1/2, 3/2, ...)
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Quantization of Scalar Fields






Chapter 2

Recapitulation of Special Relativity

2.1 Lorentz transformations, four-vectors, tensors

2.1.1 Minkowski space

Definitions and notation:

3-vectors: d = (a'), Latin indices: i =1,...,3
— span 3-dim. position space

Contravariant 4-vectors:  a* = (a°,a@), Greek indices: =0, ...,3
— span 4-dim. Minkowski space

Space-time points (events): a* = (2°, %) = (ct, T)
Natural units used in the following: ¢— 1, h—1

Metric tensor:  (g,) = (¢") = diag(+1, —1, -1, —1)

Comment:
Equations like g"” = g,,—although correct for each coefficient—should be
avoided, since the two sides correspond to two different geometrical objects.

Covariant 4-vectors:  a, = (a°, —ad) = gpa”, a* = g"a,

Note: Einstein’s convention used, i.e. summation over pairs of equal
upper and lower indices

Scalar product:

a-b=a"t’ -3 b= a'b, = a,b" = g,,a"b" = g"a,b, (2.1)

Length of 4-vectors:  ata, = (a)? — @ = gata” = ...
< space-time distance s? of two events “a” and “b”:

$° = (20 — )" (X0 — Tp)p = (ta — tp)* — (Z0 — T)* (2.2)

11
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Basic principles of special relativity

e relativity principle  — laws of physics equivalent in all frames of inertia

e constancy of speed of light ~— value of ¢ is equal in all frames

= Scalar products (space-time distances, etc.) independent of frame of reference !

Classification of space-time distances:  (independent of reference frame!)

time-like > 0 >0

(zq —1)* = { light-like if (1, —xp)>¢ =0 », e [ta—t| —|Ta — T =0
space-like <0 <0

(2.3)

e time-like: Signals with velocity < speed of light ¢ can be sent from a# to ).

e light-like: If ¢, > ¢,, a light ray can be sent from z# to z}.

(APl

e space-like: There is a frame with t, =1, i.e. “a” and “b” happen simultaneously.

All events “b” with (z, — 23)? = 0 form the light-cone of z,.

= The light cone of z, separates events causally connected/disconnected to “a”.

2.1.2 Lorentz transformations

= all coordinate transformations of Minkowski space that leave the space-time distances (2.2])
invariant
Definitions:
e Homogenous Lorentz transformations = all linear transformations
characterized by 4 x 4 matrix A:
a™ = A", a", matrix notation (contravariant vectors!): a' = Aa (2.4)
Invariance property of A:
guwata” = g A, N, aPa’ . Gpoa’a’ = guN, A, L Gpos ATgh =g

(2.5)
= All scalar products invariant: a’ -0’ =a - b

e [nhomogenous Lorentz transformations (Poincare transformations)
= all affine transformations of space-time
characterized by 4 x 4 matrix A and 4-vector a:
' = A, 2+ at ¥ =Ar+a (2.6)

= At least all space-time distances invariant: (z/, — x},)? = (2, — 3>
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Examples:

e Rotations:

Ap = ((1) ZO)) with DD =1, sothat AhgAp =g (2.7)

Rotation around the z° axis:

cosp —sing 0
D3(p) = [ sinp cosp 0O (2.8)
0 0 1

—

e Boosts (relating inertial frames moving with a relative velocity v)

Boost Bs in the z? direction:

t' =~ +vr?), v=1/vV1—12

/11 1
r =T,

/
% = a?,

? = y(z® +vt)

(2.9)

Convenient parametrization of A, by rapidity v, where v = tanh v:

v 0 0 ~v coshvy 0 0 sinhv
0 1.0 0 0 10 0
A=y 01 of ~ 0 01 0 = A () (210)
yvo 0 0 sinhvy 0 O coshv
Comment:

The angles pé (0 < ¢ <, |€] = 1) that parametrize all rotations define a compact
set (the angles £7é correspond to the same rotation).

The rapidities v€ are contained in a non-compact set of numbers (—oco < v < 00).
= The Lorentz transformations form a non-compact Lie group. See also below.

Inverse Lorentz transformations

a* = A", a”, Le. a' =AY a”
Proposition:

(A—l)ﬂy = Gva \% gﬁu = AN (2.11)
Proof:

Verify A7'A =1 (AA~! = 1 analogously):

1% [0 1% [0 v m
AJN = Gua N g™ N, = (o A5 NY)) 97" = g5, g™ = gh = o4 (2.12)
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q.e.d.

Application: Lorentz transformation of covariant 4-vectors

:L‘;L = guyl‘”/ = ngAVp J— I Ayp gpaxa = AMU:L‘J. (2.13)

2.1.3 Differential operators

Definitions:

e covariant 4-gradiant:

9, = 9 _ (Q ﬁ) (2.14)

e contravariant 4-gradiant:

M= =g, = (%, —ﬁ) (2.15)

e wave (d’Alembert) operator:

0=0,0" = — — V? (2.16)

Lorentz/Poincare transformation properties: z'* = A*, 2" + o

e 4-gradients:

0 ox¥ 0
/: = :AVV M:...:Auyy 21
On oz’ Qx'm dxv w0 0 0 (2.17)
e wave operator:
O'=0,0"=A,"\N,0,0° = g, 0,0" = 0,0” = 0 = invariant (2.18)

e /-divegence of a vector field V*:

9, V*(x) = 8V (z) + 9,Vi(x) = VO(z) + V - V = invariant (2.19)
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2.1.4 Tensors

Definitions

15

o Contravariant tensor TH#» of rank n = object that transforms like the direct prod-

uct @ ...a"" under the change of coordinate frames, i.e.

Tlntin = AMI L NBn TP

e A covariant tensor T}, ., of rank n transforms like x,, ... z,,.
o A mized-rank (n,m) tensor transforms as
g ...
TMI Mny

— AM1 2 o1 o P1.-.P
o = N AN N TN, T T

Invariant tensors:
e Metric tensor: g =g" G = G
e Totally antisymmetric tensor:

+1 if (prpo) = even permutation of (0123)
P’ = ¢ —1 if (urpo) = odd permutation of (0123)
0 otherwise

Transformation:
€MP7 = eP7 % det A = de"P? = invariant pseudo-tensor

(see Exercise 1.1)

2.2 Lorentz group and Lorentz algebra

2.2.1 Classification of Lorentz transformations

Definition:  The set of Lorentz transformations forms the Lorentz group L:
e closure: A1Ay = A = Lorentz transformation  (prove!)
e associativity: A1 (AA3) = (A1A2)A;
e unit element: (At = o

v v

e inverse elements: (A‘l)ﬂy = A

(2.20)

(2.21)

(2.22)

(2.23)
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Important discrete Lorentz tansformations:

e parity P (space inversion):

0
ot — 2t = Apt, = (fj’) , Ap = diag(+1,-1,-1,-1) (2.24)
e time reversal 71"
—20
= P = At = ( = ) , Ar = diag(—1,+1,+1,+1) (2.25)

Invariant properties of A matrices and classification:

o det A = +1, since ATgA =g = Def.: Li={AldetA==+1}
L, = subgroup of proper Lorentz transformations  (L_ # subgroup)
e |AY%] > 1, since goo = 1 = g Ao Ao = (A%)? — (A%)?
Def.: LT= {AJA% > 1}, LY = {A|A% < -1}

L' = subgroup of orthochronous Lorentz transformations  (L* # subgroup)

e Consequence: break-up of the Lorentz group into four disconnected subsets

det A : A% - Example:
L + > 1 A=1
Lt -1 > 1 A=Ap (2.26)
A | < -1 A=Arp
L} +1 < -1 A=—-1=ApAs

Def: LI = {AldetA = +1,A% >1}

= group of proper, orthochronous (special) Lorentz transformations

e Decomposition of A (non-triviall):
Each A € L1 can be written as a product of a rotation and a boost:

A= ApAp. (2.27)

The rotations form a subgroup of Ll, while the boosts do not.
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2.2.2 Infinitesimal transformations and group generators

Infinitesimal rotations and boosts:

Consider the rotation ([Z.8]) and the boost ([2I0) for infinitesimal parameters dp and Jv:

1 0 0 0

Any(30) = | | 51@ T2 o6 =1-ip S 0GR, (229
0 0 0 1
1 0 0 ov
0O 1 0 O 2N _ . 3 2

Ap,(0v) = 001 ol™ O(6v?) =1 —idv K° + O(0v°), (2.29)
ov 0 0 1

General infinitesimal rotations or boosts parametrized by six parameters d¢; and dv;:
Ap(0p:) =1 =103 - J =1 —10p.J",  Ap(dn)=1—i0v-K =1 —idy; K'  (2.30)

Definitions:
J' = generator of infinitesimal rotations around the 2! axis (angular momentum)
K' = generator of infinitesimal boosts in the z? direction

Properties of the generators:

e Explicitly:

000 O 0 0 00 00 0 O
00 0 O 0 0 0 i 0 0 -1 0
1_ 2 _ 3 _
T 000 =i~ T = 0 0 0 0])° T = 0 i 0 0]}’ (2:31)
00 1 O 0 -i 00 0 0 0 O
0 i 0 0 0 01 O 0 0 0 i
L iooo , o000 s oo oo
K= 000 O0]"° K== i 00 0]’ K= 0 0 0O (2.32)
0000 00 0O i 000
e Hermiticity: _ _ _ _
JT = J* = hermitian, K" = —K' = anti-hermitian (2.33)
e Commutation relations:
[J¢, 0] = i€k J* (relations of angular momentum) (2.34)
[J¢, K9] = iR KCF (K transforms as 3-vector operator) (2.35)
(K, K| = —iedk J*, (2.36)

Comment:

The third equation expresses the fact that boosts do not form a subgroup of L, but
that the product of two boosts in general involves a rotation (the so-called Wigner
rotation).
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General infinitesimal Lorentz transformations:
e General form:  A*,(dw) = 0¥ + owh, + ...

< condition for Lorentz transformation:
G\ N = gﬂy(ég + 5w“p)(55 +0w’s) + ...

| (2.37)
= Gpo + OWop + 0Wps + ... = Gpo,
= Jw are antisymmetric,
SWop = —0W,0, (2.38)
and comprise six independent entries corresponding to dp; and dv;.
e Generators M*:
A", (8w) = 6" + Swap g™ 08 = 6 — %maﬁwaﬁ)ﬂy (2.39)
= (M), =i(g™8) — g™5)) (2.40)
Matrix notation: A(dw) =1 — JowagM?
e Connection between J?, K* and M®5:
Kj — M(]j (Kj>,u — i<g0,u5j - gj,u(sO) _ iv (:u7 V) = <07.]) or (jv 0)7 (241>
’ v v v 0 otherwise,
Jk — §€Z]kMU 7 (Jk:)Wm — %Ele:(gzm(sjn o g]m52n> — _iemnk (242>
(e.g. J> = M"™)
e Commutators: (Lorentz algebra)
(M9 M) = <L (¢P M7 — MY — M 4 M) (243)

H Comment:
Proof straightforward, easiest based on commutators for J*, K".

Finite Lorentz transformations:

— result from infinitesimal transformations upon (matrix) exponentiation:

Ap(F) = exp (—igoiJi) , Ap(V) = exp (—il/iKi) , Alw) =exp (—%waBM“B)
(2.44)

Comment:

. AN
im (1 — i% J l) is demonstrative, but not of much

=1
N—o0

The iterative limit Ap(p;)

practical use.
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2.3 Poincare group and Poincare algebra

2.3.1 The basics

Definition:  The Poincare group P is the group of all inhomogeneous Lorentz transfor-
mations (A, a) with 2’ = Az + a, where A € L, a = any 4-vector. Obvious restrictions are
PI with A € Ll, etc.

= P, PL etc. are non-compact Lie groups with 10 independent parameters.
Subgroups:

e (A,0): groups L, LTH etc.

e (1,a): (abelian) group T} of 4-dim. translations

Composition law:

(A2, a2) (A1, a1) = (A2Ay, Aoay + as) (2.45)
as in L
= P is semi-direct product: P = Ty x L
Infinitesimal transformations and generators:
e General transformation:
(A,a) = exp (—%wagMo‘ﬁ +ia, P“) (2.46)

~—
generators for translations (/-momentum)

e Infinitesimal transformation:

(14 éw,da) =1 — %5wa5M°‘5 +1ida,P" + ... (2.47)
e Poincare algebra:
[M™ MP] = .., asin L], (2.48)
[P*,P"] = 0, since Ty abelian, (2.49)
[P MP?] = i(g"P° — g" PP) (2.50)
Proof of (2Z50):
(1 +0w,0)7 1 (1,0a) (1 + 6w,0) = <1 + %&uagMaﬁ) (1 +ida,P") <1 - %5wa5M°‘ﬁ> +...

1
_ 1+i5aupu _ §5WQ65GM[Maﬁ7PN]+...
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(1 +0w,0)7 (1,6a) (1 + 6w,0) = (1 —6w,0)(1+ dw,da)
= (1,da" — 6w bay)
= 1+4i(da" — 6w da, )P, + ...

= 1+ida,P" — %5%“,(5@”13“ —0al'PY) + ...

— (Z50) follows upon comparing coefficients for arbitrary dwagday,.

2.3.2 Generators as differential operators

Inspect operation of transformations (A, a) on some scalar function ¢(z):

d(z) — F@) = d(Ax+a) = ¢(z), e &(z) = ¢(A’1(az—a)> (2.51)

(A,a)
e Translations:

— infinitesimal:
J(w) = da—da) = B(a) - 6auo(a) + ...
= [1+ida"(i0,) + -] o(x)
= [14+i0a"P,+---]o(z), (2.52)

= Pt = i0" = (i0, —iﬁ) = 4-momentum operator as differential operator

— finite transformations:
¢(x) = ¢la —a) = explia,P"}o(x) (2.53)
e Homogeneous Lorentz transformations:
— infinitesimal:
d@) = o(Ax) = o(e + L owas(MOY 0+ )
= 9la) + B (M), 2 0,0(2) + -
=i(g™o;) — g™o7)

= o¢(x)+ %&uagi(xﬁ@“ — 220 (x) + - - -

b(x) — %maﬁm%@) . (2.54)

= L% = i(2P0* — 2°0°) = PP — 2P P~
= generalized angular momentum operator as differential operator
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— finite transformations:
! o —1 o _i afs
¢ (x) = <;5<A :c) = exp{ 2wagL }qb(:c) (2.55)
e General case:

¢ (x) = ng(A_l(x - a)) = exp{iauP“ — %waﬁLo‘ﬁ}gb(x) (2.56)
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2.4 Relativistic point particles

Point particle in non-relativistic mechanics:  momentum = mr

d:c“ ﬁ
, @) # 4-vector, since dt # invariant

ma is not part of a 4-vector !
(m = mass = invariant particle property = constant !)

Correct relativistic generalization with J-velocity:
dax* .
ut = g dr = dtv1—02, v = |7
T = proper time of the particle
= time in particle rest frame (“intrinsic clock”)

dt d7 dt - dt .
e - e — oy — r — \ — )2

Relativistic 4-momentum:

P = mut = (my, myZ) = 4-vector (2.58)

< invariant square:  p?> = m?y? —m?y%0? = m?

_Q
= p) = poz\/mzm(leQp—mQJr---) for |p] < m

= relativistic (total) energy of particle with mass m

— FEy = mc® =rest energy  (restoring ¢ # 1 here)
T = py— m =Kkinetic energy (2.59)

Comments:

e p' = mu can be directly derived from ansatz p'=ma - f (v),
demanding momentum conservation in collisions and f(0) =1

e p follows from invariance of action S = / dt L for point particle

e p° is Hamilton function of free particle = conserved see exercises !

e 4-momentum conservation directly follows from translational
invariance of Lagrange function / action )
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Comment:
c=1,Ah=1 = All kinematical quantities are measured in the same unit:

[E]=[m]=[p] =[=""] =[] (2.60)
Useful units in high-energy elementary particle physics:
e energy unit:

[E] = Giga electron Volt (GeV), GeV/c® = 1.8 x 10~ g, (2.61)

e unit of length:
[z] = Fermi = fm. (2.62)

Relation between units: fic = 0.197GeV fm

Example: particle decay 7~ — pu= vy,
T T 1
masses: My m, ~0

Rest frame of 7 :

P2 = (my,0), pr=m2, (2.63)
Py = (D), v, = E. —p, =mp, (2.64)
pg = (Elhﬁl/)v p12/ = ES _ﬁz =0 (265>
energy conservation: m;=FE,+E, (2.66)
momentum conservation: 0 = p, + 7, (2.67)
[Z567) in Z64) - @68): m. =E.—-FE.=(E,—E,)(E,+E,) (2.68)
= (B, — E,)m, 2.69
o (B BV (2.69)
g~ T Th e T (2.70)

:> - — v — —— — .

. 2 * 2m, 2 2m,

Note:  The direction of the decay is not fixed. 7~ (= spin 0, no polarization!) decay
isotropically in their rest frame.
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Chapter 3

The Klein—Gordon equation

3.1 Relativistic wave equation

Non-relativistic quantum mechanics:

e Spinless particle (scalar)
— state vector [¢(t)) € Hilbert space,
Y(t,7) = (Z|Y(t)) = (complex) wave function in position representation

Observables — Hermitian operators

Examples:  position £ and momentum p in position space
7 = ¥ = multiplicative, p= -V
i

~

Correspondence principle:  Hejassical (i, pi) — H(Z;,p;)  with [2;, p;] = 1hd;;

0 N
Time evolution by Schrédinger equation: iha |v) = H |¢)

)
Free, spinless particle: H = P
2m

— Schrodinger equation is wave equation in position space:

0 v?
iha@z)(t, T) = —hQ%@Z)(t, 7) (3.1)

Note:  wave equation invariant under Galilei trafo ¥ = R¥ + d,t' =t + At

= ¢'(t,7) =v(t — At, R71(Z — @)) is solution if (¢, Z) is.

25
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Relativistic generalization:
0 ho
Idea: FE — iha and p — —V in energy-momentum relation
i
7
2

o [V = = Schrodinger equation

o [/ =c\/p?+ (mc)> = problem with arbitrarily high spatial derivatives,
no covariance !
a mce
o B2 =%+ (m?)? = ——=—¢=|-V>+ (—)2
——
1 / (reduced Compton wave length)

P (aua“ + m2) ¢ = (D + m2) =0 Klein—Gordon equation (3.2)

— ansatz as wave equation for complex wave function ¢

Relativistic covariance:

¢ in two different frames of reference (2’ = Ax +a):  ¢'(2') = ¢'(Ax + a) = ¢(z)
e 0 = (O+m?) ¢(z) = (O+m?)¢(2)) = form invariance of KG eq.
—_———
invariant
e 0 = (O+m?)¢(x) = (O+m?) ¢(Ax+a)
= ¢'(z) = ¢<A’1(:c — a)) obeys KG eq. as well.

3.2 Solutions of the Klein—Gordon equation

Fourier ansatz in momentum space:  (KG eq. = linear!)

o) = o(t.) = | %e%@)
< (@) ola) = [ e () o) =0

= All ¢(p) with p*> = m? are solutions with p° = +w,, where w, = +,/p? + m2.
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Comment:
The sign ambiguity is due to the square of E in energy—momentum relation (genuine

relat. feature!).

General solution:

o(t, T) = / % (27m) 8(p* —m?) | 0(++po)e™ ™" a(p) +6(—po)e™ " b"(—p)
™ — ~~ ~——

ensures p? = m?2 arbitrary complex functions

— / (271_]))4 (27)0(p? — m?) 6(+po) [e—ipxa(m L et()

d3p _ . .
= | ———— = dp = invariant phase-space volume
2w, (2m)3

~~

- / ap [e ¥ a(p) + e (7)) (3.3)

Comment:

The integral / d*p is Lorentz invariant, since / dtp’ = / d*p | det(A)| with |det(A)| = 1.
Moreover, sgn(pj) = sgn(pg) for p’ = Ap and p* > 0.

Some explicit formulas:
= /%
(2m)4 2m)3 ) 27’
1
/dp°5(p2 —m?) = /dp°5<(p°)2 —p? - m2> = /dpo 5 [5 (P° +wp) +0 (0"~ wp)]

Note: Negative-energy solutions b* raise problems.

e Energy spectrum p® € (—oo, —m| U [m, c0) not bounded from below.
— Particle can emit an infinite amount of energy (by perturbations).
= System is unstable (no ground state) !

e Conversely, redefining p° > 0 leads to solutions with “wrong” time-evolution phase
factor e’ from non-relat. QM point of view.

e Setting b(p) = 0 is not consistent in presence of interactions.
— No solution of stability problem.

e QFT solves problem upon intepreting b* solutions as antiparticles.
— a,a* (b*,b) become annihilation/creation operators for (anti)particles.



28 CHAPTER 3. THE KLEIN-GORDON EQUATION

3.3 Conserved current

Interpretation of ¢ as quantum mechanical wave function?

< Requirement:  conserved “probability current” j with probability density P,
obeying p+ Vj = 0, so that /d3x p(t, &) = const.

Recall non-relat. QM:

j, p derived from Schrodinger equation and its conjugate:

0 __L_’Q _2 *__L_’Q*
o A A L
: *a a * . 1 *_» — *
:»1{@& gwwa@b] =~ UV — V]
0 = 1 * = ok
= SR =9 | (w9e - v (3.49)
:p N -~ /

e

==
Analogous manipulation with KG equation:
(0,0" +m*)¢ =0, (9,0" +m*)¢* =0,
= 0= ¢*(9,0" + m*)¢ — $(9,0" + m?*)¢*
=0, [¢"0"p — gb@“gb*L continuity equation v’ (3.5)

=—2mi jn

= Conserved current: j* = QL [p* 0" — @O ¢™],  with OFj, =0
m

p=3"= 1 [gb*@ogb — gb@ogb*} = acceptable probability density ?

2m
— Problem: p can become negative, i.e. p # probability density

QFT solution:
Conserved current o< j* = (p,j) interpreted as charge (p) and current (j) density of
electric (or generalized) charge.
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3.4 Interpretation of the Klein—Gordon equation

Clashes between principles of non-relat. QM and KG eq. / relat. covariance:

e Special relativity: space and time should be treated on equal footing.
QM: position is treated as an operator, time as a parameter.

e Negative energy solutions of the KG eq.
e Conserved density j° cannot be interpreted as probability density.

e [elds ¢, transforming as 4-vectors under Lorentz transformation cannot be inter-
preted as wave functions as the matrices A for boosts are not unitary.

e Non-vanishing probability for propagation over space-like distances:

Assume resolution of momentum p:  Ap’ < me
h he
- > —
Apt ™~ mc?
— probability # 0 for propagation between space-like separated events a and b
if (x4 — x3)? ~ (h/mc)?

= Violation of causality due to quantum fluctuations ?

< localization of a particle only within Az’ ~

Outlook to solutions by relat. QFT:
e Field ¢(t, 7) satisfies the (covariant!) KG equation.

e 7 and t are both treated as parameters.
— Elimination of the asymmetry of space and time.

e For a quantum mechanical description, the field is promoted to an operator:
o(t, %) = o(t, )
acting on particle states € Hilbert space:

— action of ngST(x) creates a particle / annihilates an antiparticle at point z;

— action of gig(x) creates an antiparticle / annihilates a particle at point x.

= QFT naturally becomes a many-particle theory.

— Formalization best done within Lagrangian approach to continuum mechanics
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Chapter 4

Classical Field Theory

4.1 Lagrangian and Hamiltonian formalism

4.1.1 Lagrangian field theory

Recapitulation of classical mechanics of point particle
— da

e generalized coordinates ¢; = ql-(t) and velocities ¢; = dt
ty
e action S :/ dt L(gi, di,t)
ta N———

Lagrange function

e Hamilton’s principle: S = extremal, i.e. S = 0, with respect to the variations

a(t) = a(0) +00(0), @) > (D) + 50D). 5is(t) = So(r).
with the boundary conditions: dg;(tq) =0
N doL oL _
dt9¢; O
From discrete to continuous systems:
Example (see e.g. Ref. [9]):

chain of equal mass points with mass m connected with massless uniform springs with
force constant D (coupled harmonic oscillators for small ¢;):

0, FEuler-Lagrange equations of motion

i—1 i i+1 7

L - 200 - 290 o----0L equilibrium
e

kg @y iaaiidy e QR
I617:—1 —qql; Iqi+1

31
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o 1 9
kinetic energy: 1T = 3 Z mg;

. 1 2
potential energy: V = 5 Z D(gis1 — a4i)°, |qit1 —

¢;| = extension length

2

. m.. a qi+1 — G

L. : =T-V = E —@—--D | —=
agrangian L / V : a [2aql 5 ( o ) ]

=1,

Euler-Lagrange equations for coordinate ¢;:

m . i+1 — i i — qi—1
a ~ a a
~~~ =Y S>——
= M = Si
= mass / length = extension / length

Note:

The force / length on an elastic rod is f = Vs with Y =

Continuum limit:

discrete ¢ — continuous x, Za — / dz
G(t) —ai(t) _qlt,z+a)—q(t,z)  asa
a a
1 dq ?
L= [dr - () — Y [ =2
= / 962[#%@) (ax)]

~
= L = Lagrangian density

Comments:

Young modulus (constant!).

9%
ox

0
— L does not only depend on ¢(z) and ¢(z), but also on a—q due to nearest neigh-
x

bour interaction (2nd spatial derivative — next-to-nearest neighbour interac-

tion, etc.).

— In more dimensions ¢(t, z) is generalized to the field ¢(¢, Z).

Generalization to fields:

generalized coordinates:

i(t)

discrete continous
index 1 “label” ¥

continuum limit

o(t,7) = ¢(x) = dyn. degree of freedom at z* = (t, T)
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Note: ¢ may carry more indices (for spin or other d.o.f.).

e Lagrange function:
Lip, ¢ = / Bz L, b, Ve,...) — functional of ¢ and ¢,

Lagrangian density, “Lagrangian”

i.e. L maps ¢, ¢ to a number (dependent on ¢, but not on 7)

e action S in relativistic theories:

- S=5[¢] = /dt L[¢, ¢] = functional of field ¢, i.e. S maps ¢(x) to a constant.

— § = Lorentz invariant (= scalar)

= /dtL[¢,q3]:/d4x L, V,...)

—

Lorentz invariant

= L = L(¢, P, 6¢, ...) = L(¢,09¢,...) = Lorentz scalar

— [ d*z extends over complete Minkowski space with |¢| — 0 sufficiently fast for
|zt — 0.
— S[¢] is invariant under the transformation £ — £ + 0"F,(¢,0¢,...), since

surface terms vanish.
— L is unique up to partial integration.

e Hamilton’s principle:
dS = 0 under variation ¢(z) — ¢(x) + d¢(x) with arbitrary infinitesimal Jo(x)
vanishing at infinity:

oL oL
0=4S = /d%{—é z) + —-+—0,0 x}
8600 ) B0 )
part. int. 4 8£ 0£ :|
= dz | —— —0,———— | do(x), 4.1
/ [&p(x) Fer o) e 4y
oL oL
= — —0,— =0 Euler—Lagrange equations for fields (4.2
96~ P 500.0) grange eq for fi (4.2)
e Generalization to higher derivatives:  recall variational derivative

OL_OL 5 9L . g0 (4.3)

—+t...
00,0,0)

only relevant for higher-order derivatives
oL
00

5 00 "9(0,9)

= Equation of motion (EOM): 0
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Comment:
Derivation of the EOM via functional derivative:

6F[¢] 1
o) lim = (Flo(y) + ed(w — y)] = Flo(y)])

Application to action functional:

Slg) = / dty L(6(y), 06(y)

otl _ [ [ 9L o
5 =/ dy{aqs(y)‘“ T a@em) y)}

oL P oL

T

~96(z)  "0(05o(x))

. 0S[e]
= EOM: So(r) 0
Rules for functional derivatives:
F, G = functionals; a, b, ¢ = functions
0 1)
. Wm)qﬁ(y) =0(z —y), ma(y) =0
e % _ JOFle] 9G]
o (@16 +0610) = a3 B bt
o0 _ 0Fld] 3Gl¢]

Relation between variational and functional derivative
— consider function f(¢(x)) of field ¢(x) as specific type of functional
; i

——[(¢(y)) = 56

_of
50(z) (0(z)) bz —y) = = d(z —v)

o)
variational derivative %

as function of ¢(x)

(4.4)

(4.5)

(4.8)
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4.1.2 Hamiltonian field theory

e canonically conjugated momenta:

OL (z) oL
S 26(x)
point particles fields

e Hamilton function and density:

35

(4.9)

Hamilton density,

Hamiltonian
with H(¢, Ve, 7) =7 — L

e Hamiltonian EOMs:

. oH . OH . 0H . OH
Gi=——, Di=— — 0=
Ip; dq;

_5—7(’ 77-__%

Note: M and ¢ depend on ¢, Vé, and (but not on derivatives of ).

Derivation of Hamiltonian EOMs:

OH OH . 99 OL D9
E_ﬁﬂ_(bjLﬂ&r ¢ 07T_¢’
-

OH _OH G OH _ 06 OL 0L D6 o OH

s 00 aNve 0 06 0p 06 9V
——

oL - OH  Lag. EOM _ oL - OH

_ — — _v =
d¢ OV b "0(0,0) OV 6
0 0L o L o OM
ot 9y  oVe OV

~—

oM 0p oL OL 09  OL

because — = - — — —

mT— = T = = ——= .
8V¢ 7 ,¢ fixed 8V¢ aV(b 8¢ 3V<;5 8V¢ é ¢ fixed

=T

(4.11)

(4.12)

(4.13)

q.e.d.
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4.2 Actions for scalar fields

Question: Which Lagrangian leads to the Klein-Gordon eq. (9,0" + m?) ¢ = 0,
where ¢(x) = real or complex scalar field ?

4.2.1 Free real scalar field
The Lagrangian
Requirements on L:

o KG eq. is linear in ¢; EOMs reduce £ by one power in ¢.

— L is bilinear in ¢ and its derivatives J,¢, etc.

e KG involves only derivatives up to 2nd order.

— L contains only derivatives up to 2nd order.

e L = Lorentz invariant.
— L is linear combination of bilinear, Lorentz-invariant terms formed by ¢, 0,¢, etc.
= All possible terms:  ¢?, ¢, (9,0)(0"¢).
But: ¢0O¢ = 0,(¢p0"¢) —(0,¢)(0"¢) can be omitted.

o [ =real.
= Most general ansatz:
L = A(0,0)(0"¢) + Bg* = Agh(0,¢)(D,¢) + Bo*  with A, B = real
Determine A, B by EOM:

oL oL

= 50,5 "o

0,(Ag" 500,6 + Agh'80,0) — 2Bo = 2A {apapqs - %4 (4.14)

— BJ/A = -m? A= 1/4 (=convention, see H below)

= Lagrangian for free scalar field:

L= %(@gb)(a%)) — %ngbQ, alternatively: L = —%qb(D +m?)¢ (4.15)
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Hamiltonian formalism:

P .
e Canonically conjugated field: 7= 8_; =¢

< Hamiltonian: H =m¢ — L = % [7‘(2 + (Vo)? + mZgbZ}

e Explicit solution:

o) = [ dp [ a(p) + o0 ()

po=-+/P%+m?

() = —i / by [P a(p) — &0 () (4.16)

po=-++/p%+m?
Note: b(p) = a(p) for a real scalar field.

< Hamiltonian:
1 )
o= [@an=3 [ @ [a5 [ aa{[-pa- 77+ m] @@al@e ™7 + cc)
+ [podo + 5+ 7+ m?] (a(Fa’ (@ +cc) |

Use identity /d?’x R = (2m)36 (k)

3/ et e e e e

H%+ﬁ+mﬂ@®f@+0”}wvﬁma

:/dﬁ\/ﬁ2+m2|a(ﬁ)|2 — const >0 v (4.17)

= Hamiltonian fulfills requirement on kinetic energy (constant, non-negative).

4.2.2 Free complex scalar field
e Complex scalar field ¢ can be decomposed: ¢ = % (p1 +1i¢po) with ¢y, g = real

(O+m?*)¢; =0, i=1,2 & O+m*)ep=0, (O+m?)e*=0  (4.18)

e Lagrangian (2 free real fields = 1 complex field):

1 1

L= B [(0,01)(0"¢1) — m*d161] + 3 [(0,02)(0" $2) — M hohs]

= (0,0")(0"¢) — m*¢* o, alternatively: £ = —¢* (0 + m?)¢ (4.19)
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e EOMs from variations of ¢):

oL oL
— — = Z 2
0 8"8(8@*) 9 (9,0 +m?) ¢, (4.20)
oL oL
-0, — = — Z 2) H*
0 8“8(8,@) 9 (0,0" +m?) ¢ (4.21)
e Conjugate fields and Hamiltonian:
w:%:é*, w*:a.[’:qé (4.22)
o) O
o H=np+a¢ — L= x>+ Vo[> + m?|¢|? (4.23)

e Explicit solutions as in (ZI0]), but with a(p) # b(p)

< Hamiltonian:

H=.. = /dﬁ V2 +m?[a(p)a*(p) + b (Pb(p)] = const >0 v (4.24)

4.3 Interacting fields

4.3.1 Scalar self-interactions

Extension analogous to L = T — V in point mechanics:  (real ¢ as example)

1 " m?
L£=5(0.9)(0"¢) —=-¢"—V(¢) (4.25)
kinet?crterm potent?jﬂ term
with V= ¢y + 1 ¢+ c3¢® 4+ cad + ... (4.26)
Comments: =0 =0

e ¢y = 0: arbitrary definition of energy offset

e ¢; = 0: arbitrary offset in ¢, such that V' is minimal in ground state ¢ =0

(V — 400 for |¢p| — oo, otherwise system unstable. — V' has minimum.)
= %mZ > 0: otherwise no minimum of V at ¢ =0
e Dim. analysis:  action [S] = [A] = 1, dim[d*z] = —4, dim[0] = +1 = dim. of mass
= dim[£] =dim[V] =4, dim[¢] = 1, dim[c3] = 1, dim[e4] = 0, dim[e5] = —1, ...

e Convenient convention:

Cn = Gn/ A*" with g,, = dimensionless and A = common mass scale
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e QFT: Theories with [couplings] < 0 are non-renormalizable,
i.e. some observables diverge for short-distance interactions (UV limit).
But:  Such theories can still be useful as low-energy effective field theories,
where momenta > A (distances < 1/A) are excluded.
e Non-renormalizable interactions can also involve derivatives of order > 2.
EOM and its Green function:
oL ov oL
— = —mPp— —, )
9¢ 0¢ 9(0u)
= KG eq. with interaction:
oL oL ov
= 0= — — =0¢+ m?¢p + —, 4.27
“50,9) 0 96 20
Non-linear 2nd order partial differential equation
< define Green function D(x,y):
(0, +m?) D(z,y) = —0*(z — y). (4.28)

— integral equation equivalent to (L.27)):

ov
= o) = gula)+ [ dty Dy 2 (4.29)
solution of free KG eq.,
(O +m*)do =0

Check:

J

\ § . 96 96
=0

—6*(z—y)

(O +1)0(0) = G+ m2)00(a) + [ @ty @+ ) Dlay) T PO

Iterative solution for sufficiently weak interaction: (perturbation theory)

e (Oth approximation: free motion

¢(x) = ¢o() (4.30)

e 1st approximation: insert ¢ = ¢g in r.h.s. of (29) — Born approzimation

61(0) = on(a) + [ %y Dl,y) ) (431
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e 2nd approximation: inserting ¢ = ¢; in r.h.s. of (£29)

(o) = o) + [ty Dy 20
= po(x) +/d4yD(x,y)%;(y))
+/d4y1%q;@mmx,yl) /d4y2D(y1,y2)%;(y2))+.“’ (4.32)

(Expansion to 2nd order in potential terms — singles out correction to Born approx.)

e n-th approximation: insert ¢ = ¢, in r.h.s. of (4.29)

Visualization of nth correction:
free propagation between n local interactions with V' at space-time points y;.

— Hope that
On(r) — o(2). (4.33)

n— o0

4.3.2 Explicit calculation of the Green function (propagator)
Defining Eq. (£28)) = linear, inhomogenous diff. eq.

< Fourier ansatz:

D(z,y) = / %D(k) e k@) (4.34)

Note: D(z,y) = D(x — y) because of translational invariance

Insertion of ansatz into (L28):

d4k .
2 o 2 2N\ —ik-(x—
(@, +m*) Dz, y) = / Gy DRk 4 mt)ete
! d4k —ik-(x—
:—54(x—y):—/(2ﬂ_)46 k(z=y) (4.35)
S D) = — !
k2 —m? (ko—\/E2+m2> (k:0+ E2+m2>
1 1 1 =
— — ith ki = +\/k?2 2 (4.36
N [ko—k; kO—ka] R ot (150
~ T o0 dk‘o 1 1 :2.00,.,0__,0
D = dk eFT=9) / — - —ik2 (" —4%) 4.37

Note:  Prescriptions needed to resolve convergence problem near poles at k¥ = kB—L !
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Solution:
Move the poles into the complex plane by an infinitesimal shift i§ (§ > 0) and use identity

o] e—ifm} )
/ dr P F2mif(£x) (4.38)

—00

Comment;:
Prove of identity with residue theorem:

Interpret [ dk as line integral in complex s-plane and close contour with half-circle
of infinite radius in such a way that half-circle does not contribute:

Integrand on half-circle o exp{Im(x)xr} = damping for Im(x)z < 0.
= Close contour in lower (upper) half-plane for x > 0 (z < 0).

A Im(k) Im(k)
x>0
'+i5 '+i5

@6 R (1) @il Retr)

PP 7{ PP
Kk+i0 0. ki | +2mi

Application of Eq. ([A38)):
% k0 e,ikO(mO,yO)
/ o 21 KO — kg +1i6

q.e.d.

= Fie @) (£(2° —¢°) with kJ =kg or ky  (4.39)

= Poles at kJ —id correspond to forward propagation in time (contribution only for 2 > y%);

poles at kJ+id correspond to backward propagation in time (contribution only for ¢° > z°).

= 4 different types of propagators:

e Poles at kf —i6:  retarded propagator ~— forward propagation of all modes

Dyet(z,y) = —if(2® —¢?) /d/% e ®@Ey) 4 ce = real (4.40)
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Properties:  (non-trivial!)

— Causal behaviour: D, (z,y) = 0 for (x —y)? <0

— Lorentz invariance

— appropriate for causal wave propagation in classical field theory

e Poles at koi +1d:  advanced propagator — backward propagation of all modes

Dadv(xvy) - Dret(yvx) (441)

— backward propagation in classical field theory

e Poles at kg —id and ky +id:  Feynman propagator
< kg with forward, k; with backward propagation

De(z,y) / Ak ey kEFis =4\ k2 4 m2—i
pu— — J— 6
Pl Y @r)t (k0 — kg +i0) (K0 —ky —10)° O

d4k e—ik(x—y)
= / e T (infinitesimal € > 0) (4.42)
7r — €

= —if(2" —¢°) /dl% e mEy) _ig(y° — 29) /dl% etik(e=y) (4.43)

= Dg(y,z) = complex

Properties:

— Lorentz invariance (obvious!), € > 0 acts like decay width for all modes
— Causal behaviour non-trivial:
Dy (z,y) # 0 for s> = (v — )2 <0 (exp. decay ox e™™ with r = /—s2).
Causality restored by independence of qm. measurements at z,y with s? < 0.
— Propagator naturally appears in QFT:
2% > ¢y forward propagation of particles with £° > 0;
y® > 2% backward propagation of particles with “k% < 0"

— reinterpreted as forward propagation of antiparticles

Comment:
No transport of information by acausal behaviour of Dp(z,y).
Phenomenon similar to Einstein—Podolsky—Rosen paradox.

e Poles at kg +id and k; —id:  Feynman propagator Dg(z,y)* for time-reversed QF T
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INlustration of perturbative expansion for ¢(z):

Dret(xay) DF(IE,?/)
A 20 —1 A 20 =1t
1
1 ! f
, \
, | antiparticle pair creation
_ propagation .
l’i - ;Ci -

4.4 Symmetries and the Noether Theorem

Noether theorem in classical mechanics:

Every continuous symmetry of a system leads to a conservation law, e.g.
e Rotational invariance = conservation of angular momentum.
e Translational invariance = cartesian momentum conservation.

Now: generalization to field theory.

4.4.1 Continuous symmetries

Definition:

A field theory possesses an infinitesimal continuous symmetry if a transformation

Or = b = O + 0w AL(9),

leaves the action invariant,

Notation:

e (Ow, = infinitesimal parameters of the transformation
B const. for a global symmetry,
N function(x) for a local symmetry.

43

(4.44)

(4.45)
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o A%(¢) = functions of all fields ¢, and their derivatives.
e Index a = “internal” index or Lorentz index (a may stand for multiple indices).
e Index k runs over all fields ¢y.

Implications for £ and S:

If all ¢ — 0 sufficiently fast for |2#| — oo, the invariance (£45) of S implies that £ can
only change by a total derivative:

5L = £(6) — £(8) = (K™ (6)5wa) + O(6?), (4.46)
1) = Slol+ [ ' (K™ (9)5) = SIoL. (4.47)

= surface integral (Gauss!) =0

Example for internal symmetries:
e (1) symmetry of a complex scalar theory:
L = (9,0")(0"¢) — m*¢*¢ — V(¢*¢) = invariant under trafo
¢ = exp{—iqw}¢, ie. A(¢)= —igp with ¢ = const. (4.48)

Note: If ¢ describes an electrically charged particle, ¢ — ¢’ is an elmg. gauge
transformation with g being the electric charge.

e SU(N) symmetry of N complex scalars: & = (¢,...,¢n)T
L= (9,0)1(0"®) — m*®'® — V(®'P) = invariant under trafo

= U, with UU=1, det(U)=+I, (4.49)
~—_————

U = “special”

SU(N) = group of all special, unitary N x N matrices U.
Exponential parametrization of U and infinitesimal transformations:

Ulw,) = exp{—igTw,}, T* = generators = matrices, g = const.

U(bw,) = 1—igT%w,+ ..., ie. AL(¢) = —igTion (4.50)
Properties of T (since UT = U~1):

Uldw,)™t = U(—dwy) =1 +igT"w, + ...
= U(bwy)' =1 4+ig(T") 6w, +... = T*=(T*)" = hermitian,
1 = det(U) = exp{Tr(—igTw,)} = Te(T*) =T =0. (4.51)

= a=1,...,n=N?—1 = # independent traceless, hermitian N x N matrices.
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e SO(N) symmetry of N real scalars: & = (¢1,...,¢n5)"
L (0,2)"(0"®) — sm*®T® — V(®T®) = invariant under trafo
® = R®, with R'TR=1, det(R)=+1, (4.52)
SO(N) = group of all special, orthogonal N x N matrices R.

1
2

Exponential parametrization of R and infinitesimal transformations:

R(w,) = exp{—igTw.}, ... AL(¢p)=—igTdi. (4.53)
Properties of 7% (since RT = R™1):
Ty, = —T1}5, = imaginary, 1, =0, a=1,...,n=N(N —1)/2. (4.54)

Space-time symmetries:
e Space-time translations x# — z/* = z* + wH with w” = const.:
(z) = ¢(2) = p(r—w) = ¢(2) —w,0"P(2)+O(W?*) = A¥(¢p) = —0"¢, (4.55)
i.e. index a acts as Lorentz index pu.
Transformation of the Lagrangian:

L =L(xr—w)—L(x) =—-w,0"L = w,0,K" = KW =—g"L. (4.56)

4.4.2 Derivation of the Noether theorem

Noether theorem:
For each global symmetry of the action,
Ok — O + 0w AL(D) 0L = 6w, 0, K", dw, = const., (4.57)
there is a set of conserved currents j*,
0= i = 00j0 + Vi, (4.58)
if the fields ¢, satisfy the EOMs.

Proof:
0 = 0L 5ud K (o)
oL Y oL ) .
— %(SwaAk@b) + M&%@Ak(@ — &Uaa“K u<¢)
EOM oL " oL . .
= 0O {m] dwa Ay (9) + méwaauAk(éb) — 0wa 0, K" ()
oL
— B, | G AO) ~ K o
u /

Note: A sum over repeated labels k is implied. q.e.d.
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Implications:

e Noether currents:

HONTINE oL a _1ra, ja
I = ey MO — K)ot =0 (4.60)

Note: 7% only fixed up to a constant factor.

e Noether charges:

@)= [@jen) = [do] m a0 - K@) @

Charge conservation:

Q“(t):/ d%aojavo(t,f):—/d%ﬁja = —7{ PPA-j"=0, (4.62)
1% v A(V)

—const. Gauss

if the currents j® vanish sufficiently fast for |7] — oc.

4.4.3 Internal symmetries and conserved currents

— Reconsider examples from Sect. [£.4.7]
e U(1) symmetry of the complex scalar theory:
L= (0,0")(0"¢) —m*¢*d =V (¢"9), ¢ =exp{—iqu}e, A(¢)= —igp. (4.63)
Noether current:

. . oL oL
7= ‘lq<a<au¢>¢‘a<au¢*

.k . A
= g0 0o with  f(2)0ug(x) = F(2)Du9(x) — (D, f (@)a(x).
Note: Result agrees (up to prefactor) with conserved current of Sect. B3l

>¢*) — ig[(@67)0 — " (@) (464)

Conserved charge:
Q= /d?’xjo(a;) = iq/d3:7c ¢*<87¢ = iq/d3:7c (m*¢* — om), (4.65)

with explicit solution ([B3]) of free KG equation equation
Q=1 [ 453 [1- D@ - & Pald) ~ WP "+ (Y (D] +ec
g / a5 (Ja()? = (B - (4.66)

= Positive- and negative-frequency modes carry opposite charges,
in line with the antiparticle interpretation of the negative-frequency modes b !
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e SU(N) symmetry of N complex scalars:

n Noether currents:

e oL A? oL A%(
I 5000 O B, )
= [T — (PONTEG]. m=L...n (467

4.4.4 Translation invariance and energy-momentum tensor

Recall:  space-time translations of fields and L:

AL (o) = —0" dx, 0L = —ow, 0, K"  with K" = —g"'L. (4.68)
= “Current” j = energy-momentum tensor 0: (sign prefactor = convention)
oL oL
o = — | ——=AV(p) — KM = —0"¢r — g"' L. 4.69
S50~ K6 = g - (09

= Conserved “charges” () form a 4-vector:
Pt = / d*z 0% = / &P [m0"dr — g™ L] . (4.70)
Individual components:
P’ = /d3:1: |:7Tk¢k - E] = /d3x7—[ = H = Hamilton function, (4.71)
P = —/d3:1:7rk Vér, = field momentum. (4.72)

= “Charge” conservation = conservation of energy and momentum of the fields.

P* =0. (4.73)

The “current” of Lorentz transformations forms a rank-3 tensor, and the associated

Comment;:
“charge” the fields’ angular momentum.

Example: free complex scalar field
L = (0,9°)(0"¢) —m*¢"¢.

e Energy-momentum tensor:

0" = (9"¢7)(0"¢) + (0"9")(9"¢) — " L. (4.74)
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e Hamiltonian:

H=1d+710" — L = |7|*> + Vo[> + m?|¢[%, PY = /d?’a:?-i. (4.75)
e Field momentum:
Pi= / Pz = / B (6" g+ ¢ 0'p"). (4.76)
e Insertion of plane-wave solutions yields
Pr= [ dpp (a@f + b)), (4.77)

i.e. each mode characterized by a(p), b(p) carries
energy o< p° = \/p? + m?2, momentum o< p.

Non-uniqueness issue of 6+

Possible redefinition of 0#¥:

0" = 6" + 0,5 (4.78)
with any rank-3 tensor X°* = —3#” (antisymmetry in the first two indices).
Features of 6
e Conservation: .
00" = 0,0M" + 0,0, = 0. (4.79)
~——  ——
=0 =0 by symmetry
e Field momentum:
Pt = / d3x 0% = pr 4 / Bz 8p2p0“
\% v N——
= 9; 210 since X00H =0
= Pr4 f dZAT R = pr (4.80)
Gauss A(V) )

TV
=0 if ¥ vanishes fast enough for |z#| — oo

= Both tensors are equally suited as energy-momentum tensors.

Comment;:

This freedom can be used to construct conserved tensors with desired properties
(e.g. symmetry, gauge invariance) that are not automatically satisfied by the form
directly obtained from the Noether theorem.



Chapter 5

Canonical quantization of free scalar

fields

5.1 Canonical commutation relations

Consider discrete system with coordinates ¢x(t) and canonical conjugate momenta py(t)
and its quantization in the Heisenberg picture:

qx(t), pr(t) are hermitian operators obeying

e the classical EOMs;

e Heisenberg’s commutation relations.

— Take co

ntinuum limit g, (t) — ¢(t, 7) !

Comment:

Heisenberg picture is more appropriate for field quantization than Schrédinger pic-
ture, because the EOM for the field (which becomes an operator) is known. Recall
the connection of the two pictures by the unitary transformation for time evolution:

Wy = [W(te)) = U Lt to) [10(t)) = const.  for some fixed ¢y,  (5.1)
—— ———
qm. state in H picture qm. state in S picture

= t-dependent

~ B 1 .
— - 2
Onu(t) U (t,to) (O U(tto), (5.2)

qm. operator qm. operator

in H picture in S picture

where the time evolution operator U satisfies the differential equation

AU (¢, ¢ .
i% = HU(t,ty) with Ul(to,to) = 1. (5.3)

49
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Quantization procedure:

Discrete system:

e Canonical variables ¢g(t), px(t)

obey commutators:
[9(t), pi(t)] = R0,
[ (t), au(t)] = 0,
[pi(t), ()] = 0

Note: The commutator relations

only hold for equal times.

e H and L are hermitian operators
obtained from classical quantities

via the correspondence principle:

unique up to
reordering

H(qg', pf")
e The operators fulfill the EOMs:
dge(t) _

) _ %[qmm,
ddet(t) = %[pk(t)vH]

(= classical EOM: &[., ]={.,.})

e States |V) are time independent.

H(Qkapl)

Continuous system:

e Canonical field operators ¢x(z),
7r(x) obey

[gbk(tv f)a 7Tl(t7 ?7)] = lhékla(f - ?7)7
[0k (t, ), du(t, §)] = 0,
[ﬂ-k(ta f)v 71-l(tv ?j)] =0

Note: The commutators only hold
for equal times t = 20 = y°.

e The hermitian operators H = 7T§Z'5—
L and L are obtained analogously:

L(¢5, 005)) — L(¢k, Oor)

e FEOMs:
&%t(t) — %[Qbk(t)’H]’
8%56 — % [m(1), H]

e States |¥) are time independent.

e Microcausality for space-like dis-
tances is demanded:

[6r(x), m(y)] = 0,

[0r(2), ¢u(y)] = 0, ete.,
for (z —y)? < 0, also for 2% # ¢°.
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Comment:
In the canonical formalism Lorentz covariance is not manifest as

* the commutator relations are imposed at equal times,
* the Hamilton operator is not a Lorentz scalar,
* time is singled out in the EOMs.

Observables are, however, Lorentz invariant which can be shown, for example, via
the functional integral formalism.

5.2 Free Klein—Gordon field

Classical: QFT:

Real KG field ¢(z) — hermitian field operator ¢'(z) = ¢(x)

£ = 5(0,0)(0"¢) = ym*¢* — L=3(0,0)(0"0) — 5m*¢”

= (O0+m?)¢ =0 = (0+m?)¢ =0 (operator equation)
Complex KG fields ¢(z), ¢(z)* — non-hermitian field operators ¢(z), ¢'(z)
L = (0,0")(0"¢) — m*¢*¢ — L =(0,0")(0"¢) —m?¢¢

Solution of KG equation:

(z) = / dp [a(P)e ™ + b (p)e™] — o(x) = / dp [a(p)e™" + bT(p)e™]
functions a(p), b(p) — operators a(p), b(p)
real case: b(p) = a(p) real case: b(p) = a(p)

Canonical momentum:

oL .. . oL . e
99 d¢* 99

_ oL _
Dot

#ont =g

Meaning of the operators a, a', b, bt ?

1. Calculate a, af, b, b' from ¢(x), ¢'(z) (inverse Fourier transformation):

/ &Pz e o(x) = / dp [a@e-ip“x“(zw)%(ﬁ— q) + bt ()" (21)35 (5 + @)

1 . 0.0 £ 0.0
_ —ig¥z T g x 4
o [a(@e ™" 4+ b (e LOZ m— (5.4)
d3 —i§® ] _ _l [ —ig%20 bT . iqol“o} ) 5.5
/ xe (b(.ﬁl]) 2 a(q_)e ( q_je ¢O=+/q2+m?2 ( )
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= a(@ =1 [ d ¢ [LigPo(e) + b(a)] = / P9 o), (5.6)

W) =i | Pre=Pot(x)  (derived analogously) (5.7)
with
10,9 = £(0.9) — (3uf)g. (5.8)

0

2. Commutator relations:  (choose z° = 3°)

o @ @) = [0 [ayeren[ o + w6 + i)

20 = 40
v qO — CTQ + m?2
= [~ig"¢(x) + (@), %' () + m(y)] = vt
= —i¢" [¢(2), 7(y)] + ip° [7(2), ' ()]
= —i¢°16(Z — §) +1p°(—1)0(Z — 7))
_ 3,. ailg—p)z (0 | 0
_/dxeqp (¢ +p)|, —\/W
=p2+m?
(27)*24/ P2 + m25(q — p) (5.9)
o [b(),bI(P)] = ... = (2m)*2v/ D% + m25(7 — p), (5.10)
o [a(@),a(p)] =...=[b'(9),b'(p)] =0 for all other commutators. (5.11)
3. Energy and momentum 4-vector:
Pr = / &z [7(049) + 7l (0"¢") — g"°L] (5.12)
Comment:
H Ordering issue of operators solved later (normal ordering).
Energy:
/d?’:p 27T T — (0,0")0"¢ + m2¢Tgb] (5.13)
- /d3x T+ (Voh) (Vo) + m*el¢] (5.14)

I /dp o7 [ala! () + o (Pa() + b () + 6 ()] - (5.15)
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3-momentum:
P=- / &Pz [1Ve + Vo]
- /dﬁ%ﬁ [a(@)a' () + o' (P)a(p) + bEH F) +b@b@] . (5.16)

Commutation relations:

1.0)] =5 [ did{ [0(@).a'®)] '@ + o' (@ [o().a' 7] }
—_—— —_—

=(2m)32p°5(q7—p) =(2m)32p08(q—p)
= %’ (), (5.17)
[H,a(p)] = — [H,a' ()] = —p"a(p), (5.18)
Pad@)| =ml (), |P.al@)] = —pa() (5.19)
= [Pra(p)] =pal @), [P a()] = —p a(p), (5.20)
[P 01 ()] = pb (), [P* b(p)] = —p"b(p). (derived analogously)

(5.21)

4. Comparison with system of independent harmonic oscillators of quantum machanics:

2 1 hw
H=3 |2 pmt] = 3 ) + o
k k

with shift operators ay, a;rg obeying
ak, al] = 0w, [ax, @] = [al,a]] =0 [H,al] = hwal, [H,a] = —hway.
[lustration for energy eigenstate |F):

H (a}|B)) = [, af]|E) + alH|E) = (hew + E)a| E),

ie. aL|E) is energy eigenstate to energy F + hw (aL “creates” energy hw).

= Interpretation of a(p), a'(p), b(p), b' () as creation and annihilation operators for
field modes (=particle excitations):

e oV and b correspond to two independent, free particle types X and X, re-
spectively, both with mass m:

e a(p) / a'(p) annihilates / creates particle X with energy hw = p° = \/p2 + m?2
and 3-momentum p (de Broglie momentum).
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e b(p) / b'(p) annihilates / creates particle X with energy hw = p° = \/p2 + m?2

and 3-momentum 7.
5. Electric current density and charge operators [cf. Eq. @54)):
o= —iq (@066 — ¢1(0"¢)] = ige' e,
Q@ = i [ & (o7~ 70) —ia P o
— o = [ 45 [Pl - AV ]

H Comment:
Ordering issue of operators solved later (normal ordering).
= Commutation relations:

Q. a' ()] = +qal(p), Q,a(p)] = —qa(p),
Q. 6" ()] = —ab" (D), Q. b(p)] = +ab(p),

(5.22)
(5.23)

(5.24)

(5.25)
(5.26)

i.e. a' and b increase charge by amount ¢, while a and b reduce charge by amount g.

= Particle X carries charge +¢, particle X carries charge —q (X = antiparticle).

Def.:  Charge conjugation C

60 (a) = ¢f(x) = / a5 [p@e ™ +d (@], (610() = ola),

i.e. C interchanges particle and antiparticle.

Real KG field:

e Hermitian field operator ¢(z) = ¢'(z) = ¢ (), i.e. a(p) = b(p).
= X = X (Particle is its own antiparticle.)

e Factor 1/2 in H and L.

= Pr= / dp %p“ [a(p)a’(p) + a' (P)a(p)]
with

[Pt a'(p)] =pa'(p),  [P*,a(p)] = —p"a(p).

(5.27)

(5.28)

(5.29)
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e Electric current and charge operators:  j#* = const. x 1, () = const. x 1.

= [Q,d'(®)] = [Q,a(p)] =0, (5.30)

i.e. particle creation / annihilation does not change overall charge.
= Charge gx = 0, X is electrically neutral.
Comment:

The problem with the (divergent) constant in @ is solved by normal ordering (=part
of renormalization process).

5.3 Particle states and Fock space

Idea: construct Hilbert space of qm. states upon applying creation operators to ground
state (analogy to qm. harmonic oscillator).

Definition: Fock space

e Ground state |0) (vacuum, no particle excitation):

0):  a(P)]|0)=0, b(p)|0)=0 Vp, (5.31)
(= (lop": (olal(p) =0, (0[b"(p) =0, (5.32)
Normalization: ~ (0[0) = 1. (5.33)

Note: |0) exists, otherwise energy is not bounded from below.

e Excited states (particle states):

X (1)) = a' (1) |0) 1 particle (5.34)
X (p1)) = b' (1) |0) 1 antiparticle (5.35)
| X (7)) X (p)) = a' (51)a’ () |0) 2 particles (5.36)
|X (7)) X (9)) = b (51)bT () |0) 2 antiparticles (5.37)
|X (7)) X (9)) = a' (51)bT(p2) |0) 1 particle, 1 antiparticle
: 5.38)
X (1) ... X (D) =a'(py)...d'(p,)]0) n particles (5.39)

e Fock space = Hilbert space spanned by all the particle and antiparticle states:
{10),1X (1), 1X(@0)) s | X (BY) - X (0) X (@) - - X (@) s -+ )
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Properties of Fock states:

e The many-particle states are symmetric with respect to particle exchange:

o X X)) = | X)X )
LX) X@E) ) =] X)X F) . (5.40)

= Particles X and X are bosons.  (Fermionic states are antisymmetric.)

e Normalization of one-particle states:

al0)=0

(X(P) 1X(@) = (0]a(p)a’(q)|0) (0] [a(p). a"(@)] |0)
= (2m)*2p"5(p' — (j)(\OLO_)/ = (2m)*2p"8(p’ — §) = Lorentz invariant,

=1

(5.41)

(X(P)1X(@) = .. = (2m)*2p°6 (P — @), (5.42)
(X(p) |1X(@)) = 0. (5.43)

Note: (X (p) |X(p)) — oo for momentum eigenstates.
— Wave packets needed to obtain normalized one-particle states |¥) with (¥|¥) = 1.

Vacuum state and normal ordering:
Vacuum state |0):  no particle, i.e. (0|P*|0) =0, (0/1Q]0) =0, etc.
But:  These conditions are not fulfilled automatically.

— Enforce condition “by hand” (concept of normal ordering), since
usually only changes in energy, momentum, etc., are measurable.

Example: vacuum energy of real scalar field

(1810) = 0] [ dp 53°la(F)a’ () + ' (a(a) o)
~ [ 452 0o, o' @] +2 Qla' a0} 0

= (271')32])05(57 m7 =0
with (27)38(p — p) — V = space volume
d3p pO

number of states in V
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= (H) for a state |f) = /dﬁ f(P) |p) (wave packet),

/ being a square-integrable function, / dp | f(P)* < oo:

IH|f) = / BIFAPFE + (0H)

m7
finite, observable non-observable for
time-independent |0)

— Redefinition of H upon subtracting (0| H|0)
Definition: normal ordering

A= A = (0]:A:]0)=0

’all annihilation operators shifted to the right

Examples: : a(p)a'(p) : = a'(p)a(p),

La(k)al (F)a(@)al (p) : = af (F)al (Pa(k)a(p).
Redefinition of all operators, also of £, H, etc.:

e Definitions:

particle number density operator: Nx(p) = a' (P)a(p),
particle number operator: Nx = /dﬁ Nx(p),
antiparticle number density operator: N (p) = b (P)b(p),
antiparticle number operator: Nz = /dﬁ Nx(p).

e 4-momentum operator:
Pt = [ dpp (NVx(@) + Nx (7).
e clectric charge operator:

Q- q/dﬁ Nx(7) — Nx ().

27

(5.45)

(5.46)

(5.47)
(5.48)

(5.49)
(5.50)

(5.51)

(5.52)
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5.4 Field operator and wave function

Interpretation of field operator

Consider one-particle wave packet for particle X (charged scalar):

X)) = / 4 () |X (7)) = / a5 £ (7)a (7) |0) (5.53)
Interference with state ¢'(z) |0):
Olo()|f) = / 4 £(7) (06(x)al (7)]0) (5.54)
_ / a5 1 (7) / dk e (0la(F)al (7)]0) (5.55)
_,—ﬂ/
= (2m)3(2k9)é(k—p)
- / dp 7 f(7) = oy (x). (5.56)

Compare with wave packet of non-relat. QM:

o) = 1s00) = [ 55 1@ 17,

[67(0) = U(4.0) 05(0)) = expl=iBit} 05) = [ G5 e 71|, o
. . d3p —ip% /= o d3p —ipx
(e, ) = @y 0) = [ s 1) i - [ e i
= (Fl exp{~iH1} ) (5.57)

= (z) is analogue of one-particle wave function (¢, z) = (Z]1)(t)) in QM.

¢'(z) |0) is analogue of exp{+iHt} |¥) = Heisenberg state (¢ = 0) corresponding to
position eigenstate |Z) at time ¢, i.e. describes particle created at position & at time ¢.

Space—time transformations: = — 2’ =Azr+a
e Qm. states:
)= |fYy=U(A,a)|f) with U = unitary operator. (5.58)
< Transition amplitudes (f’|¢") = (f|UTU|g) = (f|g) = invariant.
e Field operator:
¢(a') = U(A, a) ¢(2) UT(A, a), (5.59)

so that scalar products (f|...¢(z)...|g) = (f'|...¢(2')...]¢') = invariant.
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e Wave function:

p'(a') = (o) f) = (0] U(A, a) ¢(x) UT(A,a)U (A a) |f)

N J

TV
= (0| = invariant =1

= (0lg(2)[f) = ¢(x). (5.60)
= p'(x) =9 (A_l(x — a)) ) (5.61)

5.5 Propagator and time ordering

Concept of time ordering of operators is very important in QFT.

Definition:  Time-ordering operator T

T[gbl(xl) .. gbn(:pn)} = ¢ (T3 0iy(Tiy) - .- G, (x;,)  for x?l > :L‘?l > .. .x?n, (5.62)

i.e. “operators with earlier times are applied first”.

(Feynman) Propagator of complex scalar field (cf. Sect. 3.2)

iDr(z,y) = (O[T [¢(2)6'(y)]| 0). (5.63)

Proof:

Time-ordered product of two fields:
T [p(2)0 ()] = ¢(2)"(1)0(2° = 4°) + ' (y)p(2)0(y" — 2°). (5.64)
= 0T (6@ W] 0) = OIT [ a5 [alale ™ + V(7]
« / 4 [at (@™ + b(@e]|0)
0" =) [ dp [ dge e ola(a(@)0)
00~ a) [ ap [ ag e o))

o 2° > ¢¥: particle creation at ¥, propagation to x, annihilation at x

o 2° < ¢°: antiparticle creation at z, propagation to y, annihilation at y

e Note: identical charge flow from y to x in both cases

= 9(3;0 — yO) /dﬁ e~ iPle—y) 9(3/0 _ xO) /dﬁ eiP(@=y)
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d4 e~ P(z—y)
:/( P [see Eq. (E42)

2m)* p2 — m? +ie



Chapter 6

Interacting scalar fields and
scattering theory

QFT with interacting fields
— framework for formulating theories of fundamental interactions

But: evaluation extremely complicated
— systematic approximative methods needed

e Exact solutions: only for some lower-dimensional models

e Perturbation theory: expansion in small coupling constants g
— most useful for scattering problems

e Lattice calculations: numerical simulations by discretizing space-time
— useful for static problems (e.g. for bound states in strong interaction)

6.1 Asymptotic states and S-matrix

Asymptotic states in particle scattering

Scattering process:
i) = 1) (6.1)
with

|i) = prepared momentum eigenstate before scattering,
evolving into a complicated mixed many-particle state |i') after scattering,

| f) = specific final state that is contained in |i') after scattering.

Relevant cases:

e 2-particle scattering:  |i) = |ky, ko)

e particle decay: |i) = |E1>

61
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Technical description:
e interaction in finite time interval [—7,T| with T' > any relevant time scale
e initial state |i), : ¢ = —oo (t < —T'), no interaction

e final state |f) ,: t — 400 (t > +T), no interaction

Subtleties:

e Behaviour of ¢(x) for t = 2° — Foo:

¢(x) t:;go élf/_i (bin/out(x)a (62)

wave-function
renormalization
constant

¢

where the asymptotics holds in the “weak” sense (for matrix elements only).

Origin of Z:
¢(x) and “free” fields @i, /out(+) are canonically normalized (commutators!), but

— Free fields only have non-vanishing matrix elements with one-particle states:
(Ol )k}, = €7 (6.3)
— Interacting fields interfere also with multiparticle states:
(0[¢(x)|k1 . .. ky) # 0. (6.4)
— Relation between wave functions:

(0p(2)|k) = Z'% (0] din ot (2)|E) (6.5)

e Interaction changes mass value (mass renormalization):
Asymptotic fields satisfy the free KG equation,

Comment:
Z can be calculated from the vacuum expectation value of [p[x), ¢(y)] (see e.g.
[2,3]). Under some assumption (finiteness), one can show that 0 < Z < 1.

(D + m2)¢in/0ut<x> = 0. (66)
but mass m # m = mass in original Lagrangian.

e Note: in lowest order of perturbation theory: Z =1 and m = m.

Higher orders deserve care, i.e. a proper renormalization.
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Scattering operator, “S-matrix”
Free in/out states form orthogonal bases of two isomorphic Fock spaces.

< Connection by unitary transformation S (ST = §71):

e Transformation of states:

Slado = - owlal = wlalS,

out

S|0) = |0),, = |0),, = |0) (vacuum states can be identified)

out
e Asymptotic field operators:
(bin(x) - S(bout(x) ST’

so that
in <a‘¢in‘6>in — in <05|S¢outST|ﬁ>in = out <a|¢out‘6>out ) etc.

e Poincaré invariance of matrix elements requires:
S =U(A,a) SUY (A, a),

Probabilities for qm. transitions |i) — |f) are proportional to |Sy;|* where

Sfi —in <f|S|i>in — out <f|l>1n — out <f|S|i>out’

i), = prepared free momentum eigenstate,

|f);, = measured free momentum eigenstate,

| f)ous = state |f),, evolved back in time to interfere with |i), ,
Aim:  perturbative expansion for Sy;

— derive relation between S, time evolution, and H

6.2 Perturbation Theory

Recapitulation of qm. time evolution pictures:

1. Schrodinger picture:

States carry time evolution, described by the time evolution operator U:

[W(t)) = Ul to) [1(to))
AU (¢, 1)

7

o = HOUE ), Ulteto) = 1.

Properties of U:

63

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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e unitarity:
Ult,to) = U tg, t) = Ul(to, t), (6.15)
e group composition law:

Ut, "YU to) = Ult, to). (6.16)

Iterative solution:

WLM:J—RWmUﬂwWﬂm)

to

t
:1—1/ dt' H /dt’/ dt"H(EYH(") + ...
to

:1—i/t:dtH 2 dt’ U dt" H(t")H (' )+/t/tdt”H(t”)H(t’)]

TV
interchange integration
variables t' < "’

+ ...

:1—i/t dt' H /dt/dt”T H({"] + ...
= T exp [—i /to dt’H(t’)]

2. Heisenberg picture:

States are time-independent and tied to the S picture at some time #:
[0)u = [¥(to)) = Ulto, t) [(2)) - (6.17)
Operators are transformed in such a way that matrix elements remain the same:
Ou(t) = U'(t,ty) Ot) U(t, to). (6.18)
= EOM for operators:

dOu(t)
dt

= i(vtowu +utoq) )+

— [oult) Hult)] +1 (25 (619
with Hy(t) = Ut (t,t0) H(t) U(L, to).

3. Interaction picture:

e Hamilton operator split into a free and an interacting part,

H(t) = Ho(t) + Hine(t) (spectrum of Hy(t) known) (6.20)
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e Time evolution from Hy removed from states (as in H picture):

(1), = UL (E,to) [ (2)) O1(t) = U{(t,to) O Us(t. 1) (6.21)
with the time evolution operator Uy of Hy,

dUs(t,to)

n = Hy(t)Up(t, to). (6.22)
e FEOM of the states:

i%W(t))I:HI(t)w(t)h with  Hi(t) = U (t, to) Hin (1) Uo(t, 1) ,  (6.23)

i.e. states evolve in time with the interaction Hamiltonian Hj.

e EOM of the operators:

.dOu(t o0(t .

i dlt< ) _ [On(t), Hox(t)] + ( ai >) with  Hox(t) = U(t, to) Ho(t)Up(t, L),
I
(6.24)
i.e. operators evolve in time with the free Hamiltonian Hy .

e Time evolution operator U in the I picture:
() = Ug(t, 1)U (¢, o) [90)y = Ur(t, to) [) (6.25)
O1(t) = Uy(t, to) Ou(t) Ui (t, to) , (6.26)

dU t,t

Iét 0) - UOT(t, tQ)Hint<t)U(t, to) = Hl(t)UI<t, to) (627)

Formal solution:

Ui(t, to) = T exp [—1/: dt’ HI(t’)] : (6.28)
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Application to scattering in QFT:

Comment:
Here we assume Z = 1 and m = m, which is sufficient for the lowest perturbative
order and, thus, for this lecture.

e Initial states: take t,ty < —7T and subsequently —7" — —o0.

o H picture and I picture are identical (no interaction yet).
o [(t))y = [¢(to))y = [i);, = const.
o Urlt,to) =1,  ¢i(z) = @(2).

e Interaction period: to<-T <t <T.

o [9(t))y = Ui(t, o) |1)y, = Ur(t, =T) [i)yy, -

o ¢wm(z) = Ui(t,—T) ¢(z) Ui (t,—T).
——" ——
I picture H picture

e Final states: to < -T <T <t.

o |Y(t)); = Ui(t, to) i)y, = U(T, =T) |i),, oo g li),., where
S = Uy(oo, —00). (6.29)

o ¢w(r) = Ui(t,=T) ¢(z) U{ (t, =T) = U(T, =T) Gous(x) U} (T, =T)
2% S Pour(z) ST
o |f(t)); = Ui(t,+T)|f),, = test final state, where | f). typically is some measured

free momentum eigenstate.

e S-matrix element:

LFO@) = (F] UL DU, =T) i)y,
— U\(T,~T) > § (6.30)
— in <f|S|Z>m = out <f|l>1n = sz

Note: i), and |f),, are Heisenberg states corresponding to ¢t — —oc.
e Operators in the I picture:

o Field operators (for all times ¢, see above) for free particle propagation:

() = Ur(t) o) U (1) (6.31)
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¢ Hamiltonian (needed for time evolution):
HI<t) = UI<t>H1nt<t>UIT(t)7 Ul(t) = Ul(tv _OO>

_ / &3 Uy (t) Hane (6(2), () UF (1).

_ / B Hong (610(2), n(2)). (6.32)
Example: scalar field theory with interaction potential, Li(¢) = —V ()

Hy(t) = /d3x Ur(t) Hint (¢(2)) Ul(t) = /d%?—iim (¢im(2)) (6.33)

with
Hint(gbin) = V(gbln) - _'Cint(gbin)- (634)
Comment:
This transition is more complicated if the interaction V(¢) involves derivatives, i.e.

if Hint involves canonical momenta. Then, in general, Hini(¢1) # —Lint(¢1), as e.g.
in scalar QED.

e Perturbative expansion of S-matrix:  (|7) = |7),, |f) = |f):.)
S = (f|Texp {—i/d‘*:c?—lim((bin(az))} i) (6.35)
= (410 =1 [ %o (7T (o) ) (6.36)

+ Z (_i')n (H/d4xj> (AT Hant (Din(21)) - - Hint (D1 ()] 1) -

n:
n=2
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6.3 Feynman diagrams

6.3.1 Wick’s theorem
Task:  Computation of S-matrix elements, i.e. of

<f| T[Hint(xl) cee Hint(xn)] |'L> 3
where Hin () = : (@)L () - - - : with free “in”-fields ¢y, etc.

= Translate time-ordered products into normal-ordered products,
so that (f|a'(p)...a(k)|i) can be evaluated explicitly.

Example used for illustration:  one real scalar field ¢ with

Hin(2) = —% L 3(z) -

Note:  Subscript “in” suppressed in the following.

Definition:  Contraction of free, bosonic real field operators:

—
peee @iy = (0 T i) 0) -« 1o iaBirr Qi By
Example:
—
o(1)6(y) = (0| T[6(1)6(y)]|0) = iDg(r,y),  Feynman propagator

= complex number

Identity for time-ordered product of two field operators (see Exercise 5.2):

Tlp(x)o(y)] =: o(x)o(y) : + (0T [o(x)e(y)] 0)

=:p(@)p(y) : + d(x)p(y).

General case of an arbitrary number of free, bosonic, real field operators ruled by

Wick’s theorem: (Discussion in Exercise 6.2)
1
Tlpr---pn] = :b1---¢n: + Z RN RERY I RRRT
pairs ¢J

—F——
Y kbbb T

double pairs ij,kl

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

Extension:  If some of the fields in the argument of the T-product in (€.42) are within

the same normal-ordered product, they will not be contracted.
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Examples:

e four fields:

1 i —i
Tlpr - Qa] =: 01 Qa4 P12 : G304+ 1 0103 1 Pads+ : P14 : D203
+ a3 <Z5'1_¢|4 + 2ty <Z5'1_¢|3 + P304 <;5'1_¢|2 (6.43)

/o /o —/
+ P1020304 + P1030204 + O104P203,

e pair of normal-ordered products:

TL Gy s dadas] = G1--da:+: iy : dadat: G0 : dahs
1 1

— — /o (6.44)
+ P23 1 Q104+ 9204 T G103 + P1P30204 + P1P1P2P3.

6.3.2 Feynman rules for the S-operator

Application of Wick theorem expands S operator in terms of propagators and normal-
ordered fields:

S = Ui(oo, —o0) = Texp U Az 9 g () :}

3!
—1 + g d*z : ¢°(2)
xXr
2
+ %(g) /d4371 d'ay {: ¢*(21)0"(2)

€ T2

Ty Zo T 4,
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4 3l (m(@))g} o (6.45)

=y o

Feynman rules for graphical representation of the terms o g™:

1. Draw all possible diagrams with n 3-point vertices, connected in all possible ways by
lines (including disconnected diagrams).

2. Translate graphs into analytical expressions as follows:

e External lines for non-contracted fields:

oz) = — (6.47)

T

P(x1)9(w2) = e (6.48)

e Vertices for interaction terms:

ig

3. Include a combinatorial factor (symmetry factor) for each diagram (more detail as
explained below).

4. Integrate the sum of all terms according to
— [ d*xy . Ay (6.50)

6.3.3 Feynman rules for S-matrix elements

Final task:  Evaluate (f|S|i) upon sandwiching expansion of S-operator between states

iy = |k1, .. Km) £ =11, B (6.51)
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Definitions:

e T-matrix

(f185) = {f]2) + IS =1l) (6.52)
~— ————
=0 for |3) #|f), = (f|Ti), T-matriz,
unscattered part only scattered part

< Only the T-matrix contributes to a non-trivial scattering with |i) # | f).
e Transition matriz element (transition amplitude)

GITy = ient (3 k-3 n) My (6.53)

P . .
—~ transition matrix

element

expresses momentum
conversation, due to
translational invariance

Example: 2 — 2 scattering

i) = k1, ka) ) = |B1, o) - (6.54)

Use the expansion of the S matrix (6.45).
— (f|T|i) involves expectation values of normal-ordered operator products:

(P1, 2 = () - V;l,];ﬁ , (D1, p2| 9" (1) 9" (22) - |E17E2>7 n=0,1,2,3. (6.55)
Recall: ¢ = ¢y, = free field.
— Use plane-wave decomposition with creation/annihilation operators a'(p)/a(p):

b(z) = / dp [a(@) e + dl (7) 7] . (6.56)

= Only operator combinations with two a’s and two a!’s contributes in (7}, po] . . . \/;1, /;2),
ie.

(P1, Do = % (1) (w2) : |Fir, Ko - (6.57)

Typical manipulation:

- =

Lo (@) p(ag) ¢ ke) = /d% dgo e e 7N a(qy )a(@) [k ko) +

_ (e—ikwie—ikga&j + e—ikll"je_ilﬁl"i) |O> + ... (658)
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General cases:

e Define contractions of fields with external states:

o). k) = e (6.59)
(..p ] @) = ePm (6.60)

e Perform all possible contractions of fields in normal-ordered products with external
states.

Application to example (71, fo| : ¢2(21)d(x2) © |k1, ko):

e Three types of contractions:

1 LN . .
(D1, P2 ¢2(9€1)¢2($2) ki k) = 22 ¢i(P1tp2)m e_l(lier)ma (6.61)

1 S5 04 . .
(P, Do = ¢ (1) 9" (2) |/€|17k72> = 2% ihmpim gilhamp2)es (6.62)

— ——— 1 . .
(]9717272| : ?2@1)‘22(552) : |k|17 ko) = 27 e ikimp2)r gmilkompr)e2 (6.63)
|

plus the identical contributions with z; <+ x5. = Factor of 2.

e Apply remaining factors and integrals for T-matrix element:

1

37 [ dondie (Ll o)) Bk dade) (601

and use the momentum-space representation of propagator,

Ha1)6(2) = (O[T [6(a1) ()] 0) = / (dq L@ (665)

2m)* 2 — m? +ie

Example:  Explicit evaluation of contribution (G.63):

1 1 g d4 1 —i —T —i(k1—p2)r1 —i(k2—p1)T
532 E;;Q /d4a:1 d4£L’2 / (27:.)74 p g +iee ig(z1—22) 93 (—i(k1—p2)x1 —i(k2—p1)z2

= oy | L9 om)5(q + by — po) e O — )

(2m)* —m? + ie

= 2 4 k} k: - - 1 2 :
(27)76 (k1 + k2 — p1 — p2) (ig) (k1 — pa)? — m2 + ic’

(6.66)

— d-function for momentum conservation appears explicitly [cf. ([E53])];
all combinatorial prefactors have canceled.
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e Sum of the three different contractions (6.61])-(6.63):

i i i

. R 2
lel (19) kl -+ ]{ZQ m2 ]{Zl —m?2 —+ 16 kl —m?2 + i€
1 P
= ki —p1 ki — pa
: ky + ko : I +
Ky  p2
= (ig)” R S (6.67)
s—m2+ie t—m?2+ie u—m2+1e
with the three Mandelstam variables (see Exercise 2.3):
S = (kl -+ k2)2 y t= (kl — p1)2 s u = (kl — p2)2 . (668)

Note:  One diagram of the expansion (645) of the S-operator produces three
diagrams in the expansion of the transition matrix element.

Generalization of the 2 — 2 example to arbitrary processes leads to

Feynman rules transition matrix elements in momentum space

for contributions proportional to gV term in iM}; for an n — m scattering process:
1. Draw all possible diagrams with N three-point vertices and n + m external legs.
2. Impose momentum conservation at each vertex.
3. Insert the following expressions:

e cxternal lines:

—e =1 (6.69)
e internal lines: )
i
- o = 6.70
q > — m? +ie ( )
e vertices:
=g (6.71)

4. Apply a symmetry factor 1/Sg for each diagram (see below).
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5. Integrate over (loop) momenta ¢; not fixed by momentum conservation according to

d4qi
/ el (6.72)

Note: In our 2 — 2 example S; = 1, and all momenta were fixed by external momenta.

Comments to the general case:

e Loop momenta (not fixed by external states):

Systematic counting:

— 1 momentum integral per propagator.

— 1 space—time integral per vertex (yields momentum conservation at vertex).

Above example: /d456’1 e iathi=p)Er — (OmyA5 (g 4 Ky — po).
— O-function for overall momentum conservation split off from M ;.

= remaining # momentum integrals is given by

L = +#propagators — #vertices + 1 = number of loops in a diagram. (6.73)

= Perturbation series for My, is an expansion in # loops:

— L =0, leading order, Born approximation,

— L =1, next-to-leading order, one-loop approximation,

o Symmetry factor Sg:

Sa # 1 results from two sources:

— Incomplete cancellation of factor 1/3! in Hiy(z) = —% C¢3(x) 1
because some contractions to propagators are diagrammatically equivalent.
— Incomplete cancellation of factor 1/n! in nth term of S = Texp{...} ,

because some permutations of vertices x; are diagrammatically equivalent.

Sa, = # permutations of internal lines or vertices that leaves the diagram unchanged

= the order of the symmetry group of graph G.
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Examples:

2 2 1 1
Sa = 2, since etc.
1 1 2 2

< only (3!)2/2 different contractions.

Y T
—@7 Sa = 2, since —@— = —@— etc.
T Y

— only 4!/2 different permutations.

e Disconnected diagrams:

Momentum conservation at each vertex

— “overall momentum conservation” in each connected part of a diagram.

Example:
: P2
k:l gjl X 5(/{71 + D1 +p2) 5(/{72 + p3 +p4).
ko p3

Contributions only for exceptional momenta, corresponding to different scattering
proceeding in parallel.

=- Contributions irrelevant for single scattering reaction.

o Vacuum diagrams:

= (sub)diagrams with no external legs, e.g.:

S

— Vacuum graphs always factor from remaining graphs of the diagram.
— They modify each S-matrix element Sy; by the same factor.

— Vacuum correction factor calculable as
(01510) = (0|U;(00, —00)|0) = phase factor, (6.74)

contradicting the initial assumption (G.8) |0) = S |0).
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= Redefine
UI<OO7 _OO)

5 = Ol (00, —o0)[0)°

so that (0/S]0) = 1 and all vacuum graphs cancel in observables (i.e. they can be
ignored in practice).

6.4 Cross sections and decay widths

Cross section:

Definition: dN, = do X F ,
~—~ ~~~ ~~~
# scattering events / time differential incoming particle flux
with particle f; carrying cross section __ #interactions

5 area X time
momentum py,

where
N1Novpe . . . .
P A s LG N1 2 = # incoming particles type 1,2
and v, = relative velocity between incoming particles.

Wi - d*py

o dN, = . V L) NN, ,
T H < (27)3 12
~ =1

transition rate

d3
with V <2p;g = # states of stationary waves in a box with volume V.
s

e Transition probability Wy; for i) — |f):

LTI P
MERRTIRNTD o)

which is not well defined as | (f|T']i) |*> o< [0(p; — pg)]” and (f]f), (i) — oo.

Solution:

Box with finite extension in space-time, volume =V - T"

@ B — ) — VT @) — py).
@) = oS- ) oy (6.76)
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=1
1 d3
do = ——— (2m)*5(p; — py) -
4p22pl2vre (H (2 ) (pi — py)
flux fact e g

= d®y, invariant phase space volume

Using the Lorentz-invariant form of F,

0 ,,0 _ 2 2 : 2 __ 2 2 2
DiyPiy Urel = \/(pilpi2) - (mi1mi2) ) with by, = My, Pip, = My,

do takes the final form:

do = |Mfi|2 dq)f.
4\/<pi1pi2)2 - (milmiz)Q

= Total cross section:

1
Ttot Z/dcf = /dq)f (M|,
4\/(pi1pi2)2 - (mi1mi2)2

Comments:
e do is Lorentz invariant.

e For polarizable particles (# scalars):

7

) |Mfl |27
—~

transition
matrix element

(6.77)

(6.78)

(6.79)

— initial state: take specific polarization or average over incoming spin states,

— final state: analyze specific polarization or sum over outgoing spin states.

e Identical particles in final state:  exclude identical configurations in / ddy.

— Factor 1/(n,!) for nx identical particles of type X in full integral.

e Differential cross sections:

Leave one or more kinematical variables in / d®; open.

Example:  Distribution in scattering angle 6 for the particle f:

do
7 /daé(@—eﬁ).
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Decay width:

Particle decay: X — fi+---+ fn

— Treatment analogous to scattering!

Results:
e Partial decay width:
1
Iy = %/d@f\fo\Q- (6.80)
e Total decay width:
Lot = Z Ixog, (6.81)
f
~—
sum over all
decay channels
. I h
= Particle lifetime: 7x = )
1—‘tot

Note:  Treatment of polarizations, identical particles, and differential distributions
analogous to cross section.

Example: ¢¢ scattering in ¢* theory in lowest order

Process:
d(k1) p(ka) — o(p1) P(pa), momentum conservation: ki + ko = p; +p2.  (6.82)

e Momenta in centre-of-mass frame:

ki2 = (E7 07 07 :l:BE>7 ki2 - m27 (683)
m2
with FE = beam energy, [ =14/1— oo velocity,
Pio = (B, £EBsindcos p, £EBsinOsin o, £ Ef cos ), piQ =m?, (6.84)

with 0 = scattering angle = angle between p; and k.

e Mandelstam variables:
s = (ki +ky)? = 4E7, (6.85)
0
t= (k1 —p)? =p> +ki—2p -k = —2B°FE*(1 — cosf) = —43*E? sin® 3 (6.86)
6
u= (ki —pg)? == —4B*E*cos? 2 (6.87)
s+t +u=4m>. (6.88)
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e Born diagrams:

k1 D1 ky, P1 k,k, P
: ko D2 : ko p2 ko D2
s-channel t-channel u-channel

= (ig)?

= dependent on E and 6, but not on ¢ (rotational invariance wrt beam axis!).

i

(6.90)

—m2+t—m2+u—m2

e (Cross section:
1 1 1

(kiko)2 —mt  4\/Ei(1+ 022 —md  SE?f

— flux =

— phase space:  (see Exercise 7.1)

1 A(s,m?m?) B
/dq)z =7 o /dQl = 392 /dgp /dcos@. (6.91)

27)2

= o = ﬂux/d<1>2|Mfi|2

4 2

g 1 1 1
——— [ d dcos 6 . (6.92
2567T2E2/ <p/ o8 L—mQ +t—m2 +u—mQ} (6.92)
SN—

J

~
— 2w expressible in terms of logarithms
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Part 11

Quantization of fermion fields
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Chapter 7

Representations of the Lorentz group

7.1 Lie groups and algebras

— Continuous groups (e.g. Lorentz / Poincaré groups, many internal symmetry groups)

7.1.1 Definitions

A Lie group is a group whose elements g are parametrized by a set of continuous parameters
W ,a=1,...n: g(w) = g(w, ..., w,).

e Group-multiplication law:

g(w)g(w) = g(o")  with  wi = falws, wi), (7.1)
——

differentiable functions of wy, W/,

e n = dimension of the Lie group,

identity e corresponds to w, = 0 by convention:
g(0) =e. (7.2)

A Lie group is called compact if the set of all w, is compact.

A Lie group is called connected if every element g(w) is connected to the identity e
by a continuous path in the set of the parameters w.

Example: Lorentz group L
e [ = non-compact (space of boosts is non-compact).

e [ # connected (disconnected parts characterized by det A = 41 and A% 2 0);
Li = connected.

83
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CHAPTER 7. REPRESENTATIONS OF THE LORENTZ GROUP

Comment:
Examples:

GL(N,C): general linear group
The 2N?2-dimensional group of invertible complex matrices A (det A # 0).

SL(N,C): special linear group
The (2N? — 2)-dimensional group of complex matrices A with det A = 1.

O(N): orthogonal group
The N(N — 1)/2-dimensional group of real orthogonal matrices M
(MTM =1, so that det M = +1).

SO(N): special orthogonal group
The N (N —1)/2-dimensional group of orthogonal matrices M with det M = 1.

U(N): unitary group
The N2-dimensional group of unitary matrices U, UTU = 1.

SU(N): special unitary group
The (N? — 1)-dimensional group of unitary matrices U with det(U) = 1.

Definition:
A representation D of a group G on a vector space V' is a mapping of all g € G to linear
transformations D(g) on V' that is compatible with group multiplication:

f-g=h = D(f)D(g) = D(f-g) = D(h). (7.3)

V' = representation space.

dimV = dimension of the representation
(if n = dimV < o0, D(g) are n X n-matrices).

Elements v € V' are called multiplets (at least in physics).

Two representations D and D’ are called equivalent (D ~ D’) if there is an invertible
transformation S so that

D'(9) = SD(g)S™", Vged.

A representation is called unitary if the matrices D(g) are unitary for all g.
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7.1.2 Lie algebras

Note: Neighborhood of identity carries almost full information about Lie group G.

Definition:
Lie algebra g = set of infinitesimal deviations from identity e
— vector space with product structure.

Properties of g in a specific representation D(g):

e Infinitesimal group elements g = g(dw) in representation D(G):
0D(w)
0w,

—_iTa
=—iT}

D(g) = D(6w) =1 + dw, + O(0w?) = 1 —iThéw, + O(0w?). (7.4)

w=0

{T%} = generators of the Lie group in D representation
= basis for representation D(g) of g.

e Finite transformations (connected to the unit element) via exponentiation:

D(w) = lim (1- i%TGY = exp (—iw, 1), (7.5)

n—o0

e Composition law of G implies product in g:

Ansatz for composition functions of Eq. ()
falwp, W) = wy+w, + %f“bc wpwl, + ..., (7.6)
e, fulwn, 0) = £(0, ) = wi
— Insertion into composition law:
D(w)D(w) = exp(—iw,T*)exp (—iw,T")
= 1 —iw,T" —iw,T" — %(waTQ)Q — %(ngb)Q — W TT" + ...
L exp (—ifu(w,w)T?)

1 1
= 1—i (wa +wl + éf“bcwbwé) T — §(wa + W) (wy 4+ wp)TT? 4. ..

i 1 1
ie. — wawTT = —%f“bc wpw T — awaw{,T“Tb - éw;wa“Tb
= Basic Lie algebra relation:
TT¢ —T°T" = [T°, T =i f*° T where f®° = —fo. (7.7)
~—

structure constants of g = independent of representation !
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e Jacobi identity of commutators,
(7, (7%, 7)) + [T°, [T, T°]] + [1°, [T, T°)) = 0,

implies
fabkfkcd + fackfkdb + fadkfkbc =0.

e Adjoint representation
(Tyag)ve = —1f*

exists for each Lie algebra.
Commutator relation ([T.7) satisfied due to the Jacobi identiy (7.9).

Important special case: algebra of a compact Lie group

e Matrix tr(7%T") is positive definite.

s Convention: .
td]mT*)::aéw.

= f%¢ are totally antisymmetric, since

(7.8)

(7.9)

(7.10)

(7.11)

[ = =2itr ((I"T° = T°T")T*) = =2itr (T"T°T* — T°T"T*) = cyclic in abc.

e Finite-dimensional representations are unitary:
D(w)! = exp (iw®T°) = D(w)™! = exp (Iw*T*), ie. T =T,
= Generators T are hermitian.

Comment;:

Defining representations of matrix Lie algebras:
T* = N x N matrices with special properties:
e GL(N,C): complex, no restriction
e SL(N,C): complex, traceless

e SO(N): imaginary, antisymmetric

(
e SU(N): hermitian, traceless

(7.12)
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Example: SU(2) = relevant group for angular momentum in QM

e Group elements in the defining (fundamental, i.e. lowest-dimensional) representation:
U = unitary 2 x 2 matrix with det U = 1.

e Generators in the fundamental representation:

T = traceless, hermitian 2 x 2 matrices (a = 1,2, 3).

Usual convention: T“ = OR 0% = Pauli matrices

ot = <(1J é) R (? Bi) = (é _01) (7.13)

(0%, 0% = 2ie"™5¢,  structure constants = €**° = totally antisym. e-tensor (7.14)

Lie algebra:

e Finite group elements in fundamental representation:
Ulw) = exp (—%ﬁ : c?) = cos (—) —i€- d'sin (—) , (7.15)
where & = wé (€2 = 1).

e Adjoint representation:

0 0 0 0
T = 0 —i], T3 =10 0
i 0

adj — adj

0 —1

o O O

Finite group elements:
R(J) = exp(—iTg;w®) = 3dim. rotation matrices with angle w around axis €.

e Any representation: T = J% = components of angular momentum.

7.1.3 Irreducible representations

Definitions:

e A representation is called reducible if there is a subspace H of V that is invariant
under all matrices D(g), i.e. if all D(g) can be written in the block form

D(g) = (Dlo(g ) 52((“(’9))) . (7.17)

e If there is no invariant subspace, the representation is called irreducible.
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e A representation is called fully reducible if all D(g) can be written in block-diagonal

form,
Dy (g) 0 0
pg-| " P (7.15)
0 D,(g)

where the D,, are irreducible, i.e. a fully reducible representation is the direct sum of
irreducible representations:

D=D®Dy®---® D,. (7.19)

e Definitions of (ir)reducibility for Lie algebras analogously.

e An operator C' commuting with all elements of the Lie algebra is called Casimir

operator:
[C,T°] = 0. (7.20)

Some facts about (ir)reducibility:
e Irreducible representations of abelian groups are one-dimensional.
e All unitary reducible group representations are fully reducible.

e Schur’s Lemma:
If a linear mapping A on a vector space V commutes with all matrices D(g) of an
irreducible representation of the group G on V| i.e.

AD(g) = D(g)A (7.21)
for all g € GG, then A is a multiple of the identity:
A= Apl, (7.22)
where \p depends on the representation.

e Schur’s Lemma applied to Lie algebras:
Casimir operators C' < 1 in an irreducible representation.

e In Lie algebras with f2 = totally antisymmetric (e.g. for compact Lie groups) there
is always the quadratic Casimir operator,

Cy = TT" (7.23)

Comment:

Proof that Cy satisfies (.20]):

[Cy, T = T[T, T + [T, T|T* = if® (T°T° + T°T?) = 0. (7.24)
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Example: irreducible representations of SU(2)

— known from the angular momentum in QM

e Quadratic Casimir operator:

J? = Z J®J* = total angular momentum operator, [J 2, .J% = 0. (7.25)

a
= Diagonalization of J? and one component J® possible, usual choice J3.

113

e Irreducible representation DV for each fixed value of j = 0, 315,

J2|j,m) = j(j + 1) |4, m),

. 4 4 . (7.26)
J? |7, m)y =m|j,m), m=—j,—1+1,...j.

{7, m)} = (2j + 1)-dimensional multiplet for each fixed j.

7.1.4 Constructing representations

New group representations from two representations D; (i = 1,2) on vector spaces V;
(dimV; = n;):

e D @ D, on the direct sum Vi @ Vs, of vector spaces (dim = ny + ny):

(D1 @ Ds)(g) = (Dl(fg) Df@)) v v, = (2) L wmev,

ie. (D@ Dy)(g)(v1 ®v2) = (Di(g)v1) ® (D2(g)v2). (7.27)
Representation is reducible by construction.

e D; ® Dy on the direct product Vi @ Vy of vector spaces (dim = nins):

(D1 ® D2)(g)(v1 ® v2) = (D1(g)v1) ® (Da2(g)vs). (7.28)
Representation is in general reducible, but decomposible into irreducible blocks D®:
Dy ® Dy =D @ ... D), (7.29)
Definitions carry over to Lie algebras:  D(g) =1 —iw I8 + . ..
e Direct sum representation on V; @ Vs:
a Tlcsl O a a a
Tpep. = | T8 ) Th,ep,(v1 ® v2) = (T, v1) ® (Th,v2). (7.30)

e Direct product representation on V; ® Vs:

Tl%1®D2 (’Ul ® ’02) = (Tgl’lh) ® (%) + (% ® (TgQUQ). (731)
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Example: product representations of SU(2)

— addition of two angular momenta J; (i = 1,2) with respective multiplets |j;, m;):
T1jrsma) @ |jayma) = (i [jr,m1)) @ [jo,ma) + [ty ma) @ (2 |ja, ma)). (7.32)
Decomposition into irreducible blocks:  (Clebsch—Gordan series)
1, ma) @ o, ma) =Y im iym = mi +ma)  with |ji —jo| <5< i+ o, (7.33)
J

in terms of representation spaces:
DU g pU2) = plit=iz2) gy pli=d2l+1) gy ... @ pUI+G2), (7.34)

Specifically:
DG @ DG = DO g pO)

DY g DM = pO g pO @ D@ ete. (7.35)

7.2 Irreducible representations of the Lorentz group

Recall:  Lorentz transformations and generators (see Chap. [2)

A= exp{—i(l/kKk + ckak)}. (7.36)
boost  rotation

Lie algebra of generators:

[t J9] = ik J*, (7.37)
[J¢, K9] = ie* KF, (7.38)
(K, K] = —ieik J*, (7.39)
Simplification by change of basis:
1 o 3
TY, = §(Jk FiK*"). = [TLT)] = i€’ TF 5. (7.40)

— Lie algebras of L and SU(2) ® SU(2) closely related (complex versions are identical).

Construction of irreducible representations of L':  (analogy to SU(2) case)
Two commuting generators: TP, T3 two Casimir operators: ff , 7_;2 .
— Multiplets |j1, m1; Jo, m2) = |1, m1); ® |Ja2, M), span (21 + 1)(2jz + 1)-dimensional

irreducible representation DU72) for fixed jy, jo:

T3 51, ma; Jasma) = Mg |1, M J2, ma), Ma = —Jay, —Ja + 1, . Ja,

T2\ g1, mas Josma) = Ja(ja + 1) [, mas oy ma),  Ja=0,1,1,.... (7.41)
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Lorentz transformations in DU1:72)-
AULI2) — exp (—i(<ﬁ+ iﬁ)fl(jl)) exp (—i(cﬁ — iﬁ)féjQ)) , [TF T = 0.
Comments:

e Hermitian SU(2) generators T9%) constructed as in non-relativistic QM.

e Angular momentum J= fl + T;.

< DU32) contains angular momenta j = [j; — Jjo|, |j1 — jo| + 1,..., 71 + Jo.

e AUv72) is unitary only for pure rotations (7 = 0).

Parity transformation:
Behaviour of generators:  P: J—=J (pseudo-vector),
P: K — —K (vector).

= P interchanges the two SU(2) factors:
Ty, < Ty, ie P: DUz 5 plizi)
P

= P-invariant representations: D) and DUW2) @ DUz for j; #£ j,.

7.3 Fundamental spinor representations

o DGO Right-chiral fundamental representation

)

Ly, i
Generators: Tl(Q)’ = %, Ty = 0.
Transformations: A0 = exp (—%(gﬁ+ 117)6) = Ag.
Multiplets: X = (;1) , right-chiral Weyl spinors.
2

o D©:3): Left-chiral fundamental representation

0,i (3)i _ O
Generators: T," =0, 1,7 = 5
Transformations: A02) = exp (—%(gﬁ— 117)6) = AL

Multiplets: X = (

91

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)
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Properties of Ag 1:

e Ap; = complex 2 x 2 matrices with det Ag, =1, i.e. Agy € SL(2,C).

e Useful identities:
AL =A7Y A=A (7.50)

e Relation by complex conjugation:

0 1
-1 1 i — g2 —
€ oe = —a", €=io (_1 O)
= A = exp (%(gp—iﬁ)&’*) = exp (—%e_l(cﬁ—iﬁ)c?e) =etAre. (7.51)
complex
= Equivalence: (D(%,O)) ~ DO3)  je DGO (WU o 5(03),
Comment;:

Construction of left (right) spinors from a right (left) spinors:

X € DO (ex™) = eApx* = Ar(ex™), le ex' € D©:3),
y € D©2) . (e7Ix") = e A X" = Ar(e71x"), ie. (e7'x%) € DO, (7.52)

Dirac spinors

Parity-invariant representation for spin—% fermions:  (e.g. needed for electromagnetism)

e Dirac representation:

DGO g pO3) (irreducible under L @ P) (7.53)

e Dirac spinor 1):

b= (zé) . (7.54)

Lorentz transformation of :

v v =(3) = (0 o) v=saw, (7.55)
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7.4 Product representations

Decomposition of products DU172) @ DU1:72) into irreducible blocks:

— Possible upon using relations from SU(2):

e From Clebsch—Gordan series of SU(2):

DU g DU — pU+"0) gy pl+'=10) gy ... g pi='l0)
D9 @ D) analogously. (7.56)

e Independence of SU(2) factors, i.e. [T}, Ty = 0:

DUi2) — pULO) g H(0.42) (7.57)

(.

independent factors

— pUJ2) ® pULis) —  plio) ® D(0:32) ® D10 ® D(0:32) (7.58)
DU10) & DUL0) & p0.2) & D(0.42)
Vuse SU(2) relation (BE)V
= pUititdatis) D DUt —1j2+45) ® pULtitatis=1) D DUdr—=iilili2=7al)

Note:  Reduction important in construction of covariant quantities from products of
multiplets (e.g. invariants for Lagrangians).

Examples:

e [nvariant spinor product:

DGO o DO — po) g poo) (7.59)

trivial representation
(objects Lorentz invariant)

= 32 x 2 matrix A = (a;;) so that
! . . .
ain;g = a;;(Ar)i(ARr) jixr& = aijx;€; = invariant, ie. ALAAR= A. (7.60)
Solution: A = e = totally antisymmetric tensor.

= Lorentz-invariant product of Weyl spinors:  (left-handed case analogously)

(X&) = exi&y, (XE) = € X5 (7.61)
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e J-vector representation:
Required:  real, P-invariant representation that contains spin value j = 1 (vector!).

Simplest candidate:

DG = DY g P ~ DGO g (D(%’O))* (7.62)
To show: 32 x 2 matrices C* so that
XIC{;Q = 4-vector, ie. ALCHAR=A",C". (7.63)
Solution:  (see Exercise 8.3)
Ct=o'= (1,0 0%0%). (7.64)
Analogously:
A GHAL = A*,57, ot =(1,—0', —0? —0o%). (7.65)
= 4-vectors from products of Weyl spinors:
xlot¢,  xloté. (7.66)

e Dirac representation:

Covariants from products of two Dirac spinors ¢y, 1 7

[D(%,m o D(oé)] 2 [D(%m @ DO.3)

S~ S~ S—— S—— —_—
scalar psudo-scalar  vector pseudo-vector anti-sym. rank-2 tensors

Auxiliary quantities for explicit construction:

FH
o= (;)u C:) ) Dirac matrices in chiral representation, (7.68)
o= iy = (o, x) adjoint Dirac spinor to 1 = (;) , (7.69)
: 1 Vopno
Y = Y = =YY (7.70)

= Contruction of covariants:  (see Exercise 9.2)

Pihy = scalar,
P, v50 = pseudo-scalar,
Y"1y = vector,
17" ys12 = pseudo-vector,
1Yy 1py = rank-2 tensor,
Eﬂ“’YV’szz = rank-2 pseudo-tensor.
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Some properties of the Dirac matrices: (see Exercise 9.1)

o (¥} =2¢", ' =0"", {1} =0, (7.77)
o Tr[y"]=4g",  Tr[y""v*7] = 4g"g” — 99" + g"79™"], (7.78)

Tyt o2+ =0, n=01,..., (7.79)
o Tr[ys] = Te[v"v"y5] =0,  Tr[y"y"y*y7s] = —die""”, (7.80)
o ¥y, =4, VO, = —29H. (7.81)

7.5 Relativistic wave equations

7.5.1 Relativistic fields

Requirement by relativistic covariance:

Fields ®,(x) describing a specific particle transform in an irreducible representation of L1
or Ll x P (reducible case: different irreducible blocks = different particles).

Lorentz transformation:  (® = classical field, no operator)

transformation matrix in irreducible
representation of Ll or LIr x P

P(@) = S0 el (7.83)

transformation of
space-time argument
— orbital angular momentum

transformation of
inner degrees of
freedom — spin

Transformations in exponential form:

S(A) = exp{—%wagMo‘B} = finite-dim. representation, (7.84)
(A '2) = exp{—%waﬁLo‘ﬁ} O (z). (7.85)

differential operator
LaB — {L’aﬁB o ZB*B]A)O‘
= generalized orbital angular mom.

i

= d'(z) = exp{ 5

Wag (M + Laﬁ)} o (z). (7.86)
~—_——

— total angular momentum
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7.5.2 Relativistic wave equations for free particles

Basic requirements:
e Qm. superposition principle — linearity of differential equation

General ansatz:

I, (m, i0") ®,(z) = 0, (7.87)
———

N x N-matrix-valued
differential operator

where m = particle mass, N determined by particle spin.

Order of differential eq. <2  (otherwise strange behaviour of solutions).

e Covariance:  (L.87) has to imply

|

0 = TI(m,iAd) ¥ (Az) with @ (Az) = S(A)®(z). (7.88)
= TI(m,iAd) = S(A) II(m,i0) S(A™Y). (7.89)
—~—

could also be in another representation

e Mass-shell condition:
In momentum space only field modes with p? = m? should contribute to solution:

_ ~ _—izp F
() /\i&e O (p). (7.90)
= 5t (27— m) (o)

—~

e Spin projection:
Operator II should project onto genuine spin-j part of representation DU72) where
|71 — Jo| < j < j1+ jo. If 1T does not perform this projection, additional constraints
are needed to achieve it.

Examples:
e Klein-Gordon equation: 5 = 0.
(O+m*¢(x) =0, I(m,id) =9"d, +m*, S(A)=1. (7.91)
i.e. requirements trivially fulfilled.

e Maxwell equation for elmg. 4-vector potential A* in Lorenz gauge:
OA* =0, II(i0) = 0"0,, S(A)=A. (7.92)
Lorenz condition 0" A,, = 0 eliminates spin-0 part in D3 representation, only spin-
1 part remains.

Comment;:
Photons do not really carry spin 1, but helicity A = 41 (=spin projected to direction
of flight), see below.
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7.5.3 The Dirac equation

Wave equations for spin—% fields:

Minimalistic attempt:

Wave equations for x(z) € D@9 and ¢(z) € D©@2) (smallest representations with j = 3):

e Non-trivial transformation property of x, ¢ should result from wave equation (other-
wise additional constraints needed).
— [II(m,i0) should mix field components (i.e. KG operator not acceptable).

e Relevant covariant objects for wave equations:

X, 010,00 € D(%’O), ¢, o0, x € D02, (7.93)
Proof:
x(z) — X'(2) =Arx(z) (7.94)
o"Oux(x) — oI X' (2) = "N, 0, Ar x(2)
= Ay (A;'o"AR) A0, x(2) = Ap o9, x(z). (7.95)
—_———

= Aot Ag = A*,0°
7"0,¢ analogously. q.e.d.
e Consequence: Only possibility for separate wave equations for y, ¢:
a"d,x = 0, 0,0 = 0. Weyl equations (7.96)
Note:  ¢"0,x = cx, etc., not compatible with relativistic covariance !

e Solution of Weyl equations:

Fourier ansatz:  x(z) = e* np with np = (nR’l)'
R2

L= =k ik [(nga
— 0 = <—k1—ik2 3O 4 1 ) <nR,2 ) (7.97)

. J

~~

det(...) = (K9)2 — (k1)2 — (k)2 — (k3)% = k2

= Non-trivial solutions only for k% = 0, i.e. Weyl fermions are massless !

Explicitly: )
cos psin ¢ i 0
0/1 = = . . e ¥ cos g
k= k°(1,€), €= | singsinf = np= e 2. (7.98)
sin 2
cos 6 2
Analogously:

_ _ in ¢
p(x) =e*n,, k=0, np= < S 9) : (7.99)

_elp 0
e cos 3
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The Dirac equation:

Combine Weyl spinors y, ¢ to Dirac spinor @) = (;)

— Two covariant 1st-order equations possible:

ia“@ux = Cl(lg, i&“@ué = C2X-

Note: By appropriate rescaling, equality ¢; = ¢ = m can be achieved.

(Identification of m as mass later.)

(2 5)0)() -

= v#, Dirac matrices

Matrix form:

= (iv"d,—m)y = 0. Dirac Equation

(7.100)

(7.101)

(7.102)

Notation: ¢ = y*a, = y,a" (Feynman dagger) = Diraceq.: (i —m)y = 0.

Covariance:  (see Exercise 9.2)

@) — V@) = SA) @),  SA) = (
g — 4 = e = S(A)dS(A)T

= (i@-m)y(z) =0 — (@' —m)d'(a))
= S(A) (i —m) S(A)~" S(A) ¥(x)
= S(A) (i@ —m)P(x) = 0.

) (7.103)

(7.104)

(7.105)



Chapter 8

Free Dirac fermions

8.1 Solutions of the classical Dirac equation
Dirac eq.: (i —m) ¢ = 0.
Note:  Each component of ¢ obeys the KG equation:
0 = (—ig—m) (i@ —m)y = (9 +m*)¢ = (D+m?)7.
~—

= fy,u,yl/a#ay = %{7#, 'Yy}a,uau = gwjaﬂav =02

Fourier ansatz:

Y(z) = e * u(k), wu(k)= constant 4-component Dirac spinor.

e Eq. (BI) implies k2 = m2. — Set ko = V k2 + m?.

e Ansatz leads to Dirac eq. in momentum space:

(F —m)u(k) = 0.
— 4-dim. system of linear equations.

Solution of Eq. (83) in two steps:
1. Solve equation first in rest frame of k*, i.e. for k* = (m, 0):
cos p sin ¢
k' = (ko k) = AUk, k = |k|& € = | singsinf

cos O

Using the chiral representation for 4* yields
-1 +1
0= (kb —m)ulk,) = m(yv—1)ulk,) = m (—l—l _1) u(ky).

— Two independent solutions of the block form u(k,) = (Z), e.g. n = Ng.

99
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2. Boost k! into original system:

) = s@yar) = (404 ath), 50

. 1. (ko + |E\) .
€dp, v==In — | = rapidity.
} 2 (ko — |K|

with AR:eXp{ge?&}, A = expq —

Simple form of Ag 1, after diagonalizing 85 = Ucs*UT:

e’/ 0 e V2 0
AR = U ( 0 e—y/2 UT) AL = U 0 eu/Z UT) (87)
h U= ( ) = e % cos 4 sin £ vy k0i|l§\
W - \PR L) = sin & —e®cos? )7 ¢ N m
with ng 1 defined in Eqs. (Z.98) and (7.99).
Using Utng = (é) and Ulny, = (?) we obtain:
Apng = e™npg, Apng = e ?np,
ALTLR = e_”/QnR, ALTLL = 6+V/2’I’LL. (88)
= n & ngy is convenient choice for n in u(k,) of step 1.
Two independent standard solutions:
ko + |k
up(k) = S(A)vm (”R) = Vm (ﬁR”R) (Ve
”R LI ko — |k nr
Vo — |k
wld) = s@vim (28] = v () = (V2 ) s
"L L /{Zo + |/{7| ny,

Analogous procedure for ansatz ¢(z) = e™** v(k) leads to (F + m)v = 0 with the
standard solutions:

k’0+|E| nr — k’o—|E| nr,
vr(k) = |V L Cowp(k) = | VT . (8.10)
—\/k’o—|k’|’l’LR \/k0+|k3|nL

Normalization: (7 = ulvyp)
Up(k)ur (k) = 2mdyr, o,7T=R,L,
U (k) v (k) = 0,
Uo (k) ur(k) = 0,
U, (k) v, (k) —2m Opr, (8.11)
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Spin orientations of the solutions:

Spin operator in Dirac representation DGO g DO3);

—

- ﬁ o o 1(ad 0
Definition:  Helicity = spin projection onto direction of flight €

= 1 /e
h=2¢ef == (ea qoq). (8.13)

Standard solutions ug 1, and vg f, are helicity eigenstates:

1 1
hUR = +§UR, huL = —§uL, hUR = +§’UR, hUL = —§vL. (814)

= Particle solutions ¢ g/, (z) = e ¥ up, (k) correspond to helicity states with h = +/—.
Note: Helicity content of antiparticle solutions v_ p/r,(z) = e vp 1 (k) clarified by QFT.

General solution of free (classical) Dirac equation:

V(z) = / dk Y [aa(lg)ua(k:)e_ikx+b§(E)vU(k)e+ikx . (8.15)
o=R,L — —~
arbitrary functions of k

< creation/annihilation operators
for (anti)particles in QFT
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8.2 Quantization of free Dirac fields

8.2.1 Quantization procedure

Classical Lagrangian:
Dirac equation obviously reproduced by

L= () —m)v, (8.16)
considering ¢ and 1 as independent.

Euler-Lagrange equations:

8£_au< oc ) oc

0= %= 505) ~ 5n — @-m (8.17)

0 — % _ e (8(22@) = —my — " (iYy,) = —¢ (m + 15) adjoint Dim(zge(i.g.)

Canonical commutators:

Preliminary consideration:

Commutators [a(k), al(7)], etc., lead to totally symmetric states |k, p) = af(5)a’(5) |0).
But: Fermions require totally antisymmetric states.

—s Use ansatz with anticommutators {a(k),a'(7)} in quantization !

Canonical momentum variable to field ¥ (z):

oL —
= ——— = 1 prm— 1 T
m(x) 0 iy =" (8.19)
Canonical equal-time anticommutators for quantization:
feawitn} = it6@—9. ie {vt2),90¢9} = %oF-7).
{valt @), 0st.9)} = {0alt:®) 05000} = 0, (8:20)
Insertion of Fourier decompositions
P(x) = /dk Z [ (F)ug(k)e ™ 4 bl (F)v, (k)etH ], (8.21)
o=R,L
U(z) = / dk > [ (k)ty (k +“m+bo(/2)vo(k)eikw} (8.22)
o=R,L

yields anticommutators for creation/annihilation operators:
{aeB)al@®} = {bolB) L@} = (27)*2p06(F — 7) b,
{aU(E),aT(ﬁ)} — 0, ete (8.23)
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8.2.2 Particle states and Fock space

Fock space:

e Ground state |0) (vacuum, no particle excitation): (0] = (|0))T, (0]0) = 1.
a,(p)[0) =0, b,(p)[0) =0 Vp. (8.24)

e Excited states (particle states):

|f-(P1)) = al (7)) |0) 1 fermion (8.25)
| £ (71)) = bl (1) |0) 1 antifermion (8.26)
|fo(P1).f-(P2)) = al,(71)al (52) 0) 2 fermions (8.27)
= —al(ph)al(p1) |0) (8.28)
= — | f+(P2) fo(P1)) (8.29)
[: 0 if ﬁl = _»2 and o = 7']
Antisymmetric states = Fermi—Dirac statistics
e Fock space = Hilbert space spanned by all fermion and antifermion states:
{ |0> ) ‘fo(ﬁl» ) ‘fT(ﬁ2>> ) |f0(ﬁ1)f7<ﬁ2>> st }
o (Anti)Fermion number operators:
N7, () = a (Fa (), No= 3 [N,
oc=R,L
N7 (5) = Vb ), No= Y [aNiw. (s30)
o=R,L
— Commutator relations:
[Ny, ab(p)] = +al(p), [Ny, a6(P)] = —aq (D),
[Nfabi(m] =Y [Nfaba(m] =0, (831)

analogously for Ny with a <> b.
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Field operators and wave functions: (cf. scalar fields, Sect. [5.4])

One-particle wave function ¢(x) corresponding to fermion state | f,(p)):

1. (@) = (01 (@)|f-(2)) = (O () al()|0) = 77" uq (p). (8.32)

Space—time transformations of |f), ¥(x), and p(x): =z — 2’ =Az+a
e Qm. states:
If) = |fy=U(A,a)|f) with U = unitary operator. (8.33)

< Transition amplitudes (f’|¢") = (f|UTU|g) = (f]g) = invariant.

Comment:
U(A,a) are transformations in co-dimensional representation of the Poincaré
group, which is spanned by the particle states.

e Field operator:
Y(a') = U(A,a) S(A) ¢(z) UN(A, a), (8.34)
——
transformation of spin part of v (z)
so that scalar products (f|...00; (2)...09()...|g) = (f']...001(2')..002(2")...]¢') = invariant.

e Wave function:

p'(") = O ()]f) = I U(A, a) S(A) (x) UT(A,@U(AM) f)

(. J

= (0| = invariant 1

= S(A) (O] (2)]f) = S(A) p(z). (8.35)
= ¢'(x) =S(A) e (A_l(x — a)) ) (8.36)

Wave functins transform like classical fields.
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Properties of the particle states:
e FElectric charge:
Electric current density: (= Noether current for symmetry 1) — 1)/ = e719%¢))
7" = gy (8.37)
= Operator () for conserved electric charge:
Q=a [ @i i =q [ a5 Y @)~ @] = a7 - Ny
o=RL (8.38)

Charges of particle states:

Q1f5(2)) = a(Ny — Np)al(p) 0)

= o o) - @) 0 = a5, (539
—ao(ﬁ) =0
QD) == —qlfo(®) (8.40)

= Fermion f carries charge +¢, antifermion f charge —q.

e 4-momentum:

Energy-momentum tensor:  (derived as for scalar fields)

o" = %E?ww. (8.41)
= Operator P* for 4-momentum:
P“z/d% L= = /dﬁp“z [Ny, () + N, ()] - (8.42)
= [P al(p)] = p'al(p), [P",05(p)] = "0l (p). (8.43)
4-momenta of the particle states:
P" |fo(p)) = [P", al(p)]10) = p"al(p) 10) = " | f(P)) (8.44)
P fo(p)) = -+ =" [fo(D)) - (8.45)

= Both elementary fermion and antifermion states carry 4-momentum p*.

Alternative derivation of Eq. (843]) via translation property of operator ¢ (x):

UA=1,a0)" (x) U(l,a) = ¥(z—a). (8.46)
—_—— ——
=exp{—iP,a*} =exp{+iP,a*}

— Taking a* infinitesimal yields
[P (@)] = =i, (x). (8.47)

— Commutators [P*, all (p)], etc. from plane-wave solution for ¥ (x).
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e Spin and helicity:

Make use of Lorentz transformation property of :
U(A,a = 0) (x) U(A, 0) = S(A) w(A~12), (8.48)
where

o U(A,0) = exp{—%ww,j"”},
with J" = abstract operator of generalized total angular momentum,

A 0 . . I, .
o S(A) = < R A ) = spin transformation matrix in Dirac representation,
L with generators M*”.

o 1 /0
S = 3 <g 2) = spin part of M* see Eq. (812I). (8.49)

o Y(A™') = exp{—jwu L} ¥(2),
where LM =i(zt0” — x¥0") = generalized orbital angular momentum.

Connection between J*”, M*”, and L*” derived upon taking w,, infinitesimal:
[T, ()] = = (M* + L) 1)(x). (8.50)

Restriction to rotational part of spin transformation:

[f, lp(a:)] — —Si(x), where J = abstract generator for spin rotations.  (8.51)

= Helicities (€ = p/|p] directions of .J, S) of Fock states:
o Faat] = [0 7. [ atwer b))
= [@aemai) e [Tot)]
= —&- Sy(z) = —h(x)
— [dad ) o)
——

= ul(p) b = [huo(p)]" = 3sgn(0)u(p)",
where sgn(R/L) = +/—, see Eq. (814
1

= ——sgn(o) /d?’x e ul (p) ()

= —=sgn(o) a,(p), (8.52)

|
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& Tbh ()

| I
I
1
@]

~
| \
o
w
8
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=
8
4
QT+
—
=
S—
—
8
SN—
| I

. / d e P ol (p) h 1(x)
——
= [hue(p)]" = Lsgn(0)v, (p)', see Eq. (EIF)
_ —%sgn(a) o (7). (8.53)
- 1 1
= [FTab@)] = +3sem(@)al@), 7 L)) = +55en(0) b (D). (8:54)

& T 11,() = [¢+ 7,al ()] 10) = +5s8m(0) a7 10) = +55m(0) |£,(7))
& T Jo(7) = . = —gsen(o) | F,(0)) (8.55)

i.e. fermion state |fr/z) has helicity +/—,
but antifermion state |fz/z) has helicity —/+.

8.2.3 Fermion propagator

Definition:
(0| Tep(x)(y) [0) = iSp(x,y) R fermion propagator (8.56)
Note:  Each (anti)commutation of two fermionic operators in : ... : and T'(...)

products leads to a sign change !

Calculation of Sp(z,y):
OITeE 10 = O [ dféiaj[aaa?)uo(k)ei'm+bi,<f¥>vo<k>e“’“]
<[y e 0 e |0
= Se-w) (0] [ db [ S 7 0 (Rl 7)1

— fermion propagation from y to x

— 6(yo — 0) (0] / i / a5 3 e =, (Y5, ()b, ()b (F) [0)

— antifermion propagation from z to y (8.57)
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Using (0| aq (K)al(p) [0) = (27)32k°0(k — §),,, etc., this yields

(01 Ty (2)¥(y) 0) = (w0 — yo) / dl e N "y (k) (k)

TV
= k+m,  completeness relation,
see Exercise 10.1

— O(yo — ) / dk e "0, (k)T (k)

— fm
= 0(xo — o) /dl% e FE=Y) (B 4 m) — O(yo — 20) /dl% eF@=Y) ( —m)
_ / ﬂefik(mfy) i(f+m)

,  as for scalar propagator, see Sect. [4.3.2)

(2m)* k? —m? + ie
' ik jeik@y) : .
=G+ m) [ o — (e m)iDeey). (559

Consequences of Sp(z,y) = (i@, +m) Dr(x,y):
e Sp(x,y) has the same causal properties as scalar propagator Dp(z,y).

e Differential equation:

(i —m)Sp(a,y) = (i0e —m)(i@s +m) Dp(x,y) = —(0, +m?) De(, y)

Sr(z,y) is inverse of the Dirac operator (ig — m).

8.2.4 Connection between spins and statistics
Spin statistics theorem:

e Fields with integer spin (0, 1, ...) are quantized with commutators.
— States obey Bose-Einstein statistics.

e Fields with half-integer spin (1/2, 3/2, ...) are quantized with anticommutatorns.

— States obey Fermi-Dirac statistics.

“Proof”:  otherwise several inconsistencies:

e Violation of causality, i.e. violation of
[Obs(z),0bs(y)] = 0 for (z —y)? < 0. (8.60)
e Energy spectrum not bounded from below. — System unstable.

e Statement on relation between spin and BE / FD statistics supported by experiment.



Chapter 9

Interaction of scalar and fermion

fields

9.1 Interacting fermion fields

Interaction Lagrangians with a Dirac fermion:
L=9¢ () —m)y—V (¥, ,). (9.1)

Properties of interaction potential V':
e Each term in V' contains products of at least 3 fields (2 fields — free propagation).

e V = Lorentz invariant. B
— 1) always appears in products 1)...1).

e |/ has mass dimension 4.

(Fields: dim[¢] = dim[A*] = 1, dim[¢)] =

[\ [oV]

)
e V = VT = hermitian.
Examples:
e Yukawa interaction of a fermion and a scalar field ¢:
V =yo¢1), y = dimensionless coupling strength. (9.2)
— Basic interaction between fermions and the Higgs boson in the Standard Model.
e Electromagnetic interaction:

V = Qe Ay, e = elementary charge, Q = relative fermion charge. (9.3)
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Comments on the perturbative machinery:

— works as for scalar fields with few exceptions (signs!):

e EOMs: 5—£ =0, 5—£ =
oY

= 0.
oY
0 . . .
— Operators %, etc., anticommute with fermionic fields.

e Symmetries if fields ®; are bosonic or fermionic:
Pp — Op + dw, AL (D), 0L = 0w, 0, K", dw, = const., (9.4)
Appropriate form of Noether currents (for signs):

o = {Ag(@)%} L—K*(®),  8j°=0. (9.5)

e Contractions for perturbative expansion of S-operator:

. (I)z s (I)j R — (—1)Pij <0| T[(I)Z(I)]] |0> ol (I)i—l(bi—i—l s (I)j—lq)j—i—l el (96)

where P;; = number of necessary commutations for reordering fermion operators.
= With (@.6) Wick theorem also holds as usual.

Examples:

o Tlinihy) = iy + iy = : iy + (0| T[rT) [0),
< T[d’l@zw?;@ﬂ = 31/’1@21@3@43
+ ity (o|T ]
- 3@@3@23 <0|T¢1_4]
+ (0] Tth1eb,]) |0) (0
— (0] Ttre,4] |0) (O

1@3@4 0) +: 1@3@4 2 (0] TW@Q] 10)
Y] 10) —: @51@4 ( TW’:’,EQ] 0)

514 |0)

51,] 10).

—

|
|
| Ty
| Tl
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9.2 Yukawa theory

Definition of the model:

Lagrangian:
£<¢7 1/}7 E) = L@ZJ,O + ‘C(b,O =+ Linin (97)
ﬁmo(@/),@) = 9 (if — mys) 1, Dirac fermion of mass my,
Loo(p) = %(@qﬁ)(@“gb) - %ming ., neutral scalar field of mass my,
Lin (0, 1/1,@) = —y: ¢E1/1 :,  Yukawa interaction.
Hamiltonian:
Hint(6,0,70) = —Ling(¢,9,10), since no derivative involved. (9.8)

9.2.1 Feynman rules for the S-operator

Expansion of the S-operator:

§=Tewp | [ a0 10 (6(0).0(2). 7))
= Tewp |~ [y o) Tl vio):
— 14 (i) T [ [t s 5@ v |

% - {/d%l/d%? P () (1) (@)« @) Y(aa) Plwa) | 4.

+ [ty [ty D) wle)oe)o ()T vie) N4
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+ [ty [y o) T o)) vas) o)

/d4x1/d4x2
/d4x1/d4x2
/d4x1/d4x2
/d4x1/d4x2

(.

3(2) Bla) () B0) V() o)

convenient form for contractions with external states

1

(1) xl)@(m)@b(@)éb(%w(@) :

1

(29) xz)@($1)¢($1)¢($1)¢($2) :

— _ 1

od(x1) P(2) Zwa IE1 $2 @/)ﬂ(@)w (z1)

J/

-~

= tr [0 )T

/d4$1/d4$2 : 901 xz (ffl)@( W( )@(I )3]

/ \

/ \
\ /
\ /
\ /
T X2
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Feynman rules for graphical representation of the terms o< y™:

1. Draw all possible diagrams with n vertices >‘ -
(any number of exernal lines, including disconnected diagrams).
2. Translate graphs into analytical expressions as follows:

e [xternal lines = non-contracted fields:

o) = s
Y(z) = e
P(x) = — (9.10)

e Internal lines = contracted fields (=propagators):

L R
V(1) (22) = e (9.11)

e Vertices = interaction terms:

—iy = - (9.12)
3. Order terms opposite to the fermion flow indicated by the arrows.
4. For each closed fermion loop take Dirac trace and multiply by (—1).
5. Integrate the sum of all terms according to
1
— [ Ay, (9.13)
n!
9.2.2 Feynman rules for S-matrix elements
Consider n — m particle process:
iy =aly, ...al, 10, (f|=(0|as, ...ap (9.14)

where Ay, ..., B,, = scalar or fermion fields ¢, 1, v.

— Only contributions from terms o< agl . .agmaAn ...ay, in S!
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. Select terms graphically: A;, B; = external lines in diagrams

—» e incoming fermion/outgoing antifermion: 1 (z) contains a, b' (9.15)

x

—<—e outgoing fermion/incoming antifermion (9.16)
x

- - - e incoming/outgoing real scalar (9.17)
x

Perform contractions of fields in normal-ordered products with external fields:

Typical manipulation:

U(w)al () [0) = /dk}j[ﬂm Ja (Bt +.]l0)  (0.18)
al (P)ar (F) + {a- (), al, (7)}
%,_/
= (271’ )2p05(p - k)éo"r

=e Py (p)|0) + ... (9.19)

Define contractions with external fermion fields:

S@a (D ]0) = e "uy(p)]0).
W) 10) = e™0,(p)[0).,

)
)

(0l as(p)P(z) = (0[e™ T, (p),
) = (0]e " v, (p). (9.20)

Perform the integration of / d*z; after inserting the propagators:

. d*k k(1) i
iDp(x1,22) = ¢(z1)9(22) = (2n)? e Pl e ar T (9.21)
¢
] o d4k: 71]{)(:13171'2) 1
ISF('Tla x2) = ¢<x1)¢<x2) - W € m = x10—<—0x2 (922)

— Momentum conservation at each vertex.
Calculate symmetry factor for each graph (are all 1 in this model).

Determine the sign for each graph from the permutation of fermionic operators.
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Feynman rules for the transition matrix element M;:

1.

Determine all relevant Feynman diagrams:
e n — m scattering process = n + m external lines.

e Order of perturbation theory = number of loops.
Impose momentum conservation at each vertex.

Insert the explicit expressions (fermionic terms ordered opposite to arrows):

o~ U (p) | Gare U (p)

Iz Iz
—— f () o>—f  Tlp)

P P
---—-¢ 1 ---- ¢ 1

v i 7 ,

P p—my+ie ’_p_‘ p? —mj +ie

- —iy
(9.23)
d'p,

Integrate over all loop momenta p; via /

(2m)*

. For each closed fermion loop take Dirac trace and multiply by (—1). Insert a relative

sign between diagrams that result from interchanging external fermion lines.

Example: >< - X\\//
//\\

The coherent sum of all diagrams yields iM ;.
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Example: the decay ¢ — ff in lowest order

< Practically identical to the decays H — ff (f = b, 7, etc.)
of the Standard Model Higgs boson.

Process:
d(k) = fr(p1) + fr(pa), o, 7 = helicities. (9.24)
Lowest-order diagram: f
/Pl
¢ =3
k \p2
. f
Amplitude:
IM = =iy, (p1) vr(p2)- (9.25)
= D IMP = 7Y (@(p) vr(p2)) (We(p1) vr(p))”
" . = <a0<p1>UT(p2))T
= Ur(p2) ua(p1)
= QQZ (Zua(pl)aﬂa(pl)ﬁ) (Zvr(pQ)B@T(pQ)a>
af o L ,
= (zﬁljr:nf)aﬁ = (252:nf)6a

= YT {(h +mg) (o — my)}
= Ay’ (pip2 —m3),  mi=k* = (p1+p2)® = 2m7 + 2pips

= 2y (m — 4m3). (9.26)
Partial decay width:
1 , .
Lyopf = -~ d®, Z |IM%, for phase space ®,, see Exercise 7.1
¢
pol
4 2,2
11 My — dmym 0 o )
’ —4

3
2 4m2\ 2
= 4T (1——;”) . (9.27)

8 mg
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Quantization of vector-boson fields
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Chapter 10

Free vector-boson fields

10.1 Classical Maxwell equations

Electromagnetic fields:

e j-vector potential: A" = (&, A), & = scalar potential (# Lorentz scalar),
A = 3-vector potential.

o [eld-strength tensor:
Fr = 0orA” — 0" A¥, (10.1)

in components: E=-Vd— f;f, B=VxA.
o [lmg. gauge invariance:  Field strengths do not change under
A — A" = A+ 0'w, w=w(x)= arbitrary function of z. (10.2)
A" is not uniquely fixed by F* (i.e. E, é), and a specific choice is called a gauge.
Examples:

— Covariant (Lorenz) gauge:  0A = 0.
— A" unique up to gauge transformations with Ow = 0.

— Radiation gauge: A° = ® =0, VA = 0.

Maxwell equations:
0= j” =0,F" =0A4" —0"(0A). (10.3)
~

= external current density = O for free A* fields
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Lagrangian density:

1
L = _ZFWFW = gauge invariant (10.4)
1 1 1
= —5(8HA,,)(8“A”) + 5(@14,,)(8”14“) i —A,(¢"0—0"0")A,. (10.5)

Check EOM:
oL oL 1 1
= — — _ = — —Z4%4° /’I‘AV.Q —UPVA“.Q
0 o4, 80(8(8014,))) 80[ 2%5”(8 )24 25;/5”(3 )
= —0,(—0°A? +0°A%) = 0, F°".

Solution via plane elmg. waves:
Ansatz:  A#(x) = et (k) e %,
~——
constant polarization vector

Convenient choice:  covariant gauge
e EOM: 0A* =0 = k*=0, i.e. k* light-like.

e Gauge: 0A=0 = kte(k)=0.
— eM(k) is spanned by 3 independent vectors.

Convenient:  helicity basis

Example:  k* = ko(1,0,0,1), ei(k)=(0,1,4i,0)/v2 = [£(k)]".

Basis: el (k), k*
2 physical “unphysical polarization”,
polarizations part of the gauge degree of
freedom
Normalization: eh (k) ex (k) = —0an.
= General solution of Maxwell eq.:
A'(z) = / dk ) [aw%’) ke 1 ay(B)hikye™ | = A2 (10.6)
A=+ v v

arbitrary functions,
will become creation/annihilation
operators in QFT



10.2. PROCA EQUATION 121

10.2 Proca equation

Aim:  description of massive spin-1 particles
< free field modes with momentum k* should obey k? = m? # 0.

= Generalization of Maxwell eq.:

(O +m*)VF —09"(0V) =0, Proca equation. (10.7)

Features of the free Proca field V#:

e Transversality:
Du(..) = m?(0V) =0, ie OV =0 automatically fulfilled.

= Eq (01) < (dO+m?*)V#=0anddV =0.
e Lagrangian:  (real V#)
L= —iVWV’“’ + %mQVMV“, VI = RV — 9V, (10.8)
— Proca eq. as EOM.
Note: £ # invariant under V# — V'* = V# + Otw.
e Solution via plane waves:
Vi(z) = /d/% Z {a,\(lg)ag‘(k)eikx + ai(k)eh (k) et |, (10.9)
A=0,+
Note: 3 physical polarization states exist for massive spin-1 fields for each k*.
Helicity basis for k* = (ko,0,0, |k|), ko = VE2 + m2:

A==+l et (k) = (0,1, 4i,0)/V2, transverse polarizations,
A=0: el(k) = (|k],0,0,—ko)/m,  longitudinal polarization. (10.10)

e Complex Proca field:

1
§VJ”VW +m’ViVH (10.11)

L=—

— V, and VJ obey the Proca eq.,

—. —.

ax(k) and a}(k) become independent amplitudes in Eq. (I0.9).
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10.3 Quantization of the elmg. field

10.3.1 Preliminaries

A, = AL hermitian field operator with

1
LI_Z Y e Fr = orAY — 9V A¥.
. . oc .
— (Canonical momentum variable: 7" =—-—=F" ie 7 =0.
(0o Ay)

= Contradiction to canonical commutator  [Ag(t, Z), mo(t,7)] #0 !

Origin of the problem:
A* contains unphysical degrees of freedom because of gauge invariance.

Possible solutions:

e Fix the gauge of the operator A* by constraints.
— No quantization of unphysical degrees of freedom.

Example:  Radiation gauge A° = ® = 0, VA =0.

Disadvantage:

(10.12)

Covariant gauge 0A = 0 not compatible with [A,(¢, %), 7, (¢, V)] = ig,,0(Z — 7).

e Impose gauge constraints on physical states (instead of field operators).

— Unphysical dergees of freedom are quantized, but can be decoupled in observables.

Corresponding Gupta—Bleuler procedure described in the following.

10.3.2 Gupta—Bleuler quantization:

Starting assumptions:

1. Add covariant gauge-fixing term to Lagrangian:

1 1
. (2 . 2,
L= FuP" 2§.(aA)..
N————

gauge-fixing term with arbitrary
gauge parameter & > 0

(10.13)

2. Demand constraint not as operator equation A = 0, but as constraint on expectation

values:

(1| OA ) =0, V 1) € Hpnys = Hilbert space of physical states.

(10.14)
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Quantization:

e (Canonical momentum variable:

1
= FH0 — EgHO (DA). (10.15)
e (Canonical commutators:

[Au(ta _))7 Wy(tag)] = lguyé(f_ g)a

[A*(t,2), A”(t, )] = O,

[ (t, 2), 7 (¢, )] 0 (10.16)

= For £ =1 (used in the following!):

4, A0 = =i+ g 0E - 0]8E-T) =, —ig"0E - 7).
A7), AL = o,
_A“@’ f), AV(t’ g»)- _ —i(f _ 1) [g,uoguk T gukgvo] ak,xé(f— Zj) 5f1 0, (10.17)

i.e. A¥ (k =1,2,3) behave like scalar fields, but A° has “wrong” sign in commutator.

e EOM:

1
04, — (1 - E) 0,(04) = 04, = 0. (10.18)

Problem: Find A*(x) obeying Eqs. (I0.14)), (I0.17), and (I0.I8)).

— Fourier ansatz:
3
Ar(z) = / dk > [a,\(/;)e‘;(k)eikm—i—ai(lg)a‘;(k)*e“kx} = AM), (10.19)

with the “extended helicity basis” for k* = koy(1, €):
eio(k) = (0,812), transversal d.o.f.
| where 5%72:1, €-€.2=0, €-6&=0, € xX&=F¢,
so that ¢/ (k) = (5’f(k) + 155(1{:))/\/5 = helicity states,
eb(k) = (0,8), longitudinal d.o.f.

el(k) = (1,0), scalar d.o.f (10.20)
3

= ex(k)-ex(k)" = g, Z (—gav) eX(k)eX (k) = —g". (10.21)
AN =0
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Insertion of ansatz:
e EOM (I0IR) only demands k% = 0, i.e. ko = |k.
e Commutators (I0.I7) lead to

(B al(B)] = —gu 2ko(2m) 5K F),
[aA(E),aA/(E’)] - [a;(E),a;(E')] ~ 0. (10.22)

— aﬁ;,g, as for scalar field, but the roles of ao and a] are interchanged.

e Gauge condition ([IILI4), (1| 0A 1) = 0, already results from demand 9 A [4)) = 0:

—ikx

only e part
0= (0AD [9)) = (|94, (¥]9A) = (Y| 9AD) + IAC) [p) = 0.
— Condition on ay:
~ . 3 —.
0 = AW |y) = /dk: e N " (k- ex(k)) ax(k) [¥) .
0 ——
k-€0=k0=7k-€3,
k-g12=0
=0 = |ao(k) - a3</5')] 1) . (10.23)

Change of basis:

ep(k) = (1,8) =5 (k) +e5(k),  en(k) = (1, -€) = g5 (k) — e5(k),

: 1 1 2 2
ie. go=3(ep+en), es=3(eL—en), e1=ex=0, cp-en=

(K] = [an (k), al (K] = —k°(27)36(k — k') etc. (10.24)

an (k) [v) = 0. (10.25)
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Fock space:
e l-particle states:
Ik, A) = al(k) 0), where ax(k)[0)=0, A=0,1,23.
Wave packets:

h) = / ak f(F) [F 2

Orthogonality / normalization of states:

Balfl) = / ak / 4 F5 () Fu (R (Olax(R)al, (§

~\~

)]0y
= —g)\A/2k0(27r)3(5(E E)

= —9w /dl;? f;(lg)f)/\(lg), (no summation >, )

= |lfll> = (folfy) = —/dl%|f0(E)|2 < 0, indefinite metric !

||f)\||2 > 07 >\:1,2,3

e (lassification of states:

Ho= {Iv) 194D [y) = 0},

Hr = {0r) | [vr) generated by af o(F) }

Hl

Properties:

— H' C H, trivial.
— Hp C H, since OAT) |r) =0V |vr) € Hr.
— H = Hp ® H', completeness.
Note:  [¢) = |[¢r)®]|¢) without ordering issues, since [ag\ﬂ, ag, ]

Inspection of |¢'):
|4} = linear combination of
1

Gauge condition (I0.25):
!

0 £ (@) ay(R) . ah(Roy) oh(F)... ol )
= (). ah (o) an(P) al (). ah (R 10).

-~

ay
# 0 for ny > 0, see (10.24))

= [¢/) only generated by al,(k) !

{|@Z)’) | [¢') generated by aog(E) and 9A™M |¢') =0

ay, - .aTAl 0y, X\ =0,3, orequivalently ;= L,N.

125

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

=0for AN # N,

(10.31)

(10.32)
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General form of [¢'):

[0 = ¢[0)+|N,1)+|N,2)+..., (10.33)
|N,n) = generated from n > 0 ops. al.
(N,n|N,n')y =0, since [ay,al] = 0.

= [W[1* = @) = lcol*{0]0) = [eol*.

Physical observables:

General form:

: ~1,A=0
G = /dk:gk:Za Jax(k)ny, n)\:{+1’)\_1’23.

Expectation value in state 1) = |7) ® [¢):
WGy = (Wr|Grlvr) W) + (rlvr) (|GY),
= [k g() ¥ lafas — afaol)

— 2 [ diglF) Wlahas + aaxlv') = 0

WIGIW) _ (WrlGrlr) ll® _ (brlGrldr)
Wy  Wrlr) el (Wrlr) (10.35)

= |¢') part of |¢)) irrelevant for observables.

Hilbert space of physical states:  Hpnys = H/H' ~ Hr.

Example:  4-momentum

P / dk k* Zm al (F)ax(k). (10.36)

A=0
——

can be replaced by >°,_; 5 in Hr

Comment:

Hpnys ~ Hr holds for general £ # 1 as well, but proof non-trivial.



10.4. PHOTON PROPAGATOR 127

10.4 Photon propagator

Definition:
m v
1D% (x,y) = (0|]TA*(x)A”(y)]0), M photon propagator. (10.37)
Explicit calculation:
e Insert Fourier representation (I0.19) (for & = 1) and use canonical commutators
e derive and solve differential equation for propagator (shown for general ¢ in the
following).
Wave operator and EOM:
1
D= g — (1 - E) 00", EOM: D*A,(z) =0 (10.38)
v v 1 0 _v0
D= g - 1—5 g""g""| 0,0,
Ea;”ratat
1
+ (g — 1) (g“og”k + g“kg”o) 0,0, + terms without 0;. (10.39)
Eb%tak

Application of D¥ to 1D} (x,y):
Note: Apply 0; to O-functions of T" ordering as well (product rule!).

Oy (OITF(2)G(Y)|0) = (0[(02 T) F ()G (y)|0) + (O] T(0uy F'()) G(y)0)
= (9200(z0 — 10)) (0] ()G (w)[0)
+ (92 0(yo — 0)) (01G(y) F(2)[0)

= 30— yo) (OI[F (), G(y)|0) ‘
= d(x0 = wo) (O[F'(x), G(W)]|0) + (O]TF(2)G(y)|0) . (10.40)

= DY (0T A, (2)Ap(y)]0)
= (0|T (D A, (x)) A, ()0) + b (0192, T)(0" Ay () Ay (y)]0)
=0, EOM

+ 20" (01(02, T)(0ay Au () Ay (1) |0) + @ {0](07,T) Ay () A,(y)[0)
) <0|[8iAu($),Ap(y)]l0>

N J/

=0

+ @ {0](0r, T) (B Ay (7)) Ay (9)]0) + @Dy 0[(0y T) Au () A, (y)|0)
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= @ (a0 — o) (OI[A, (@), A,)][0) + a0, (80 — o) (O][A,(2), A,(1)][0))

J/

W (.

4

= i[ngJFgungO(g*l)]‘s(x*y) :0
1 .
= o= (1= 7) #0710+ gt - 11600 - )
= i) d(z —y). (10.41)
Identification of D’ (z,y) as Green function:
1
{g“"Dw - (1 — g> 8;‘8;] D,,(x,y) = 65 d(x —y). (10.42)
Solution in momentum space:
d4k: —ik(z— -
D,,(v,y) = / 2 He=) D, (k). (10.43)
1 ~
— {—g“"/{:z + <1 - E) k“k”} D, (k) = &)
~ ) 1 - Gy Kk,
D, (k) = |—=guk"+ | 1— i ko k, = 2 + (1)? (1-¢). (10.44)
Implementing causal behaviour via Feynman’s prescription yields:
dk . —igh ikt kY
.DMV — —1lc(x—y) 1 —
1D (z.9) @) Prie T Rt Y
'k, —ig"
_ —ik(z—y) . 10.4
e=1 /(27r)4e k2 + ie (1045)

Propagator does not exist for & — oo, where the gauge-fixing term in £ disappears
and the wave operator DM is singular (i.e. contains zero modes = gauge d.o.f.).

’ | Comment:



Chapter 11

Interacting vector-boson fields

11.1 Electromagnetic interaction

Charged particles and elmg. gauge invariance:

e Charged particles — complex fields / non-hermitian field operators ®, ®T,

otherwise: particle = antiparticle.

Examples: @, ®F = ¢, ¢! (scalar); ¢, ¢ (Dirac fermion); V,,, VI (vector).
e Charged conservation — EOM invariant under global elmg. gauge transformation:

P - =P, P - OV =PI W = const. (11.1)

e Lagrangian is invariant under global transformation:
Lo(P,00,...) = Lg(D, 0D, ...). (11.2)

Noether current — conserved elmg. current.

129
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“Gauge principle”:
Total Lagrangian should be invariant under local gauge transformations:

P — & =e@P etc., w=w(z)= arbitray function. (11.3)
— 0, terms cause problems:

0@ — 0,@ = 0, (e W)

_ —iqw —iqw
= —ig(Ow)e P + e (0,P). (11.4)
A ~~ g A ~~ g
w-dependence does w-dependence cancels
not cancel in Lg because of global
in general invariance of Lg

Idea:  replace 0, by covariant derivative
D, = 0,+iqA,(x) (11.5)

and transform the new field A, (x) such that

D,® — (D,®) = D& = e (D, ). (11.6)
Explicitly:
DO = (9, +igA,) (e D) = e [8M:iq(auw)+iqA;£]<I>. (11.7)
éiqA#
= A:L = A, + 0w, elmg. gauge transformation (11.8)

— A, (x) can be identified with photon field.

Introduction of elmg. interaction by minimal substitution:

Lo(D,00,...) = globally invariant
\L 0y, — D,,, addition of L4

1
L = Lo(P,DP,...) — ZFWFW = locally invariant (11.9)
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Examples:

e Scalar quantum electrodynamics:

L = (D) (Do) —m*¢'p — EFWF“”, D, =9, +iqA,, (11.10)
¢ describes a scalar (spin-0) boson with charge ¢ and mass m.
EOMs:
(0, +1gA,) (8" +igA") + m*| ¢ = 0, KG eq. with elmg. interaction, (11.11)
o, F" = 3", Maxwell eq. (11.12)
Elmg. current:

oL 86 L 9ot
0(0,0) 0 " 90,01
= —iq (066 — 1(0#9)] — 22 AT, (11.13)

e Spinor quantum electrodynamics:
— 1
L= ¢ —m)¢— JF 1", Dy=0,+igA, (11.14)

¢ describes a Dirac fermion (spin-1) boson with charge ¢ and mass m.

EOMs:
(i —gA —m)y = 0, Dirac eq. with elmg. interaction, (11.15)
o F" = 4", Maxwell eq. (11.16)
Elmg. current: (note fermionic signs !)

L oc gy @Y oL —
7= Taomow Tawagm TV (1L.17)
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11.2 Perturbation theory for spinor electrodynamics

Lagrangian and quantization: (covariant gauge)

LAY, 0) = Lyo+ Lao+ Lin, (11.18)
Lyo(, ) = 9 (i —ms)1b:, Dirac fermion of mass m; and charge ¢ = Qye,
1 1
Lao(A) = 1 F,F" . — % : (0A)*:, photon field,
Lint (A, 1, IP) = —Qye: EAQ/J c= —:7,A" :,  elmg. interaction.
Hamiltonian:
Hine(A,0,0) = —Lin(A,9,1)), since no derivative involved. (11.19)

Quantization of free fields as usual — free propagators:

OTA*(x)A"()|0) |, = 1DF (2,9) A (11.20)
(O TY(@) )10} [, = 1Sr(2,y) ST (11.21)

11.2.1 Expansion of the S-operator
— Apply Wick theorem as in Yukawa theory (see Sect[0.2]):

S = Texp [(—i@f@ [t 5 A v

= 1Qfe d4x U(w () : + Ofe (11.22)

B
SR
@

O(e?)
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Feynman rules for graphical representation of the terms o e™:

1. Draw all possible diagrams with n vertices >‘M
(any number of exernal lines, including disconnected diagrams).
2. Translate graphs into analytical expressions as follows:

e Fxternal lines = non-contracted fields:

At(x) = f\/\/\/\{;
V() = e
U(z) = e

e Internal lines = contracted fields (=propagators):

n v

A”(:L’l)AV(:L’Q) = xl«v\/\/\ox2
—

?/J(ffl)?/’(%) = le_.xg

e Vertices = interaction terms:

—iQrey, =

3. Order terms opposite to the fermion flow indicated by the arrows.
4. For each closed fermion loop take Dirac trace and multiply by (—1).

5. Integrate the sum of all terms according to

1
o dixy . A,

133

(11.23)

(11.24)

(11.25)

(11.26)
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11.2.2 Feynman rules for S-matrix elements
Consider n — m particle process:

iy =aly, ...al, [0, (f|=(0|as, ...ap, (11.27)
where A, ..., B,, = photons or (anti)fermions A, f, f.

— Contributions to (f|S]i) only from terms o< agl . .agmaAn ...Ga, in S!

Procedure as in Yukawa model, new ingredients for photons:

e External photons:  contractions with operators A (x)

A4 ()l (7)[0) = / dk 3 [t (k) ax (B)ay) + .| [0) (11.28)
N=1,2 NG
= al (P)ax (F) + [ax (), al (7)]
= (2m)32p 6 (5 — k)dxns

=e "k (p)[0) + ... (11.29)

— Contractions with incoming /outgoing photons:

A @) 10) = e l(p) [0),
Olax(@ A () = (0] & ()" (11.30)

e Internal photons:  Fourier representation of propagator

v : v d4k —ik(x1—x _igw/ kP kY
A A(an) =D (en0) = [ et | 2 e -
(11:31)

e Space—time integrals / d*z; at vertices imply momentum conservation,

loop integrals / d*p, remain open, fermionic signs as usual ...
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Feynman rules for the transition matrix element M;:

1. Determine all relevant Feynman diagrams:
e n — m scattering process = n + m external lines.

e Order of perturbation theory = number of loops.
2. Impose momentum conservation at each vertex.

3. Insert the explicit expressions (fermionic terms ordered opposite to arrows):

o~ uq(p) | guares U (p)
p p
——f vl o Uo ()
p p
i Al et(p) ooy Al el(p)”
- 1 S DT W g
P p—my+ie P p*+ie  (p* +ie)
—iQrev,
(11.32)
. d'p,
4. Integrate over all loop momenta p; via .
(2m)*

5. For each closed fermion loop take Dirac trace and multiply by (—1). Insert a relative
sign between diagrams that result from interchanging external fermion lines.

Example: M + (=) XK

6. The coherent sum of all diagrams yields iM ;.

Straightforward generalization to more charged fermions f:
Propagation of free fields completely independent,

interaction: Lin, = — >, Qe @fA@/)f .

= Each fermion f has its own propagator and ~f f vertex.
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Comments:

e Gauge-parameter independence of S-matrix elements:
Momentum terms o< p*p” in photon propagator do not contribute to amplitudes.

— ¢-dependence completely cancels (proof non-trivial).

e Gauge freedom of external states:
Amplitudes M with an incoming/outgoing photon of momentum p obey the following
(non-trivial) Ward identity:
M = LY T.) = T =0 (11.33)
where all external states other than the photon must be on shell.
= Physical (transverse) polarization vectors can be changed according to

efo(p) — &19(p) = ela(p) +ap” with a = arbitrary. (11.34)

)

H Comment:
A Lorentz transformation in general leads to such replacements.

e Convenient construction of transverse polarizations:

Choose any gauge vector n* = (1,7) with i? = 1, n® = 0, p,n* # 0 and define £{ ,(p)
such that
Pucla(p) = nuels(p) = 0. (11.35)

’ ’ Comment:
This is possible due to the gauge freedom (I1.34]).

= Completeness relation:
Mny _|_ Vnu
w P pn

> A = - -

A=1,2 | S ——
does not contribute to amplitudes
because of Ward identity (133

(11.36)

— Convenient in photon spin summation of squared amplitudes.

e Unphysical parts |¢) = ¢|0) + |N, 1) + ... of photon states |¢) = |[¢7) ® [¢)') do
not influence transition amplitudes, because S is derived from the exponential of the
Hamiltonian H = Hr & H’, so that S = Sy ® S’. Schematically:

(ISl (rlSrlin) ( (LISl ) | (11.37)

AL AL ALl Tl NI 11
can only be a phase factor,
because (f'|S']i") = cf yco,i (0/0),
see Sect. [[0.3.2] '
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11.3 Important processes of (spinor) QED

11.3.1 Elastic ep scattering

Process:
e (p,o) + plk,7) — e (¥,0) + p(k,7) (11.38)

Diagram: /

v e P

Amplitude in Born approximation (tree level):

M= [ () (—iQc0) 7yt (p)| [ (K) (<iQpe) 1 (k)]

—ig"” i(p—p)"p—p)"
: [\(p _P) e ' Lo —p)?+ie)? - O}

ie irrelevant no contribution due to Dirac egs.:
at Born level U (p") (P — P uc(p) =0
1Q.Qpe? T _
= oo [ 0D )] (a0 7 )] (11.39)
1
= MP = 5 > M
Q@5 , : ' ’
= Ap_p) Te{ (¥’ + me)yu (P + me)w } Te{(F + mp)y" (k + mp)7"'}
464 / / ! 2 T R% U ! 2\ v
= ) Pl P = (P =gk ARTRT A KR = (RE =, )9
2¢' g, 2 212
- = t—Z{t + 28t +2(s —m? —m2) } (11.40)

where s=(p+k)? t=(@(p—-p) u=(p-—FK)> (11.41)
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Kinematics in proton rest frame: (zz-plane = scattering plane)

Po= (B.0,0,p), pe=E?—m2,
p* = (F.,p.sin6,0,p.cos8), p.=/E?—m2,

k' = (my,0,0,0). (11.42)
= s = mi+m+2pk=m]+m’+2m,E., A(s,mZ,m2) = ... = 2myp..
Note:  E! = E!(E.,0) with E, = F/(E,,0). (11.43)

E. given by experiment, measured: E! or 6.
Relation between E, E., 6 from k"> = m?, e.g. derived via t:
t = 2m?—2pp =2(m? — E.E. + pp., cosf)
= (k—FK)>=2m] —2kk' =2m2 —2k(p+k — p') = —2k(p — p')

—2my,(E., — E). (11.44)
2 _ E El ! )
= FE.—FE = _ e elle  PePe €08 : can be solved for E (11.45)
Mp or, e.g., expanded for m, — oo
2 _ B2 4 20050
= MRS S TRESD L o(/m)
mp
2(1 — cos®
_ pllzcost) (11.46)

mp

2-particle phase space:

1 1
/dq)z = /d<p1 /dt 5 , derived as in Exercise 7.1. (11.47)
4(2m) A/ A(s,m2,m2)
SN—— >y Tp

azimuthal angle -
integral — 2m Mz, y,2) = 22 +y? + 22 — 20y — 222 — 2y2
Cross section: .
/dcr = dd,y |M]2. (11.48)
24/ A(s,m2,m2)
T fer
Differential cross section in virtuality Q* = —t of the photon:
4
ddc; - 1é7r )\(s,rrjg,m%) Qt% {tz + 25t + 2(s —mg - m§)2}
_ o2 {Sm?)Ee2 B 2(m? +m? + 2my, E) N 1} (11.49)
2 | % | |

= Lorentz invariant, since do and Q? are invariant,

e? e?

h = — =
where - a 47 4drmeghe

= 1/137.0... = fine-structure constant. (11.50)
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Interesting kinematical limits:

e Non-relativistic limit:  pe, pl, < me < my,

Use approximation (IL46) of large m,, for Q*:

0
Q> = —t = 2p2(1 —cosb) + O(1/m,) = 4p§sin2§ + ...,
dQ* = —2p?dcosf + ... (11.51)
EY  me pg)

and neglect all terms of (9( ~ , ) relative to the leading term.
mp My Me

— Differential cross section in angle 6:

do Ta? 8mim; wa?m?
= = .= ——= 4+ ., Rutherford cross section.
dcosd mZ  Q* i 2pt sin® ¢ * 4
(11.52)
Comment:  The scattering is determined by the particle charges only,
the spin does not play a role in the non-relativistic limit.
e Relativistic electron:  m. < pe, pl, K m,
Again use expansion (IL5I) for Q? and neglect all m, terms (i.e. p. — F.).
— Differential cross section in angle 6:
do ra? (8m2E?  2m] N Ta? cos® § N Mot N
= — = ——= + ... ott cross section.
dcosf m? Q* Q? 2F2sin* g '
(11.53)
Comments:

— Electron helicity is conserved in the relativistic scattering process.

The factor cos? g results from e~ spin rotation.

— For E, above ~ 100MeV (m, ~ 1 GeV) the finite extension of the proton
becomes visible.
— Formfactor for proton charge distribution necessary.

— For Q? above ~ m% inelastic scattering becomes relevant (proton breaks up).
— Measured in terms of structure functions, described by the parton model.
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11.3.2 Other important processes in QED

e DBremsstrahlung in potential scattering: e  + A —e + A+~

X
¥

Compton scattering: e~ +v — e~ 47

S
b

Pair annihilation: et +e” — vy

BN

Puair creation: et +e” — ff

et f

R

Bhabha scattering: et +e  — et +e”

et

.

vy scattering: Yy — Y7y

5
5

5

e + 4 more diagrams

Note:
Higher-order processes of QED violate the superposition principle for elmg. fields !

e ectc.
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