
Exercises “Modern methods of Quantum Chromodynamics” WS 14/15

Problem 18 (4 Points) Scalar-gluon scattering

Consider a theory with a complex scalar field φi in the fundamental representation of
SU(3). The four-point born amplitudes with two scalars and two gluons admit the colour
decomposition into colour-ordered partial amplitudes

M(φi,†1 , φj,2, ga,3, gb,4) =g2s(T
bT a)ijM(φ†1, φ2, g3, g4) + g2s(T
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Compute the partial amplitudes
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The colour-ordered Feynman rules with outgoing momenta are given by

φ†(k1)

φ(k2)

Aµ:− i(k1 − k2)µ ,

φ†

φ

Aµ

Aν

: igµν

and the usual colour-ordered Feynman rules for QCD.

Problem 19 (2 Points) Amplitude relations

Colour-ordered gluon amplitudes satisfy the so-called dual Ward identity

Mn(g1, g2, g3, . . . gn)+Mn(g2, g1, g3, . . . gn)+Mn(g2, g3, g1, . . . gn)+· · ·+Mn(g2, g3, g1, . . . g1, gn) = 0

Check that this identity is satisfied for the case of maximally helicity-violating amplitudes
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Problem 19 (4 Points) Colour factors

Compute the following products of traces over SU(Nc) generators
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Discuss the behaviour for Nc →∞.

Bonus question (1 bonus point)
Compute also
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]
Show first that
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