
Exercises “Modern methods of Quantum Chromodynamics” WS 14/15

Problem 16 (4 Points) Four-quark amplitudes

Consider the quark-antiquark scattering of identical quark flavours:

qq̄ → qq̄

a) Show that the helicity amplitude M(qLq̄R → qLq̄R) can be written as
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b) Compute the helicity amplitudes M(qLq̄R → qRq̄L) and M(qLq̄L → qLq̄L)

Problem 17 (4 Points) Colour structures

Consider the scattering amplitudes for processes with two quarks, two antiquarks and one
gluon,
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with two different quark flavours q and Q where all particles are treated as outgoing. The
indices i, j, k, l denote the quark colour and the index a the colour of the gluon. Draw the
contributing Feynman diagrams and show that the colour structures contributing to the
amplitude can be chosen as
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Problem 18 (2 Points) Vanishing amplitudes

Argue that scattering amplitudes for an arbitrary number of gluons vanish if all gluons or
all gluon but one have the same helicity, i.e.
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and analogously for the amplitudes with opposite helicities. Here all gluons are taken as
outgoing. You can argue using appropriate choices for the reference spinors of the gluon
polarization vectors.


