Exercises "Modern methods of Quantum Chromodynamics"

Problem 9 (4 Points) Colour algebra
a) Proof the identity for the generators T^{a} of $S U(N)$:

$$
T^{a, i}{ }_{j} T^{a, k}{ }_{l}=\frac{1}{2}\left(\delta^{i}{ }_{l} \delta^{k}{ }_{j}-\frac{1}{N} \delta^{i}{ }_{j} \delta^{k}{ }_{l}\right) .
$$

Use that the generators T^{a} and the unit matrix form a basis of the hermitian $N \times N$ matrices. The normalization of the generators is $\operatorname{Tr}\left(T^{a} T^{b}\right)=T_{F} \delta_{a b}$ with $T_{F}=\frac{1}{2}$.
b) Compute the trace

$$
\operatorname{Tr}\left(T^{a} T^{b} T^{a} T^{b}\right)
$$

c) Argue that the anti-commutator of the generators can be written as

$$
\left\{T^{a}, T^{b}\right\}=C \delta^{a b} \mathbf{1}+d^{a b c} T^{c}
$$

with real constants C and $d^{a b c}$. Compute C.
d) The generators of the adjoint representation are given in terms of the structure constants by $\left(T^{(\mathrm{ad}) a}\right)_{b c}=-\mathrm{i} f^{a b c}$. Compute the Casimir-operator

$$
\left(T^{(\mathrm{ad}) a} T^{(\mathrm{ad}) a}\right)_{b c}=C_{A} \delta_{b c}
$$

in the adjoint representation.
(Hint: Compute $\operatorname{Tr}\left\{\left[T^{a}, T^{b}\right]\left[T^{a}, T^{c}\right]\right\}$ in two different ways)

Problem 10 (3 Points) Colour-octet scalars

Consider a set of eight real scalar fields $\phi_{a}(x)$ with the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi_{a}\right)\left(\partial_{\mu} \phi_{a}\right)-\frac{m^{2}}{2} \phi_{a}^{2}-\lambda\left(\phi_{a} \phi_{a}\right)^{2}
$$

a) Introduce an interaction of the scalars with the gluon field $A_{\mu}^{a}(x)$ in such a way that the Lagrangian is invariant under the local transformations

$$
\begin{aligned}
\phi(x) & \rightarrow U^{(\mathrm{ad})}(x) \phi(x), \\
T^{a(a d)} A_{\mu}^{a}(x) & \rightarrow U^{(\mathrm{ad})}(x) T^{a(a d)} A_{\mu}^{a}(x) U^{(\mathrm{ad}) \dagger}(x)+\frac{\mathrm{i}}{g_{s}}\left(\partial_{\mu} U^{(\mathrm{ad})}(x)\right) T^{a(a d)} U^{(\mathrm{ad}) \dagger}(x)
\end{aligned}
$$

with the transformation in the adjoint representation,

$$
U^{(\mathrm{ad})}(x)=\exp \left(-\mathrm{i} g_{s} \omega^{a}(x) T^{(\mathrm{ad}) a}\right)
$$

b) Give the Feynman rules for the interactions of the scalars.
c) Bonus question: Are there other gauge invariant quartic scalar interactions in addition to the term $\left(\phi_{a}^{\dagger} \phi_{a}\right)^{2}$?
(1 bonus point)

Problem 11 (3 Points) Deep inelastic scattering
The hadronic tensor $W^{\mu \nu}(p, q)$ in (unpolarized) deep inelastic scattering $e^{-}(k) P(p) \rightarrow$ $e^{-}\left(k^{\prime}\right)+X$ with $q=k-k^{\prime}$ satisfies the properties

$$
q_{\mu} W^{\mu \nu}(p, q)=0, \quad W^{\mu \nu}(q, p),=W^{\nu \mu}(q, p)
$$

a) Show that these properties imply that the hadronic tensor can be expressed in terms of two scalar coefficient functions $F_{1 / 2}$ in the form

$$
W_{\mu \nu}(q, p)=F_{1}\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\frac{F_{2}}{(p \cdot q)}\left(p^{\mu}-q^{\mu} \frac{(p \cdot q)}{q^{2}}\right)\left(p^{\nu}-q^{\nu} \frac{(p \cdot q)}{q^{2}}\right) .
$$

b) Compute the contraction $W_{\mu \nu} L^{\mu \nu}$ with the leptonic tensor

$$
L^{\mu \nu}=k^{\mu} k^{\prime \nu}+k^{\prime \mu} k^{\nu}-\left(k \cdot k^{\prime}\right) g^{\mu \nu} .
$$

