Exercises "Modern methods of Quantum Chromodynamics"

Problem 1 (1 Point) $\quad S U(3)$ transformations
The quantum states of quarks $|q\rangle$ and antiquarks $|\bar{q}\rangle$ carry a colour index $i=1,2,3$ and transform under rotations in colour space as

$$
\left|q_{i}\right\rangle \rightarrow U_{i}{ }^{j}\left|q_{j}\right\rangle \quad \quad\left|\bar{q}^{i}\right\rangle \rightarrow\left|\bar{q}^{j}\right\rangle\left(U^{\dagger}\right)_{j}{ }^{i}
$$

with unitary 3 -by- 3 matrices U with unit determinant. Show that the state

$$
\left|D^{i}\right\rangle \equiv \epsilon^{i j k}\left|q_{j}\right\rangle \otimes\left|q_{k}\right\rangle
$$

transforms in the same way as an antiquark.

Problem 2 (4 Points) Pauli Matrices and spinors
The spinors of left- and right-handed massless, relativistic spin $1 / 2$ particles are given by

$$
\begin{array}{ll}
u_{R}(p)=\binom{u_{+}(p)}{0}, & u_{+}=\frac{1}{\sqrt{\left(p^{0}-p^{3}\right)}}\binom{p^{1}-\mathrm{i} p^{2}}{p^{0}-p^{3}} \\
u_{L}(p)=\binom{0}{u_{-}(p)}, & u_{-}=\frac{1}{\sqrt{\left(p^{0}-p^{3}\right)}}\binom{p^{0}-p^{3}}{-\left(p^{1}+\mathrm{i} p^{2}\right)} .
\end{array}
$$

a) Show that the above spinors are solutions to the massless Dirac equation in momentum space,

$$
\gamma^{\mu} p_{\mu} u_{\lambda}(p)=0
$$

for $p_{\mu} p^{\mu}=0$. The gamma matrices and sigma matrices are defined as

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \bar{\sigma}^{\mu} \\
\sigma^{\mu} & 0
\end{array}\right), \quad \quad \sigma^{\mu}=(\mathbf{1}, \vec{\sigma}), \quad \quad \bar{\sigma}^{\mu}=(\mathbf{1},-\vec{\sigma})
$$

b) Verify that the spinors satisfy the normalization condition

$$
\bar{u}_{\sigma}(p) \gamma^{\mu} u_{\sigma^{\prime}}(p)=2 p^{\mu} \delta_{\sigma \sigma^{\prime}} \quad \text { with } \quad \sigma, \sigma^{\prime}=L / R
$$

c) Derive the identity

$$
\sigma_{a b}^{\mu} \bar{\sigma}_{\mu, c d}=2 \delta_{a d} \delta_{b c}
$$

Here the indices $a=1,2$, etc. are spinor indices. You can use the normalization of the Pauli matrices, $\operatorname{tr}\left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)=2 g^{\mu \nu}$, and the fact that any hermitian two-by-two matrix A can be written as a linear combination of Pauli matrices and the unit matrix, $A_{a b}=A_{0} \delta_{a b}+\sum_{i} A_{i} \sigma_{a b}^{i} \equiv A_{\mu} \sigma_{a b}^{\mu}$.
d) Derive the expression

$$
2 p_{\mu} k^{\mu}=\langle p k\rangle[k p]
$$

for light-like momenta p, k, with the spinor products

$$
\langle p k\rangle \equiv \bar{u}_{L}(p) u_{R}(k)=u_{-}^{\dagger}(p) u_{+}(k), \quad[k p] \equiv \bar{u}_{R}(k) u_{L}(p)=u_{+}^{\dagger}(k) u_{-}(p)
$$

Problem 3 (3 Points) Pauli-Lubanski Vector

Verify the commutation relations of the Pauli-Lubanski vector $W_{\mu}=-\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} P^{\nu} M^{\rho \sigma}$ with the generators of the Poincaré algebra:

$$
\left[W^{\mu}, P^{\nu}\right]=0, \quad\left[W^{\mu}, M^{\rho \sigma}\right]=i\left(g^{\mu \rho} W^{\sigma}-g^{\mu \sigma} W^{\rho}\right)
$$

You can use the Poincaré Algebra:

$$
\begin{aligned}
{\left[M^{\mu \nu}, M^{\rho \sigma}\right] } & =-i\left(g^{\mu \rho} M^{\nu \sigma}-g^{\mu \sigma} M^{\nu \rho}-g^{\nu \rho} M^{\mu \sigma}+g^{\nu \sigma} M^{\mu \rho}\right), \\
{\left[P^{\mu}, P^{\nu}\right] } & =0, \\
{\left[P^{\mu}, M^{\rho \sigma}\right] } & =i\left(g^{\mu \rho} P^{\sigma}-g^{\mu \sigma} P^{\rho}\right) .
\end{aligned}
$$

and the identity

$$
0=g_{\alpha \beta} \epsilon_{\mu \nu \rho \sigma}+g_{\alpha \mu} \epsilon_{\nu \rho \sigma \beta}+g_{\alpha \nu} \epsilon_{\rho \sigma \beta \mu}+g_{\alpha \rho} \epsilon_{\sigma \beta \mu \nu}+g_{\alpha \sigma} \epsilon_{\beta \mu \nu \rho}
$$

Problem 4 (2 Points) Vector-boson fields in axial Gauge
Consider free photon Lagrangian in QED with an axial gauge fixing-term:

$$
\begin{aligned}
\mathcal{L}_{A} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\mathcal{L}_{\mathrm{fix}}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
\mathcal{L}_{\mathrm{fix}} & =-\frac{1}{2 \xi}\left(n^{\mu} A_{\mu}\right)^{2}
\end{aligned}
$$

where n^{μ} is a constant four-vector. Compute the free photon propagator in momentum space $D_{F}^{\mu \nu}(p)$ for this gauge.
Hints: Writing the free photon Lagrangian for the field A^{μ} in the form

$$
\mathcal{L}_{A}=\frac{1}{2} A_{\mu}(x) \mathcal{D}_{x}^{\mu \nu}(x) A_{\nu}(x),
$$

the propagator in position space is the Green function for the operator $\mathcal{D}_{\mu \nu}$:

$$
\mathcal{D}_{x}^{\mu \nu} D_{F, \nu \rho}(x, y)=\mathrm{i} g_{\rho}^{\mu} \delta^{4}(x-y)
$$

The propagator in momentum space is given by a Fourier transform:

$$
\mathrm{i} D_{F}^{\mu \nu}(x, y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k(x-y)} D_{F}^{\mu \nu}(p)
$$

Make an Ansatz for the tensor structure of $D_{F}^{\mu \nu}(p)$.

