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Chapter 1

Introduction

Hadrons and quarks

In the 1960s and early 1970s it was discovered that Hadrons (protons, neutrons, pions. .. )
are composite particles, composed of quarks: spin 1/2 particles with non-integer electric
charges. In Chapter 2/ we will briefly review the evidence for this picture.

QFT and QED

A consistent description of relativistic quantum processes is given by Quantum field
theory: the Hamiltonian of the theory is constructed in terms of field operators ®(x),
which create or destroy particles/antiparticles at the space-time point x = (¢, ).

The relativistic QFT describing electromagnetic interactions of electrons, positrons
and other charged particles is called Quantum Electrodynamics (QED). It combined
the quantized Maxwell theory with the Dirac equation describing relativistic spin 1/2-
particles. The excitations of the quantized electromagnetic field are called photons.

The description of scattering process in QFT in perturbation theory can be described
in terms of Feynman diagrams. The Feynman rules give a precise description to
translate the diagram

" (p2) pt (ks)

e (p1) = (k)
to a mathematical expression for the scattering e”et — u~ — p~. The basics of QFT,
QED and Feynman diagrams are reviewed in Section [3.2]

QCD: theory of quarks and gluons

Quantum Chromodynamics (QCD) is the theory describing the strong interactions among
quarks. Its mathematical structure is an extension of QED. Similar to QED, where the
electrodynamic interactions are described by an exchange of photons, in QCD the strong
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interactions of quarks is described by the exchange of gluons, massless spin-1 particles, as
the photons. As QED, QCD is a gauge theory, i.e. the Lagrangian is invariant under
gauge transformations. The analog of the electric charge is a quantum number called
colour. Whereas photons are not electrically charged, gluons also carry colour quantum
numbers, so they are self-interacting. The basics of QCD and the Feynman rules are
discussed in Chapter

QCD and LHC physics

The theoretical description of any scattering process at a hadron-hadron collider, such as
the Tevatron running until 2012 at Fermilab near Chicago or the Large Hadron running
at CERN in Geneva since 2010, requires to calculate cross sections in QCD. Typical pro-
cesses involve the production of jets, collimated collections of hadrons arising from the
hadronization of quarks or gluons. In the quark-parton model, one important ingredient
for the prediction of jet production are the “partonic cross sections” for quark and gluon
production. Examples for the simplest case of dijet-production will be given in Chapter ?7.

Multi-parton scattering amplitudes

At LHC, cross sections for processes with a large number of jets can be measured, see
Figure [I.1} In principle, the calculation of scattering amplitudes for such processes using
textbooks methods is possible, but made impractical by the rapidly growing number of
Feynman diagrams:

1 diagrams

%
s
=

=
== R
Jo

% 105 diagrams

Since the mid-1980s, methods for the calculations for such amplitudes have been devel-
oped. These will be the focus of Part

945 diagrams

e The use of spinor methods to compute amplitudes with a fixed assignment of helicities
of the external particles. For a class of amplitudes involving an arbitrary number
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of gluons (so-called “maximally helicity violating” amplitudes), a simple-one-line
formula was conjectured by Parke/Taylor (1986)

(pi '2%‘)4
(p1-p2)(p2-p3)---(Pn-D1) (1.1)

Alg g7, g5 gD

e The Parke-Taylor formula was proven by a recursive construction (Berends/Giele
1987) where sub-diagrams appearing in many diagrams are computed only once:

Such a recursive construction can be efficiently implemented in a computer program

and is used for most of the theoretical predictions compared to the experimental
results in figure (1.1}

e More activity in the field of multi-parton scattering amplitudes was triggered in
2003 by a paper by Witten exploring the formal structure of scattering amplitudes
and relations to twistor and string theory. This led to several new alternative con-
structions of scattering amplitudes: one method using the MHV amplitudes (1.1 as
building blocks, and one method constructing scattering amplitudes recursively from
on-shell scattering amplitudes with fewer legs (in contrast to Feynman diagrams or
the Berends/Giele relations where the internal legs are off-shell).

NLO calculations

For reliable predictions of cross sections, at least the next-to-leading order in perturbation
theory in QCD has to be computed, corresponding to Feynman diagrams with a closed loop.
This requires methods for the computation of the resulting integrals, including regulariza-
tion of divergences in intermediate steps and renormalization to absorb the divergences
in relations among observable quantities. The renormalization group allows to relate
observables at different scales. In recent years alternatives to Feynman diagrams have been
developed, so called unitarity methods that allow to compute Loop amplitudes in terms
of tree-level amplitudes. These topics are discussed in Part [[I1]

Remarks on the lecture

Part [[]and the first chapters of Part [[T]| contain topics that are usually discussed in a lecture
on QCD and collider physics, and also contain a brief review of QFT, QED and Feynman



12 CHAPTER 1. INTRODUCTION
g [ I I I I I I ] T T T T T T T I
= 10°EATLAS W(- ) +jets = © 1.4 = = BLACKHAT+SHERPA 7.
Z-“ﬁ’— anti-k, jets, R=0.4, Data, . 3 §1'2 - I, 22 | %
4 Pl >30Gev, |y| < 4.4 \s=7TeV, 461" + 5 === ; |
2 1P <44 BLACKHAT+SHERPAS Losf I_‘
S —— HEJ E 0.6 - ATLAS 2

- . | | | | | | I 1
. —=— ALPGEN — T T T T T T 7
10 —— SHERPA E @ l4— — HEJ 7
—%— MEPS@NLO ] S | 2
] S s | 2
10° — 5 1r S o ] 7
E —— 3 08 Z
r 1 06—, 1 1 1 1 1 1 i,
lOZE —_— = T T T T T T T 77
E 3 s 14— — ALPGEN —
- ".Ii". N 8 12 __ __
10e — E 5 1E ’ j 2
F " . F08F D )
I E R R B S —— 7
E 3 s 1.4 = — SHERPA
I i} B, o 2%
107 » S 1.2 . y _A,ﬁ_r——.—e.——x— |
E iln s 1 k7 1200027 + T
E A S 22
oL V. IS MEPS@NLO Z
10° 5 ;
OF | | | | | | | e 0.6 | ! ! ! ! | | G
>0 =1 22 =3 =24 25 26 =7 >0 =21 22 =23 =24 25 26 27
N, N,

Figure 1.1: Experimental results for the production of a W boson in association with Nijets
jets from the ATLAS experiment at the LHC. Taken from http://arxiv.org/abs/arXiv:
1409.8639

diagrams. The methods introduced in Part [lI| are usually not discussed in introductory
lectures, but have become an important ingredient of research in QCD in the last 10 years.
A very recent textbook that covers most of the contents of the lecture is [I], which also
contains a didactic introduction to the basics of Quantum Field Theory. The conventions
in Quantum field theory used here mainly follow [2]. An interesting introduction to QCD
can be found online in the lecture notes [6] and a useful book on the basics and applications
of QCD is [7]. Lecture notes on the more recent developments in QCD are also available
online [8,9]. More advanced extensive reviews are also available focusing on NLO calcula-
tions [10] or applications to supersymmetric theories [I1] and also contain useful material
for the lecture. One part of a usual lecture on QCD that cannot be covered here is the
proper quantization, which requires to introduce the path- (functional) integral method.
Here the results are quoted in Chapter [4]


http://arxiv.org/abs/arXiv:1409.8639
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Chapter 2

Quarks and colour

In this chapter we give a brief overview over the evidence for quarks and the colour quantum
number. See e.g. [7] for a similar discussion.

2.1 Hadrons and quarks

Hadrons and the strong interactions

e In an attempt to model the strong interactions of protons and neutrons in analogy
to QED, the spin zero charged and neutral pions were proposed as messenger
particles by Yukawa in 1935, and experimentally discovered in 1947. Since the strong
interaction is short-ranged, the pions are massive (m,, = 135 MeV, m,+ = 139 MeV.
However, a successful QFT for the strong interactions could not be constructed.

e Subsequently more mesons (integer spin) and baryons (half-integer spin) were
discovered, e.g. Kaons:(K*, K°, K° mpg ~ 490 MeV, discovery 1947), tho mesons
(p°, p*, spin 1, m, = 770 MeV, discovery 1961), A baryons (AT+ AT A% A~ spin
3/2, mass ma ~ 1.2 GeV.

= “Particle zoo”
e Classification by “isospin” and “strangeness” (I,S) (e.g.

s (§]
70 (£1/0,0), K*: (+1,F1), K% (=1, -1), K% (1,1

Quark Model

e Gell-Mann, Ne’eman, Zweig (1961-64) classified the hadron spectrum and proposed
that hadrons are composed of spin 1/2 quarks with fractional electric charges:

ul=+3,5=0Q=3,  d-30,-5),  s0-1-5, (21

N[

15
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e In the quark picture, baryons (proton, neutron, A,...) are composed of three quarks:

p) ~ |uud) ) ~ [udd) (2.2)

e Mesons (pions, kaons,...) are composed of quark-antiquark pairs:
[77) ~ |ud) 7)) ~ [du) |7°) ~ |dd) — |ut) , i (29
[K*) ~Jus)  |K7) ~[su)  |K°) ~|ds) [K) ~ |sd) — (2.4)
e The observed hadron masses can be explained by assuming u, d, s are approximately

mass-degenerate, treating the mass splitting my—mg,, as a perturbation. This allows
the classification of hadrons into approximate SU(3) multiplets[]

e The quark model allowed the prediction of “missing” states such as the [Q27) ~ |sss)
spin 3/2 baryon, subsequently discovered 1964.

e 1o free quarks are observed in nature = confinement hypothesis: interaction among
quarks is so strong, that quarks are always bound together.

e Subsequently: discovery of charm, bottom and top quarks:

Q, m
d: —%, 5MeV
u: +§, 2.5MeV
s: —%,  100MeV (2.5)
c: +2,  1.3GeV
b: —3,  4T7GeV
t: +2, 173.3GeV

All quarks apart from the v and d quarks are unstable and decay to lighter quarks.

2.2 Parton Model

Deep inelastic scattering

Electron proton scattering:

P(p) P(p')

Historically, this classification was performed before the quarks were postulated. The “favour SU(3)”
of the hadron spectrum should not be confused with the colour-SU(3) discussed below.




2.2. PARTON MODEL 17

Usually parametrized by momentum transfer ) and energy transfer v
Q= —¢? = —(k—k)? v=k"—k'=E-F (2.6)
In the restframe of the initial-state proton, the proton four-momentum is
= (mp,0,0,0) (2.7)
Energy conservation determines the energy of the final-state proton as
p’=mp+E—E, (2.8)

Using four-momentum conservation gives for the momentum transfer

Q*=—-p-p)=2p-p—mp—p?=2mpv+ (m} — p”?) (2.9)

For elastic electron-proton scattering p> = m% so that the Bjorken variable

2 2
p-q 2mpv

(2.10)

is equal to 1.
Experimentally, a different behaviour of the scattering cross section is observed depend-
ing on momentum transfer:

Elastic scattering: Q% < .01 GeV?: The scattering cross section is modified compared to
that of the scattering of an electron off a point-like spin one-half particle. This can
be described in terms of formfactor depending on Q%/A? with A < 1GeV. The
formfactor is related to the Fourier-transform of the charge distribution. Therefore
the momentum scale A implies a finite proton radius ~ 1fm.

Inelastic scattering: Q% > 0.1 GeV? The energy is high enough to produce new parti-
cles,e.g. e P — e Pn’ e P — e AT — e Nrn™,

Deep inelastic scattering: Q2 > 1GeV? For very high energies the proton is disinte-
grated completely by the scattering and a large number of hadrons is produced. In
this case we are interested in the “inclusive” cross section for the process

ep—e X

where X denotes the complete hadronic final state.
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In this case p”? = m% # m% so that the Bjorken variable satisfies

2 2 9
@ meomy g (2.11)

2mpv 2mpv

The ratio x can be measured just from knowledge of the electron energies and the
scattering angle 0 = Z(p, p') since

0
Q* =2k -k =2EFE'(1 — cos0?) = 4AEE' sin* 3 (2.12)

e The observed cross sections for DIS showed no prominent resonances as for
inelastic scattering at smaller Q2 but a continuum similar to scattering from a
point-like particle.

e This was interpreted by Bjorken/Paschos (1969) and Feynman (1972) assuming
the proton consists of light, quasi-free particles, called partons. Subsequently
the partons were identified with the quarks and gluons.

Parton distribution functions

In a reference frame where the proton moves at a high energy so that the proton mass can
be neglected (the so-called infinite momentum frame), the proton momentum can be
approximated as p* = p(1,0,0,1). In this frame the parton ¢ carries momentum

pi = &p" (2.13)
One introduces the probability to find a quark with momentum fraction &; in the interval
& + d&; as

fi(&i)dz; (2.14)
where f;(£x) is the so-called parton-distribution function for parton i in the proton.
The on-shell condition of the scattered quark,

p; = (pi +9)° (2.15)
implies
2i-q=25p-q=—¢ =@ (2.16)
This determines the momentum fraction of the parton in the proton in terms of the Bjorken
variable: 0’

& = g " (2.17)

The cross section for DIS is written in the parton model as a incoherent sum over
“partonic cross sections”

olep—e X)= /0 dz Zfz(x) gle ¢ — e q) (2.18)

where the sum is over the quark flavours . At leading order, only the quarks are relevant
for DIS, since the gluons are not electrically charged.
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e In the naive parton model, the PDFs depend only on z, and on no dimensionful
quantity (for instance not on the proton radius). This property was observed to be
approximately satisfied in the first DIS experiments.

e In the full QCD treatment, the PDFs depend also on the scale Q? of the process, in
agreement with experiments.

e The precise form of the cross section is also a test of the spin 1/2 nature of the quarks,
since the partonic cross section

DIS in the parton model is discussed in more detail in Chapter

2.3 Colour degree of freedom

Postulate of colour quantum number
The naive quark model has several problems, for example:
e it is not explained why only gqq and qq states are observed .
e it led to difficulty describing the quantum numbers of some particles.
An example for the latter problem is given by baryons with three identical quarks, e.g. the
At
|ATTY ~ |unu) (2.19)

e The Pauli principle implies that wave function of identical fermions must be anti-
symmetric under the exchange of two particles.

e The A™™ is the lightest charge-2 state — it is expected to be in the ground state
without orbital angular momentum, so the position-space wave-function is symmet-
ric. (The vanishing orbital momentum is supported by the value of the magnetic
moment predicted in the quark model).

e The spin-wave function for a Spin 3/2 state is symmetric: |[111)
= postulate of additional quantum number “colour”: |g;), i = 1,2, 3 (“red, green, blue”)

e The Pauli principle can be satisfied in the Baryon wave-functions are antisymmetric
in colour

W) ~ € g, 45, r) (2.20)
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Colour-5SU (3)

Since the colour quantum number is not observed, one expects that the interactions of
quarks are invariant under rotations in colour space,

lgi) = U |g;) - (2.21)

The matrices U are complex three-by three matrices since the wave-functions |g;) are
complex fields. We have introduced the convention to sum over equal upper and lower
indices as in relativity. Since symmetry transformations in QM are implemented by unitary
transformations?] we demand

Ut =u-! (2.22)

e The set of unitary N x N matrices forms a group called U(N). A matrix in U(N)
has 2N? — N2 = N? independent, real, elements.

e The group of matrices that in addition have det U = 1 is called SU(N). A matrix in
SU(N) has N? — 1 independent, real elements. Therefore an SU(3) transformation
is described by eight real parameters.

The matrices in U(3) and SU(3) are examples of a group G since they satisfy the axioms

f,g € G, there is a product o such that fog=~h € G.

The product is associative: fo(goh) = (fog)oh.

e There exists a unit element ¢ € G: eog=goe=g forall g € G.

1 1 1

e For every element g € GG there is an inverse g~ satisfying g og=gog™ " =e.

Groups of noncommuting elements,
feg#gof (2.23)

are called non-abelian.

Confinement

The Baryon wave-functions (2.20)) transform under colour rotations according to
W) = € |gi, 4, qe) = €U U7 U |qv gy aw) = det Ue?¥ i, g5, qr) = det U [1h)  (2.24)

= The baryon states are invariant under SU (3) transformations. They are called “colour
singlets”. This explains the name “colour” since a “white” object is obtained from
combining “red”, “green” and “blue” quarks.

e To explain the non-observation of free quarks, or of composite states other than the
baryons and mesons, one then postulates that only colour-singlets are observable, i.e.
coloured objects are always confined in colour neutral bound states. This property
should be explained by the theory of quark interactions. QCD is consistent with
confinement, although it has not rigorously proven yet

Zanti-unitary transformations are also allowed but only relevant for the time conjugation transformation
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e In addition to the quarks with the transformation (4.2)) , we have anti-quarks that
transform with the complex conjugate transformation.

) — @) (U1’ (2.25)

Objects transforming with the conjugate transformations are denoted with an upper
index.

e Colour-singlet wave-functions for meson (i.e. quark-antiquark) states are obtained by
contracting upper and lower indices using a Kronecker-delta:

0) ~ 67 |g'q;) = (UTD): ¢ a) = 8! |d"a) (2.26)

Evidence of colour: e"e~ — hadrons

The so-called R-ratio is defined as
o(ete” — Hadrons)
R =
olete™ = ptu)

: (2.27)

where o(ete” — Hadrons) is the total production cross section for hadronic final states in
electron-positron collisions. In a first approximation, the cross section o(e*e™ — Hadrons)
can be computed in terms of the production cross section of quarks, o(ete™ — ¢¢) in QED
(see Chapter [3)). The production cross section of a quark-antiquark pair ¢g is proportional
to the muon-production cross section up to the electric charge (), and the multiplicity N.
due to the colour quantum number:

olete” = qq) = Ncan(e+e_ — utu) (2.28)
The experimental results [14] are compatible with the expectations for N, = 3 colours:

Ecy < 2.5 GeV: production of u,d,s quarks:

2
Ruar :N022 1)2 12:]\/vc_:2
Rexp = 2.2
4 GeV < Eoy <9 GeV:  production of u,d,s,c quarks:
10
Raynark = N2((3)* + (1)?) = N.— =3.33...
ok = Ne2((2)? + (1) = Norg 030,
Rexp = 3.6
11 GeV < E¢py <90 GeV: production of u,d,s,c,b quarks:
11
Ryuark = No(2(2)* +3(3)?) = N.— = 3.66 ...

Rexp = 4
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e The systematic deviation Rexp/Rquark = 1.1 is due to missing higher-order corrections
in perturbation theory that can be computed in QCD.

e For energies near Ecy ~ 2m, for any of the quark flavours, bound states can form
(e.g. the cé-bound state J/1, the bb bound state T') and the description in terms of
the initial production of free, highly energetic quarks is not valid.

2.4 Towards QCD

To summarize the picture of hadron substructure and quarks obtained so far:

1

e hadrons are composed of quarks, which have electric charges +§, —3 and a colour-

quantum number.

e interactions among quarks at low energies are so strong that only colour-singlet states
are observed as free particles.

e scattering at high energies (e.g. DIS and eTe™ — hadrons) can be described in terms
of very light, quasi-free partons

To explain these features, the interaction of quarks must have some peculiar properties:
e it must couple to the colour quantum number

e it must be weak at high energies (“asymptotic freedom”) but very strong at low
energies (“infrared slavery”)

At the time when the quark model and the parton model were proposed, no known Quan-
tum field theory was in agreement with these properties, in particular QED has the property
to grow stronger at high energies. Also theories where the force among quarks is due to a
scalar particle were ruled out. The breakthrough was the discovery of Gross/Politzer and
Wilzcek (1973) that a class of theories is consistent with asymptotic freedom at NLO in
perturbation theory. These so-called “nonabelian gauge theories” or “Yang-Mills theories”
describe massless vector bosons (analogous to the photon) with self-interactions. There-
fore it was proposed that the interaction of quarks is carried by massless vector bosons
(“gluons”), that themselves carry colour quantum numbers. The theory called Quantum
Chromodynamics is invariant under SU(3) transformations, so it is a “SU(3) gauge the-

i

ory”.
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Chapter 3

Basics of QFT and QED

e Objective: describe scattering processes of relativistic particles
e Requires description consistent with quantum mechanics and relativity
e Relativistic one-particle states |m,p, s, ...): characterized by

— mass m
— momentum p, energy E = p°y/m?2 + |p|?
— “helicity” s = projection of spin on momentum

— other quantum numbers: electric charge, colour state...
The properties of relativistic one-particle states will be reviewed in Section

e A general prediction of the combination of relativity and quantum mechanics is the
presence of antiparticles: for every species of particles with mass m, electric charge
@, there exists a species of antiparticles with identical properties, but charge —@.
(e.g. positrons as antiparticles as electrons.) Historically, this was discovered because
it is impossible to consistently omit contributions to wavepackets with the negative
solutions £ = —y/m? + [p|2. These solutions can be re-interpreted as antiparticles
with positive energies. One can show in general that antiparticles are required in
order to satisfy causality in a relativistic quantum theory.

e Because of the existence of antiparticles, particle number is not a conserved quantum
number, e.g. processes like e"e™ — v are possible. This is one of the reasons why
a naive extension of single-particle quantum mechanics to the relativistic case is not
consistent.

3.1 Quantum numbers of relativistic particles

Later on we will calculate scattering amplitudes in QCD for helicity eigenstates. Therefore
we here give an overview over the definition of helicity and the transformations of helicity

25
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states under Poincaré transformations. For more details see [4] [5]

3.1.1 Poincaré group

Quantum states of particles are characterized by their behaviour under Poincaré transfor-
mations. A general Poincaré transformation ¢ is a combination of a Lorentz transformation
A and a space-time translation by a four-vector a*:

g(A a) : ¥ — 2" = A 2" — at. (3.1)

The homogeneous Lorentz transformation A is defined by the condition
Gy N = g (3.2)
Lorentz transformations can be constructed by successive infinitesimal transformations
A (bw) = 68 + dwh, + ... . (3.3)

The condition for a Lorentz transformation becomes

g;wA“pAVU = g'uy((;g + (Sw“p)((sg + 5w”0) + ... (3 4)
ngg+(5wgp+5wpg+...égpa, '
so that the dw are antisymmetric:

ey = —0Wpg. (3.5)

Since antisymmetric four-by-four matrices have six independent entries, this shows that
Lorentz transformations can be parametrized by six parameters, consistent with the dis-
cussion above. To use the antisymmetry of the dw,, we have to lower one index in (3.3))
so we can write this expression as

A" (8w) = 8 + Sweag g™ 05 = oV — %maﬁmaﬂ)ﬂy, (3.6)
with the generators of infinitesimal Lorentz transformations
(M2, =i(g*"8; — g™57). (3.7)

The generators of rotations and boosts can be identified as

. ) 1 .. -
K'= M", JE = 56”ka : (3.8)

for instance J3 = M'2. A finite transformation can be constructed by exponentiation:

Aw) = exp (—%WQBMW> : (3.9)
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A representation of the operators M and P in terms of differential operators can be obtained
by considering the transformation of a scalar field ¢(x):

¢ (2) = oA Nz + a)) = e~ 29epl 0P 41y, (3.10)
Considering infinitesimal transformations,

¢(x + 0x) = ¢(x) + 62" Dup(x) + . ..
= (1 — iéx“P# + ... )¢(x)
¢($ — %‘(&UQBMO‘BZL‘) = gb([E) + %5waﬁ(Maﬂ>“nyau¢(x) 4+ ... (3.11)

= (1~ SowasL + .. )o(a)
one finds the representation
LY =i (20" — 2°0%) | P =i9° (3.12)
These operators satisfy the following commutation relations

(LA, LP7] = =i (g™ L™ — g"7 L™ — g"P L' + g™ LH7) (3.13)
[LF, P7] = —i(g™" PP — "7 P?), [P*, PP =0 (3.14)

called the Poincaré Algebra.

The generators of boosts and rotations are explicitly given by

0 0 0 O 0 0 0O 00 0 O
. oo o0 o , |o o o0 i , oo =i o
J= 000 —i)”’ T = 0 0 0 0]’ T = 0i 0 0}’ (3.15)
0 0 i O 0 —i 0 0 00 0 O
0 i 00 0 0 i 0 0 0 0 i
1 |1 000 2 0 00O 3 (0 0 0 O
K= 000 O0f" K= 0 0 0]’ K== 0 0 0O (3.16)
0 0 00 0 0 0 0 i 000
They satisfy the commutation relations
[JE, J7] = ieVik gk (relations of angular momentum) (3.17)
[J, K7 = ie* KF (K transforms as 3-vector operator) (3.18)
(K, K7) = —iek gk, (3.19)

3.1.2 Relativistic one-particle states

As usual, quantum states are characterized by their eigenvalues of a complete set of com-
muting observables. Out of the generators of the Poincaré group, one can form the operator

P? = g,5 PP’ (3.20)
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that commutes with P* and L®®. This can be checked explicitly and should also be
intuitively clear since P? is a Lorentz-scalar. The eigenvalue of P? is the mass m?.
A second commuting operator can be constructed using the Pauli-Lubanski-Vector

1 14 g
W, = —éeﬂymP MP (3.21)
that satisfies the commutator relations characteristic of a four vector:
(W, P =0, (3.22)
[(WH MP] =1 (gHPWe — g WP) . (3.23)

As for P2, it follows that the operator WW? commutes with all generators of the Poincaré
group. In order to interpret W2, we use that it can be evaluated in any reference frame
since it is a Lorentz scalar.

Massive particles: For massive particles it is possible to go to the rest frame

p6 = (m,0). (3.24)
Therefore in the restframe
WO =0
m (3.25)

Wi = Eeijijk = —mJl

i.e. for a massive particle the Pauli-Lubanski vector reduces to the angular momen-
tum operator in the rest-frame. Therefore

W? = —m?2J? (3.26)
From this property follows the classification of massive one-particle states:

e The spin quantum numbers of a massive relativistic particle are identical to the
non-relativistic case, i.e. the eigenvalues of J? are s(s+ 1) with s = 0, %, 1....

e Since [P?, J'] = 0 for states with momentum pj), the states in the rest-frame
can be chosen as eigenstates of one component of J, e.g. the z-component, with
eigenvalues s, = —s,—s+1,...s —1,5.

e the operators J are represented on the spin s-states by the same matrices as in
non-relativistic QM, e.g.

s=—: J'== s=1: (J), = —ie?* (3.27)
e In a general Lorentz frame, one can consider the projection

W,=n-W (3.28)

on some space-like unit vector n, n? = —1 that is orthogonal to p*.
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e A convenient choice is “helicity”, the projection of the spin on the momentum:

—" j
=12 (3.29)
|71
This can be written in the form (3.28)) using the space-like unit vector
Izﬂ 0
nz = p_ p = p_p# — ﬁg#()? (3.30)
m\Z) i’ i
n, - W 1 j
h = P = __WO — = €0ijkP LJ (331)
m 1] 2|7 ’ |I7|

To summarize, the massive, relativistic one-particle states satisfy the eigenvalue equa-
tions

P?|m,p, s,8,,...) =m?>|m,p,s,8p,...) (3.32)

Prim,p, s, 8p,...) =" |m,p, s, 8p, ..., p’=+/p?+m? (3.33)

W2 m,p,s,8p,...) =m?s(s+1)|m,p,s,s,,...) (3.34)
= 7

hlm,p,s,sp,...) =s|m,p,s,Sp...) , h=" (3.35)

I

The Poincare transformations are represented on the one-particle states by unitary
operators U(A, a). Their action on the states can be shown to take the form

U(l,a)|...p,...)=e"P|....p,...) (3.36)
U(A,0) |p, s, 8p,-..) = |Ap, s, s,,...) D sp(W) (3.37)

where the matrix D?® is a spin S-representation of a rotation W (A, p) (the so-called
“Wigner rotation”). The explicit form is determined from A and p in such a way
that the rest-frame momentum p° is left invariant, Wp°® = p° and will not be needed
in this lecture.

The group of transformations that leaves the momentum of the particle invariant is
called the little group. In the rest frame, the momentum is invariant under spatial
rotations, i.e. the little group is SO(3).

The state of a massive particle with momentum p is defined by a boost from the rest frame:

|pvs’3,’0> = U(L;D) |p07svsp> (3'38)

where L, is the boost from py to p and U(L) is the unitary operator implementing the Lorentz
transformation. To obtain the transformation law under a general Lorentz transformation A one
notes that
-1
AL, = Lyp Ly ,AL, (3.39)
——

=W (A,p)
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where Ly, is the Lorentz boost from pg to Ap. The transformation W transforms the momentum
p% to p° = p — Ap — p°, i.e. it leaves the momentum invariant. Therefore it is part of the little
group, i.e. a rotation. The Lorentz transformation of the general one-particle state is then obtained
as

U(A) Ip, s,5p) = UMU(Lp) [p", 5, 5p) = U(Lap) D3y, (W) = |Ap, 5, 5,) D3y o (W) (3.40)

where D, (W) = (s, s,|U(W)]s, sp) is the matrix representing the Wigner rotation on the spin s
P

space.

Massless particles For massless particles it is possible to go a frame where

P =p(1,0,0,1) (3.41)

The Pauli-Lubanski vector becomes

1 — loa
Wy = _§p(€u0p0 + €u3p0) M”

(031212 J3 J3
| (e1023123 4 (1302702 | =t + K?) | -4 (3.42)
=p (62031L31 + 62301L01) =D _J2 4 K1 =p _B
(301212 _J3 _J3
with
0 0i O 0 -1 0 0
000 O —i 0 0 1
A=J + Ky = P00 —i B=J,— K| = 0 0 00 (3.43)
0 0i O 0 -1 0 0

e The angular momentum operator .J3 generates rotations around the z-axis, i.e.
the group SO(2) of rotation in two dimensions. These obviously leave the
momentum invariant and therefore belong to the little group.

e The full little group is generated by J?, A and B.

e Only the SO(2) part is relevant for the classification of massless particle states
since it is possible to show that non-vanishing eigenvalues of A and B give rise
to representations with continuous spin that are not observed in nature [4, [5].

e On the physically relevant state-space, the Pauli-Lubanski vector satisfies
W?2=0, W-P=0 (3.44)

This can be shown to imply that the Pauli-Lubanski vector is proportional to
the momentum:

WH = hPH (3.45)
For the frame where the momentum is along the z-axis , this can also be
seen from the explicit expression.
The commutation relations of W* imply that [h, P*] = [h, M*] =0
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= h is a Casimir operator. The states of a massless particle with momentum p,
are again characterized by the eigenvalues of the helicity

p-J
7]

e The non-trivial eigenvalue equations of the massless one-particle states are

Ptlp,s,...) =p"|p,s,...) . 1’ =p] (3.47)
hlp,s,...) =s|p,s,s...) , (3.48)

h= (3.46)

e The value of the helicity s is quantized,
1
s:(),j:§,j:1,... (3.49)

In contrast to them massive case, this doesn’t follow from the angular momentum algebra,
since only J3 is relevant. The allowed values of s instead follow from topological properties
of the Poincaré group. Recall that in non-relativistic quantum mechanics, for particles with
half-integer spin a rotation with § = 27 can turn a state into its negative, while a rotation
with § = 47 is the unity transformation. This turns out to be true for the relativistic case as
well.

The action of Poincaré transformations on the states is given by
U(l,a)|p,s,...) =eP|p,s,...) (3.50)
UN 1) |p,s,...) =P |Ap s ..) (3.51)

where the explicit form of the angle (A, p) is not relevant for us.

e The Lorentz transformation does not mix different values of s (intuitively: it
is not possible to “overtake” a massless particle and change the sign of the
projection of its spin on the momentum).

e A parity transformation transforms p — —p, J — J and therefore transforms
the states s — —s. In a parity invariant theory such as QED both states s must
be present (i.e. left-and right-handed electrons in the approximation m, — 0.
The weak interactions violate parity, so if neutrino masses are neglected, it is
possible to have only left-handed neutrinos.

e CPT invariance requires that for each particle with helicity s there is an an-
tiparticle with helicity —s.

The one-particle state with momentum p is defined in analogy to by the Lorentz boost
of the state with the momentum p . The relevant part of the little-group transformation
W(A,p) = LX%ALP defines a rotation in the xi-xo-plane that can be parametrized by an angle
6(A, p). The action of the unitary operator representing this rotation is given by

U(W) [p,s) = €7 |p,s) = €% |p, s) (3.52)

if the states |p, s) are chosen as eigenstates of Js.
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3.2 Quantum fields

Relation to fields: field operators create/annihilate particles

3.2.1 Scalar fields

Spin 0 particle: scalar field ¢(z). Example, complex scalar:

o) = [ s @l + 0 e, s 3:5)

27)32p
Solution to Klein Gordon equation
(O+m*)é(z) =0 (3.54)
a, b: operators with commutation relations
[ax(). a}, ()] = [ba(k), b}, (9)] = b (2m)°(20°)8° ( — ) (3.55)

Annihilation/creation operators for scalar particle ¢, antiparticle ¢*. Example: two-
particle state

(61 01,) = al (k)b (R2) [0) (3.56)
Bose Symmetry: states symmetric
P> Pry) = |y Pry) (3.57)
Propagator:
4
iDr(z,y) = (0T [[¢(x)o' (y)]]]0) = /(;d—&e‘ip‘x‘y)DF(pz) (3.58)
with )
i
Dr(p*) = e (3.59)
Time ordered product:
T [¢(2)¢'(y)] = ¢(2)d' (y)0(2° — 4°) + ¢' () (2)0(y" — 2°). (3.60)

3.2.2 Spinor fields

Massive spin one-half particle: four-component Dirac-spinor field

=2 / 27) 32 0 bA (P)ur(p)e ’px+d§(ﬁ)vx(p)ei’”> (3.61)

A=L,R
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Dirac spinors

Spinors u, v: solution to Dirac equation in momentum space:

(h — m)ux(p)

0
(# +m)ua(p) =0

with
}6 = 7upu
with gamma matrices that satisfy
{7 = A A =29

Explicit form (in “chiral representation”)

with

ot =(1,0), ot =(1,-0)

. (01 , (0 —i .
U_<10’ =i o) o=

Note that different conventions are also used, for instance in [§]

Spinors can be chosen as helicity eigenstates:

G }
Ll S =
|7l

+

gl

h

hug/L(p) = %UR/L(Z?)
hoa(p) = Ava(p)

Spinors satisfy

Uo (P)Y o () = o (P)V Ve (p) = 2P" 650

where the conjugate spinor is defined as

33

(3.62a)
(3.62D)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)
(3.71)

(3.72)

(3.73)
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Massless spin one-half particles

Dirac equation decouples into two-component equations:

(e ") ) = (oS 7 77) ()

= upper and lower components are helicity eigenstates:

p-o
p—oui (p) = £ux(p)

Dirac spinors for helicity =+:

ur(p) = <u+0(p >> ur(p) = <u_0(p))

Find explicit solutions of two-component equations

0 3 12
pT—p —p —1p
puguu+(p) = <—(p1 —|—ip2) (I)O+p3 )) uy(p) =0

0 3 .1 9
_ p’+p° p —ip
glu_ = . U_ =0
Pu () <p1 ip? P — p3> ()

with p? = 0.
Normalizing the solutions according to

ul (p)us(p) = 2p° ul (p)ug (p) = 0

the spinors can be written, up to a phase depending on conventions

1 L ip? —ip 0
u+:—<p 127) o (6 .0(552)

" — pd) p? —p3 sin §
u 1 p? —p3 o sin ¢
- (0 — p?) —(pt+ip*)) Po\ _eie cos

where the momentum is parametrized in terms of angular coordinates:
" = p°(1, cos psin 0, sin p sin 6, cos 0)

The solution in [9] is related to the one above by a phase:

1 0 3 ) .
fom () - v ()
2

(0 +p?) \P' +ip?

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)
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Spinor products

35

Out of spinors for particles with different momenta we can form the two “scalar products”

(pk) = ur(p)ur(k) = u! (p)u (k)

1 0 .3\l _ 1.2 0 73yl 2
N NS [(0° = P*) (k" —ik%) = (K° = k%) (0" — ip?)]
(kp)
[pk] = ar(p)ur(k) = ul (p)u_(k)
1 1 102 0 3 0 3 1 .19
N VO — ) (K — &) (0" +ip*) (K = &%) — (0" — p°) (K" +ik?)]
— [p]
For real momenta the spinor products satisfy

(pk)* = [kp]

(3.84)

These spinor product will be a basic building block to express scattering amplitudes in the

“spinor-helicity” method to be discussed in Part [[T of the lecture.

Quantization
Creation and annihilation operators satisfy anticommutation relations
{bA(k), ], (2)} = Sx, (2m)(20°)5°(
{da(k). d},(P)} = dax (2m)° (2p°)0%

Fermi Symmetry: states anti-symmetric

— D)
p)

T T

Propagator:

1Si(e =) = OT(W@HN0 = [ Gre 5007

with .
SF(]?2> — l(ﬁ + m)

p? —m? + ie

3.2.3 Massless vector bosons

Mode decomposition of field:

Z/ 27) 32 0 aA 4)6,\( )e 7ipz+(l;(]§'>€§’*(p)eipm)

(3.88)

(3.89)

(3.90)
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Commutation relations

[ax(k). a}, ()] = Sr (2m)*(2°)5° (k — ) (3.91)

Polarization vectors and gauge invariance

Polarization vectors
(ex(p) - €x(p)) = —daw (3.93)

Gauge choice
0,A" =0, pue’ =0 (3.94)

Polarization vectors determined up to gauge transformation:
¢(p) = "(p) + ap” (3.95)

In the frame where p* = (p, 0,0, p) the polarization vectors can be chosen as

0
1|1
B
== 4 (3.96)
0

They are helicity Eigenstates with eigenvalues s = £1 since they in the chosen frame the
helicity operator reduces to

. 00 0 O
_ﬁ"]u_?»u_ 00 =1 0] 4 _ | 4
hﬁi = ’ﬁ,‘ €L = J €L = 0 i 0 0 €L = :l:e:t (397)
00 0 0
The polarization vectors satisfy the completeness relation
00 00
01 00
n vk . pv w=v =V
;e)\e/\ =g 0 1 of =9 " +0atn (3.98)
00 00
Together with the light-like vectors
_ 1 1 _
n* =—(1,0,0,1), n* =—(1,0,0,-1), n-n=1 (3.99)

V2 V2

the polarization vectors therefore form a complete basis of Minkowski space. Note that we
can write
pH
(p-n)

n =

(3.100)
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The completeness relation in the form

(3.101)

then holds in any reference frame where n can be chosen as a light-like vector orthogonal
to the momentum,
=0 n-ex=0 (3.102)

The necessity to describe massless spin one-particles by a vector field with a gauge
freedom can be traced back to the impossibility to single out two transverse polarization
vectors in a Lorentz invariant way. This can be seen from the fact that Lorentz trans-
formations that leave the momentum invariant (i.e. elements of the little group) do not
transform the subspace spanned by the transverse polarizations into itself. To see this
consider the infinitesimal transformation with the generators A and B of the little group

1 =5 a 0
1 |- 1 0 p
A=1-i(aA+ 5B) = 0 0 1 —a (3.103)
0 -8 a 1
They satisfy
P P 0 0 1
0 . 0 €1 o €1 . 0
A ol =10l A o = e + (aey — Pe) 0 (3.104)
D D 0 0 1

Therefore Lorentz transformations that leave the momentum invariant can change the
polarization vectors by a contribution ~ p*. Since this “scalar” polarization is not physical,
the replacement

e — e + apt (3.105)

with a arbitrary must not have an effect in physical observables.

3.3 QED

Electromagnetic field coupled to fermion with charge g:
1 o
Lqep = —ZFWF“ + (i) —m) (3.106)

e Field-strength tensor
F., = (0,A, —0,A,) (3.107)
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Components of four-vector potential: scalar potential and vector potential:

At (x) = (ji(&))) (3.108)

The components of the field-strength tensor give the usual expressions for the electric
and magnetic fields:

- - 1
= E=-(Vo+-4) (3.109)
B' = —éemkF]k = —eT"P A" = (V x A)
Relation of field strength to vector potential not unique: “gauge invariance”
A, — A;L =A,+ 0w, F;/w =Fu (3.110)

Free relativistic spin 1/2 fermion field ¢: four-component spinor satisfying Dirac
equation:

(ip —m)yp =0 (3.111)
Conjugate Dirac spinor: )
§ =iy (3.112)
covariant derivative
D, = 0,+1iqA,(x) (3.113)

Lagrangian invariant under gauge transformation (3.110)) and
Y(z) = ¢'(x) = e () (3.114)

since

Dyip = (O + g Ay )Y/

_ - - (3.115)
= (O +iq(Ay + Ow)) e 7Y =Dy

With a view to the later generalization we note that the field-strength tensor can be
computed from a commutator of covariant derivatives:

[Dy, Dt = iq(0, Ay — 0, A0 ) = iqF (3.116)
Write Lagrangian as

L= —%FWFW + 9 (i) —m)yp — A, 5" (3.117)
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with current
I = quyty (3.118)
Noether theorem for invariance under “global” symmetry transformation (3.114)) with
w = const. implies
Oug" = (3.119)

e “Gauge fixing” term added for quantization. Covariant choice:

1

Lyt = —%(aﬂfm2 (3.120)
Alternative: axial gauge
1
Lyt ax = —i(n“AM)Q, (3.121)

with a constant four-vector n*.

e Photon propagator for gauge fixing (3.120) can be derived as Green function to

operator
DL = ¢, — <1 — é) oroy, (3.122)
DL Dy, y) = igyd*(z — y) (3.123)
Solution in momentum space:
. oy
D) = —— (—g+ 2L (1 124
P0R) = (o 09 (3.124)
e Scalar QED:
1
L=— ZF/LVFNV + (Du¢)T(DM¢)
1 (3.125)
— = JFa P+ 0,0)1(0"9) + g A4,(610"6 — (961)9) + ¢*6loA?

3.4 Feynman rules

3.4.1 S-matrix and Cross section
S-matrix

e Consider scattering process

pr+pe— kit ky (3.126)
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Prepared incoming states (Schrodinger representation):

|i(t)) U7 free momentum eigenstate |Opy D) (3.127)
Evolve |i(t)) from t; to ty:

i(ts)) = Uty ti) [i(t:)) (3.128)

with time evolution operator U(ty,t2).

Project on states |f(t)):

t—tp—+oo

£(2))

free momentum eigenstates (3.129)

Definition of S-matrix element:

Spi= lim (f{tp)|U(ts, to)]i(t:)) (3.130)

tz/f%ioo

Transformation to Heisenberg picture at t:

¥, to) i = [¥(t)) = Ulto, 1) [¥(1)) (3.131)

Spi = (frtolisto) i = u (f14]SVi i) gy (3.132)

In the last step the S-matrix element has been expressed in terms of a matrix element
of the operator
S = lim Uf(ty,t;) (3.133)

ti/f—>ioo
between the states |i,t;), and |f,t¢),, which are approximated by the free momen-

tum eigenstates.

In the following we abbreviate |i,t0),; — i), |f,to)y — |f) and [i,t;); — 1),

[Fsts)y = 1o

Poincaré invariance of the S-matrix

The Poincaré transformations of the initial and final states are obtained by the unitary
operators introduced in Section [3.1}

/) =UNa)lf) ) = U(A, a) |1) (3.134)

The unitarity of the operators U(A, a) implies the invariance of the S-matrix elements:

Sy = (UM, a)fIU(A 0)i) = (FIUT(A, a)U (A, @)li) = S, (3.135)
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The transformation of momentum eigenstates of massless particles with helicity s under
translations (3.50)) and Lorentz transformations (3.37)) implies:

U(L,a)|@5! ... gon) = e rbpn) [gor o) (3.136)
U(A,0) |5t ... g5y = Gt gt i ) (3.137)

The transformation of the states under a translation implies the identity
Sy = eTalptr—himdn) g (3.138)
Therefore, Poincaré invariance implies momentum conservation:
p1tp2=Fki+-+ k. (3.139)
For massless states, the transformation of the states under Lorentz-transformations implies

sz — €i9(8i71+87;,2—Sf71—...8f,n)Sf‘i (3]_40)

Here the Sz is the S-matrix for the states with boosted momenta Ap, but unchanged
helicities. For massive states, an analogous result follows from (3.37)).

T-matrix and scattering amplitude

T-matrix: extract trivial part of S-matrix

S=1+T (3.141)
0 <f|S‘i>0 =0 <f|l>0 +o <f|T|i>0 (3~142)
xd; 5

Definition of the scattering amplitude (transition matrix element) My;: extract the
overall delta function from momentum conservation:

o fITli)y = i) 6 (DK = Do )My, (3.143)

Unitarity of the S-matrix

The S matrix maps the asymptotic free states defined at t; to the corresponding states at

tfi
Slivti) g = lists)y (3.144)

The Unitarity of the S-matrix from completeness/orthogonality of initial/final states:
D IX) (Xi) = (i) = b (3.145)
—— —

X *
Sy Sxi

This implies the operator relations:
I=5'S =  iT'T=(T-TY (3.146)

Implications of unitarity will be discussed in Chapter ?7.
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Cross section

Relation of cross section to scattering amplitudes

1 - A3k

do = ———— |2 — | (2rn)% - k). 3.147

7= i, (E (27T)3(2k?)> (2m)"3(p1+p2 = D _ k) (3.147)
N—— .

flux factor

Vv
= d®y, invariant phase space volume

The prefactor can be written in terms of Lorentz invariants

P = £/ (o1 - pa)? — P} (3.148)

For a 2 — 2 scattering process the phase-space integral can be simplified to

d3 d3
(/@2:/f 5 /f D2 (2m) 46 (k) + ks — p1 — po)

2m)32py J (2m)32p3

P} o=/ M7 o+ 5 (3.149)

L A,
(2m)? 8s

(\/__ml —m2) /th
where s = (p; + p2)?, € is the solid angle of particle 1, and
Mz, y,2) = 22 + y* + 22 — 20y — 222 — 2y2. (3.150)

For the special cases of m; = mo = m and m = 0 the phase space simplifies further to

mi=mo=m 1 4 2
/olcp2 m 2\/1—£0(\/§—2m)/d§21,
8(27) s (3.151)

3.4.2 Perturbation theory and Feynman rules

Consider a Lagrangian
L=Ly+ L) (3.152)

for a set of fields ®; (in a symbolic notation with spinor or Lorentz indices suppressed).
The free Lagrangian can be written af].

Lo = Z ®;(2)D;(x)®;(x) (3.153)

with some differential operators D;(x). We consider an interaction Lagrangian of the
form
L;=gl3,0,0,®) + ¢TI, 00,8, (3.154)

ijk

LA possible factor 1/2 for real fields is suppressed
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where the I' can also contain differential operators. We have extracted a dimensionless
coupling constant g. Assuming that g is small enough, a perturbative expansion of the
S-matrix can be performed, resulting in the Feynman rules.

For a field ® we have a mode expansion of the form

%)= 3 [ G (OO H R EREE) @159

where 77 is the “wave function” (spinor, polarization vector) of particle ¢ /antiparticle ¢
with helicity A.

External states: contractions with fields defined as

O(2)[dp) = [@(2),a(p) ]+ = 0 (p)e P, DN(w)]dy) = 0" (p)e™ ¥,
— . (3.156)
(0p|®F(x) = 0" (p)e?, (0, ®(z) = 1™ (p)e™=.

= The role of incoming/outgoing wavefunctions is exchanged for particle/antiparticle.

Propagators for the fields ®; are defined as Green functions for the kinetic operators D:

Di(x)Dpy(x,y) = i6*(x — y) (3.157)
with the Fourier transform:
d'k —ip(z—y) 2
Dpi(x,y) = 2 Dri(p?) (3.158)

where the Feynman ie prescription is understood.

Vertex functions V" with n = 3,4 are defined as

(i) /d4l’ <0|‘Cf(x)|¢p1’ s 7¢pn> = (271-)454(2]71')‘/17%(]917 s ’pn)nl(pl) e 'nn(pn)
Z (3.159)

= all possible contractions of fields in £; with external states. (exclude contractions
Feynman rules

1. Determine all relevant Feynman diagrams:

e n — m scattering process = n + m external lines.

e Order of perturbation theory = number of loops.

2. Impose momentum conservation at each vertex.
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3. Insert the explicit expressions

e external lines: wave functions 7

0—%— o8 Mio(P)

. +x
._%_ (bz nz,a(p) )

e internal lines: “propagator”:

e n-point Vertices from I'™ :

i

o}

¢k V;?'k(php%piﬁ)

CHAPTER 3. BASICS OF QFT AND QED

Mo (D)

is(P) (3.160)

(3.161)

(3.162)

4. Insert a relative sign between diagrams that result from interchanging external fermion

lines.

5. The coherent sum of all diagrams yields iM ;.

6. Additional rules for diagrams with closed loops:

e Integrate over all loop momenta p; via /

d4pz
(2m)*

e For each closed fermion loop take Dirac trace and multiply by (—1).

3.4.3 Feynman rules in QED

Explicit rules for QED:
External lines:

——/ Uy (p) ,
p

— Vo (p)
p

W%W A e\(p)

f

o>
—
p
.—D—f
<_
p
NN
7’

AH

& (p) (3.163)
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Propagators:
i
o——-0 - .
TN p—my+ie
U ene I USSR (3.164)
o p*+ie  (p* +ie)? ‘
Vertex
f
Ar —iQ e (3.165)
f

3.4.4 Feynman rules for interactions with momenta

Example: scalar QED

£ =T% A,6'0 = A" (30,0 — (0,6)9) (3.166)

The contractions with derivatives of field operators result in factors of the momenta of the
external states:

1 . — .
Ou®(x)|dp) = 0 (p)(—ipu)e ™", (0p|0, " (x) = 17" (p)(ip")e™. (3.167)
One possible contraction, e.g.:
| —— | .
AM($)¢T($)8M¢(I)|’}/§1¢p2¢p3> _ 6_1(p1+p2+p3).x€x(p1)(—ipz,u) (3.168)

where |¢) is the scalar particle state annihilated by ¢ and |¢) the anti-particle state anni-
hilated by ¢T.
The Feynman rule of the vertex gives

e [ 01460, — B,6)0) PR o)
= ie / d4l,e—i(p1+p2+p3).ac(_i) (pQ,u . p3,u)€§f(p1) (3169)

=1(2m)*0(p1 + pa + p3) (—i)e(pa — p3u)e(p1)

i.e. the vertex function is

V3 i (01,92, ps) = (—e(ps — ph) (3.170)
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3.5 Calculation of cross sections

3.5.1 Example: e e™ — ppu”

Textbook approach for the calculation of spin-averaged cross sections for the example of
e (p1)e” (p2) = p~ (k)" (k2)

e Compute matrix element iM from Feynman rules:

et (p2) p (ko)
iM =
e (p1) p (k1)
= (—16)2(7101(kzl)%v@(k:g))p;J:ie (g*“’ - pfﬁe(l - §>> (s (P2)ywun, (p1))

(3.171)
with p = k1 4+ ko = p1 + p2. The {-dependent part of the propagator drops out using
the Dirac equation in momentum space (3.62))f]

P (0(p2)yu(pr)) = 0(p2) (1 + p2)u(pr) = v(p2)(m — m)u(p) = 0 (3.172)

It can be shown that this feature generalizes to all amplitudes in QED and that the
terms ~ ptp” in the photon propagator always drops out. Therefore one can chose
¢ =1 (“Feynman gauge”).

e To calculate an unpolarized cross section, the squared matrix element is averaged
over initial-state spins and summed over final-state spins:

11
(M2 = 29 Z M|?

spins

- % > (i, (k1) (k2)) (8o, () (k) )"

=00y (k2)7077 00, (K1) (3.173)
X (Uxg (p2)7 1, (p1)) (0x, (p2)7 1, (1))

4
e _ _
= 4_82 <u01 (kl)vuvoz<k2))<vaz<k2)vvua1 (kl))
Ai,0;
X (Ung (p2)7 1, (p1)) (U, (P1)7" 05 (P2))
where we have used
a = +"u, (3.174)
’YOT — ’70 7 '7iT - —’Yi = 7’” = 'yofy“’yo (3.175)

2 Note that this only works since the vertex involves fermions with the same mass (there is no muon-
electron photon vertex in QED!).
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e The spin sums can be performed using the completeness relations of the Dirac spinors

> waP)ine(p) = (b +m)a, Y 0aP)on(p) = (F = m)a (3.176)

A=1,2 A=1,2
where the spinor indices have been made explicit. As a result one obtains the ex-
pression

TME = S5 (b1 + m s — mw] el — oG+ moy] (3277)

e The resulting traces over gamma matrices can be evaluated using identities derived
from the Dirac algebra such as

1

trly"y"] = Sty 9] = g tr 1 = dg (3.178a)
tr[y*y"v°] = 0 (3.178b)
tr[y#77y7] = 4(g" 9" + 9"7 9" — 99" (3-178¢)

This gives for example

tr[(Po — me)y (b +me)y”] = 4 (ot + bt — ¢ [(p1-p2) +m])  (3.179)

The spin-averaged matrix element gives

(M = ?2 [(p1 - k1) (P2 - ) + (p1 - ka) (k1 - p2) + (p1 - p2)my, + (b - ka)mg + 2mpme]
(3.180)
e Cross section for m, — 0: use cms frame:
1 = 7 07 07 :l: Y
plﬁ (p p) . | ‘ (3.181)
kY = (E, £k cos¢sinf, ksin¢sinf, £k cosb).
with £ = |/k2 + m2. The squared matrix element becomes (s = 4p® = 4E?)
4m? 4m?
M2 = 2¢* [1 +—E+ <1 — —“) cos® 9] (3.182)
s s

e The differential cross section if found by inserting the squared matrix element into ([3.147))

using the phase-space integral (|3.149))

d 1 1 4m?2 —
= 0,0 1— —F[MP
dpdcost  4pYphuve 8(27)2 s
8p2=2s (3183)

2 4m? 4m? 4m?
Y 1= “{1+—“+<1——”>00529]

4s S S S
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The total cross section is obtained by integrating over the angles:

2 4m? Am? 1 Am?
o="% 1 {1+—“+—(1——“>}

C - o ’ i (3.184)
_ Ao - 4ms, {1 N Qmu}
3s s s
3.5.2 Remarks on the calculation of scattering amplitudes
Crossing: e pu — e
e Matrix element for e (p1)u™(p2) — e~ (k)™ (ko)
o (p2) (k)
iM =
(3.185)
e (p1) e (k1)
ik
= (_16)2(1702 (pZ)’va/\Q (k2)) (pl — ;?)2 T ic (ﬂal (kl)%/u/\l (p1>>

Comparison to the matrix element for e~ (p;)et (p2) — p~ (k1)pu™ (k2) (3.171)): change
incoming e (ps) to outgoing e~ (k;):

(k1)
v(p ) (3.186)
(p1 — kr)?

ﬁ |

v(p2) —

11( 1) —
(pr+p2)* =
e Spin averaged matrix element

4

IM? = f? Er[((P2 = mp)yu(F2 = my) ] tr[(Fr + me)y" (b + me )]

86
-2 [(/ﬁ k2)(p1 - p2) + (p1 - ko) (p2 - k1) — (p2 - kz)mi —(p1- kl)mz + 2mimg}
(3.187)
e Relation to squared matrix element for e e™ — p~pu*:
(3.173)): crossing of momenta
p2 <> —ky (3.188)
= (3.189)
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Reason: Completeness relation for (anti-)muon spinors

> () Vs (p2) = (b2 — my) = =1 +my,) = = ue(ky)tis (k1) (3.190)

g

External photons and gauge invariance

Gauge invariance implies that scattering amplitudes must be invariant under the replace-
ment 5. 100
e — €' + apt (3.191)

of the polarization vectors. This implies that amplitudes M with an incoming/outgoing
photon of momentum p obey the following Ward identity:

M = PP Mup) = pMup) =0, (3.192)

where all external states other than the photon must be on shell. In the above example,
we can use the Dirac equations (3.62)) for the spinors

(P —me)u(p1) =0, 0(p2)(P2 +me) =0 (3.193)
to check that the Ward identity is satisfied:

IM K = (—ie)?D(ps) [¢*(k2) b+ b ¢*<k2>} u(p1)

151—}62—7”@

b1 — K —me AL A (3.194)

+ (F1r— (P2 + me))m

= (—ie)*0(pa)i[—¢" (ko) + ¢ (ko) u(pr) = 0

e In general only the sum of all diagrams contributing to an amplitude satisfies the
Ward identity, not individual diagrams.

]’31—%1—77%

= (—ie)*0(p2) | " (k2)

e A general diagrammatic proof of the Ward identity can be found e.g. in [3].

e In QED the Ward identity allows to simplify the calculation of spin summed cross
sections by dropping the momentum dependent terms in the polarization sum (3.101)):

eheyt = —g + ————— = —g"” (3.195)
EA: A (p-n)
For processes with more than one external photon, this is only possible if the iden-
tity (3.192)) continues to hold if all external photon polarization vectors are stripped
off the amplitude. This holds in general in QED, but not in nonabelian gauge theories
such as QCD.
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Remarks on calculations for many-particle final states

The number of Feynman diagrams increases drastically with the number of external
particles.

For N contributing Feynman diagrams to M, there are N? terms in the squared ma-
trix element |M|2. The above procedure therefore can become very lengthy already
for a moderate number of diagrams.

Computer programs can be used for the computation of Dirac-traces, e.g. tracer,
Form, FeynCalc, FormCalc

In numerical calculations: implement explicit expressions for spinors and polarization
vectors and compute helicity amplitudes

MM, s, ) (3.196)

For each phase-space points this evaluates to a complex number, so the computation
of | M|? is simple. The sum over helicities is performed numerically. In this approach
one needs to evaluate N Feynman diagrams 2" times for n external particles.

For massless particles, the vector interaction is helicity conserving:
(UJ[+5MU+) ) (/\7 >‘/) = (Ra R)
axyuy = (ulotu_), (\XN)=(L,L) (3.197)
0, (A N) = (R, L) (L, R)

= fewer non-vanishing helicity combinations, amplitudes simplify in terms of two-
component spinors.



Chapter 4

Introduction to QCD

As discussed in Chapter[2] quarks carry an additional quantum number “colour”. Therefore
the quark field is described by three complex Dirac spinors:

Qi(z), i=1,2,3 (4.1)
The theory should be invariant under rotations of the quarks in colour space:
Qi — Uiij (42)

where the matrices U € SU(3) are complex three-by three matrices with unit determinant.

The search for a theory compatible with the confinement of quarks into hadrons at
low energies, and with quasi-free quarks at high energies needed to explain deep-inelastic
scattering led to the proposal of vector bosons (“gluons”) as mediators of the interac-
tions among quarks. Gluons are analogous to photons but carry colour quantum numbers
(otherwise QCD would just be a copy of QED which cannot explain asymptotic freedom).
The theory therefore should include an interaction term of the form

Qi

EI ~ ngi’Y'u-A,u,iij = (43)
Qj /) ——

e g, “strong coupling constant”: analogous to e in QED

° ij gluon field, matrix in colour space so it can change the colour charge of the
quarks.

e The interaction Lagrangian is hermitian provided the vector field is hermitian: Aw-i* =

I
Auvj :

e Interactions of massless vector bosons must be gauge invariant, A, — A, + J,«a
(for free asymptotic states) because of Lorentz transformations of polarization vec-

tors (3.104]).

51
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e Gluons carry colour degree of freedom, therefore self-interactions are expected to be

e The guiding principle in the construction of QCD will be the extension of the U(1)
gauge invariance of QCD to SU(3) by allowing the colour transformations of the
quarks to depend on space-time:

Qi(z) = U (2)Q;(x) (4.5)
Such transformations are called local SU(3) transformations.

e The resulting theory is the unique theory consistent with the Ward-identity
of scattering amplitudes. As an alternative sketched in [6], the same theory could
also be obtained starting with an Ansatz for the interaction vertices and
and imposing the Ward identity.

4.1 SU(3)

4.1.1 Generators and Lie Algebra

Lie Groups and generators

The group SU(3) is an example for a Lie Group. We keep the discussion of Lie groups
here brief, for more detailed definitions see Chapter 7 of [2].

e SU(3) transformations can be defined by eight real parameters w®, a = 1, .. .8, similar
to the three Euler angles parametrizing rotations.

e A group whose elements depend on a set of continuous parameters is called a Lie
group.

e The number of parameters (e.g. 3 for SO(3), 8 for SU(3)) is called the dimension
of the Lie group.

It is familiar from quantum mechanics that a unitary matrix U can be written in terms of
an hermitian matrix H:

U = exp(—iH), (4.6)

with H = H. On can decompose the hermitian matrix H in a basis of so-called gener-
ators 7T so that
U(w) = exp(—iw*T?) (4.7)
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The condition det(U) = 1 implies that the generators are traceless,
tr7 =0 (4.8)

since
detexp A = exptrA (4.9)

Gell-Mann matrices

A concrete realization of the traceless, hermitian Generators 7% of SU(3) is given in terms
of the Gell-Mann-matrices, which are three-dimensional generalizations of the Pauli
matrices:

_N

T 5 (4.10)
with

010 0 —i 0 1 0 0
M=(100], X=|i 0 0], NM=|0 -1 0

000 0 0 0 0 0 0

00 1 00 —i 000
M=o o0o0], X=|00 0], N=(0oo0 1], (4.11)

100 i 0 0 010

00 0 L (100
N=[00 —i], ¥=—1][01 0

0 i 0 3\0 0 -2

Lie Algebras

It can be shown that the group-theory axioms imply that the set of generators is closed un-
der forming the commutator, i.e. the commutator of two generators is a linear combination
of generators:

[T T = ifeTe. (4.12)
e A set of objects with this property is called a Lie algebra.
e The quantities f®° are called structure constants of the Lie algebra.
e From the definition of the structure constants it is clear that f¢ = — fbec,
e From the Jacobi Identity of commutators

[T, [T, T + [T°, [T, T"] + [T°,[T°,T*)) = 0 (4.13)
one obtains an identity of the structure constants (also called Jacobi identity)

fbcdfade + fabdfcde + fcadfbde —0. (414)
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e In case the object ¢g* = tr(7T°T") has only positive eigenvalues, one can choose a
basis of generators so that the generators are normalized as

tr(TT°) = %5%. (4.15)

In this basis the structure constants can be obtained from the generators by the

relation;,
febe = =2itr ([T%,T°T°) (4.16)

In such a basis the structure constants are totally antisymmetric:

fabc — _fbac — _facb — fcab — _fcba — fbca. (417)

since
fabc — —9itr ((TaTb _ TbTa)TC) — _9itr (TbTCTa _ TchTa) — fbca’ (418)

where the cyclic symmetry of the trace has been used.

4.1.2 Representations

The elements of a group can act on different vector spaces. Familiar examples are the
action of Lorentz transformations on tensors of different rank in relativity, or the action of
rotations on the spaces of states with different angular momentum in quantum mechanics.
The action of a group on a vector space is called a representation of the group. The
dimension n of the vector space is used to denote the dimensionality of the representation.

Formally, a representation R of a group G on a vector space V is a mapping of ele-
ments g € G to linear transformations U™ (g) on V that is compatible with the group
multiplication,

g-f=h = UBQUIH=UB(g f)=UR(h). (4.19)

The vector space V is called “representation space”. In physics the elements of the n-
dimensional vector space V' are often called 'multiplets’ (n-plets) and, with an abuse of

notation, the vector space itself is often called ‘the n-representation’.
Two representations R and R’ on a vector space V are called equivalent, R ~ R/, if there exists an
invertible transformation S so that

U (g) = SUM(g)S™, Vged.

Fundamental representations

In special relativity, tensors can be constructed from co-and contravariant vectors, while
in Quantum mechanics states with arbitrary angular momentum can be constructed from
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spin one-half states. Such representations serving as building blocks for all representations
are called fundamental representations.

In addition to the quarks with the transformation , we have anti-quarks that
transform with the complex conjugate transformation. For SU(3) the fundamental repre-
sentations are the 3-dimensional representation appearing in the transformation law of the
quarks, and the complex conjugate 3 representation of the antiquark:

3: Qz — Ui(g)ij = Uiij (420)
3 Q' = UP),Q = QU (4.21)
Combining representations

As in relativity, one can consider “tensors” with multiple upper and lower indices. These
are obtained for instance by multiplying two quark fields,

D;; = Q:Q; (4.22)

This defines the representation 3 ® 3 with the transformation law
(U(3®3))ijij Dyy = Ui,z‘Uj,jDi’j’ (4.23)

Tensors with several indices can be decomposed into symmetric and antisymmetric
contributions:

with

1 1
Sij = §(Dij + Dji) Ay = é(Dij — Dji) (4.25)

Note that the symmetry properties are not changed by the colour rotations. Therefore the
set of symmetric tensors forms a separate representation of SU(3). Since symmetric 3 x 3
matrices have six independent entries, it is called the 6 representation.

Out of the antisymmetric part we can form the three-component object

AF = €7F A (4.26)

Because of the identity B o B
IR U U = MU (4.27)

it transforms in the conjugate representation 3:
AR = AF(UhH¥ (4.28)

(this is analogous to the proof that the vector product Z X ¢ transforms as a vector under
rotations).
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This shows that the tensor product of two 3-representation can be decomposed as
33=3®6 (4.29)

Note that for an SU(N) group one can convert N — 1 lower indices to one upper index
using the antisymmetric tensor with N indices. In SU(2) the 2 is equivalent to the 2 so
that we do not treat them as independent representations.

The second example is a tensor with one upper and one lower index, obtained for
instance by multiplying a quark and an antiquark field:

M =Q'Q; (4.30)
These tensors transform in the representation 3 ® 3:
3 ij’ i’ i it -
(UC)” MYy = UM o (UT) (4.31)

Since the two indices behave differently with respect to SU(3) transformations, it makes
no sense to symmetrize or antisymmetrize them. Instead, they can be contracted using the
Kronecker delta:

M';=0' + 5§ (4.32)
with the “trace part”
1. .

that is invariant under SU(3) transformations. The remaining traceless tensor O has eight
independent entries and defines the 8-representation. Therefore we have the decomposition

33=1®8 (4.34)

A representation that cannot be decomposed further is called an irreducible represen-
tation. Generalizing the above discussion one finds that the irreducible representations in
SU(3) are given by tensors with n symmetrized upper and m symmetrized lower indices
that are traceless with respect to contractions of upper and lower indices. These concepts
are important for the application of SU(3) to the classification of the hadron spectrum
where larger representations appear. In this lecture we will only encounter the singlet,

triplet and octet representations.
For instance one obtains

3x3x3=03D6)x3=10808d10 (4.35)
where the 10 is given by symmetric tensors with three lower indices. The decomposition 3 x 6 = 8 & 10
can be seen writing the tensor product @;S;, with the symmetric tensor S;; = Sj; in the 6 representation
as
1 1
QiSjk = g(QiSjk + Q;Sik + Qr.Sij) + 3 (2QiSjk — QjSik — QrSij) (4.36)

cijiAltei Al

where the 8 representation is identified as

Alk = 6lnﬂLnCQ'r‘ruS"nkr (437)
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This is traceless because of the symmetry of S and the antisymmetry of the epsilon tensor:

. . 1.
Ay =" QmSni = §€Zanm(Sni — Sin) =0 (4.38)

Representations of Lie algebras

A set of dim(G) matrices TU)® that satisfies the same commutator relation (4.39) forms a
representation of the Lie algebra:

[T TR = j pabep(R)e. (4.39)

The structure constants do not depend on the representation, but on the basis chosen for
the Lie algebra. Generalizing the normalization , one defines the index of the
representation Tx:

tr(THETREP) = Tpé,,. (4.40)

For the fundamental representation, the generators are just represented by the Gell-Mann

matrices
TG = 70 (4.41)

and T3 = Tr = % The generators TU) are related to the group elements in the represen-
tation R by the usual exponentiation

UB) (W) = g " T (4.42)

Conjugate representation

For every representation R the conjugate representation R with the generators

T®e — _p(Ral _ _rp(R)s (4.43)

is also a representation. In the last step it was used that the generators are hermitian.
For the anti-fundamental representation, this definition is consistent with the transforma-
tion (4.21)) )

(U(3))i _ (efiw”T@)a)i _ (eiw“T“’T)i

J J

;= (U (4.44)

Adjoint representation

For every Lie Algebra there always exists the so called adjoint representation given by
the structure constants:
(T@day, = —jfabe (4.45)

They satisfy the commutator relation (4.39) due to the Jacobi identity (4.14)).
In SU(N) groups the dimension of the adjoint representation is N*—1, which is identical
to the dimension of the traceless tensor representation M*; in the tensor product of the
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fund mental and the anti-fundamental representations, N ® N = 1@ (N? —1). In SU(3),
the adjoint representation therefore is identified with the 8-dimensional representation

in (31,

The index of the adjoint representation of SU(N) is given by (= homework)

Ty=N (4.46)

Generators of product representations
The generator for a product representation R @ R’ is given by
TESR) — T(R) ¢ 1(R) 1 1(B) & T&) (4.47)
This follows from expanding the representation of the group elements
UESE) () = UR () @UF) (w) = (1P —jweT®e 4 Y@ 1B —iwrTE)e 4 ) (4.48)

to linear order. The most familiar application is the expression of the total angular mo-
mentum operator for a two-particle system:

4.2 QCD as non-abelian gauge theory

4.2.1 Non-abelian gauge invariance

In order to generalize the notion of gauge invariance, we generalize the gauge transformation

of fermions in QED
U(@) = ' (x) = e (z) (4.50)

by allowing the matrix-valued rotation in colour space to depend on the space-time coor-
dinate:

j —iw®(x)T* J
Qi(x) = Qi(x) = U (2)Q;(x) = (7" W) Qs () (4.51)
Transformations of this form with space-time dependent elements of a non-abelian group
are called non-abelian gauge transformations.
Covariant derivative

In the next step, we generalize the covariant derivative D, = d, +igA,(x) from QED to
the colour rotations by postulating a matrix-valued covariant derivative with the property

D, Q(x) = U () D, ;" Qu(x) (4.52)
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Introducing the gluon field in analogy to the photon field in QED by writing the covariant
derivative as

D, = 0,6/ +igs A, (x) (4.53)

the condition on the covariant derivative becomes (suppressing the colour indices)
: ! .
D, (UQ) = [0,(UQ) +igs A, UQ] = U(9y, + igsA)Q (4.54)
The derivatives of @ cancel on both sides so one can solve for Aj;:

A = UAU + (0,0 (4.55)

s

This is the non-abelian generalization of the QED gauge transformation A), = A, + J,w.
For the case U(z) = exp(—iqw(x)) the simpler QED transformation is reproduced.

Field-strength tensor

In order to obtain the non-abelian generalization of the field strength we use the definition

Dy D)7 Q= 195 F i’ Q (4.56)
By definition of the covariant derivatives, the so-defined field strength tensor, which is also
a matrix in colour space, transforms under gauge transformations as

Fiw = UFLUT (4.57)

In contrast to the QED case, the field strength tensor in a non-abelian gauge theory is not
gauge invariant but transform “covariantly” i.e. like the tensor produce 3 ® 3 with respect
to colour rotations. To calculate the field-strength tensor explicitly, note that the gluon
field matrices do not commute with each other. Therefore

Fpu,ij = auAV,ij - 8u-/4u,ij + lgs ["4/“ Al/]ij (458)

Decomposition of gluon fields

The hermitian matrix of the gluon field can be decomposed into the basis of the SU(3)
generators:

AL, = AT (4.59)

In perturbative QCD one usually employs the description in terms of the eight fields A},
but sometimes the formulation in terms of the matrix A is useful as well.
Similarly the field-strength tensor is decomposed as

Fuv = TU8,A% — 0,A%) 4 ig, [T, Tb]A;jA’; =T"F;, (4.60)

with
F/‘j,/ = (0,4] — GVAZ) - gsf“bcAZAi (4.61)
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Infinitesimal transformations

Using the representation of the SU(3) elements in terms of generators, one finds the in-
finitesimal gauge transformations of the quarks:

AQ(z) = Q'(z) — Q(z) = exp(—igsw®(2)T")Q(x) — Q(x)

— g ()T Q(x) + O (4.62)

where the factor of g, has been introduced as a convention.
From (4.55) we can obtain the transformation of the gluon fields under infinitesimal
transformations

AYT® = UASTUT + i(auU)UT
= (1 —igow®T" + .. )ALT(1 +igew T + ...) + (") T*(1+...)
= (A% + 9,w") T + Alig’ [T, T + O(w?)
= (A% + 0w" + g f "W AS) T + O(w?)
= AAL = 90" + g [ WA,

(4.63)

Remarks:
e For g, — 0 the gauge transformation reduces to that of the photon field (3.110)).

e for constant transformations w® # w®(x) the transformation is analogous to that of
the quarks with the generators replaced by that of the adjoint representation:

AAS |=const. = —igs (TEV)qe WA (4.64)

_ifbac:ifabc

e The gauge transformation of the gluon field can be written in terms of the covariant
derivative for a field in the adjoint representation:

AAL = (0u0ap + 195 (TPV) A2) W = D W (4.65)

ab,p

4.2.2 QCD Lagrangian

To form a kinetic Lagrangian for the gluon field we note that the expression

i1
tr[Fu FH¥] = Fil, FIv = ZFo Fom (4.66)

I A 4

is gauge invariant because of the cyclicity of the trace and the unitarity of the gauge
transformations:

tr[F, "] = tr[UF,, UTUF* U = tr[F, F* U U] = tr[Fup F*] (4.67)
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Inserting the explicit expression of the field strength tensor, one sees that the gluon La-
grangian is considerably more complicated because of the commutator terms

1
5 Bl F ] = tr | (94, (9" A7) — (9A,) (" AL)

T igs (A, — 0, A, [ A", AY] (4.68)
U SV YY)

The first line is analogous to the free photon Lagrangian in QED, the second line gives
a cubic gluon self-interaction term, the last line a quartic self-interaction which lead to
Feynman rules of the form (4.4).

The QCD Lagrangian can now be obtained as the generalization of the QED La-
grangian ((3.106]):

1 = /.
Lacp = =5 tlFu ]+ Q (P —my) Q (4.69)
In terms of the gluon fields A%, the QCD Lagrangian (4.69)) can be written as

Loep = —~F2 P 1 Q (i) + ig.T"A%) — m,) Q

4" (4.70)
= Lqcp,o + Locp.r
with the free Lagrangian
1 = /.
Lacpo = =5 (G4)(9"A™) = (9,4,)(0"A™)] + Q@ (i — mq) @ (4.71)

and the interaction

. 2
*CQCD,[ — _gSQzAa/Ivia,J Qj + gsfabc(auA%a)AgAZ _ %fabefcdeAzAI;Ac,uAd,u (472)

4.2.3 Gauge fixing

In order to derive the gluon propagator, as in QED a gauge-fixing term has to be added
to the Lagrangian. Again, usually a covariant term

1
2%

is added. It turns out that for calculations beyond tree-level another term has to be added
to the Lagrangian if the covariant gauge fixing is used. This so-called Fadeev-Popov term
is usually derived in the functional integral quantization method that is not discussed in
this Lecture. In the Fadeev-Popov method, so-called ghost fields ¢, and anti-ghost fields
¢, are introduced: scalar fields in the adjoint representation of SU(3), which, however, are
assigned Fermi-statistic. These fields never appear as external states, so the spin-statistics

Lyt = (9, A%H)? (4.73)
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theorem is not violated by the wrong statistics. The Fadeev-Popov Lagrangian is given by

Lep = (0"¢,) DSV ey = (8"2) (00ab + 9o Ac ) o (4.74)

ab,u

The gauge-fixed Lagrangian with the ghost terms is not gauge invariant, but invariant
under a global symmetry including the ghost fields, the so-called Becchi-Rouet-Stora-
Tyutin (BRST) symmetry. This symmetry can be used to show the independence of
scattering amplitudes from the gauge parameter ¢ and derive the generalizations of the
Ward identities, so-called Slavnov-Taylor identities. A review of BRST symmetry and
Slavnov Taylor identities is given in Appendix [A]
Alternatively, an axial gauge-fixing term could be used,
1

Ly = —i(n”AZ)Q. (4.75)

In axial gauges, it can be shown that the ghost fields are not necessary.
More generally, one can consider a gauge fixing term of the form

1

28

with some gauge-fixing functional f*[A,]. The Fadeev-Popov Lagrangain then involves the gauge variation
of the gauge-fixing term:

Lo = — oz (F[Au])? (4.76)

0 [A ()] o a
ch(y) = & (2)McP () (4.77)

where the last expression holds for a local gauge-fixing functional. For the covariant gauge fixing one
obtains the previous result:

Lrp = 7/d4y Ea(cc)

f*=09,A%" =M™ =9,(0"5" + gy fre ALY (4.78)

4.3 Feynman rules

External lines:

—— Uy (p) — U (p)
p p

— Vo (p) — U (p)
p p

o AH eA(p) Laaa ey AH i (p) (4.79)
p p

Propagators:
j L — —— ] '3 —,
— p—my+ie
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g ﬂ(l — ) (4.80)

oA U a
vhe el p? + e (p? + ie)?

p

Vertices

>~wy ane: —ig Tk, (4.81)
Acns
?\Mﬂz““ L — g f° [9’““2 (p1 — p2)"® + g"*#2 (p2 — p3)* + g (ps — pl)m] (4.82)

Ab k2
Acks Adna

% ig? [fabefcde(gmuggmu4 — ghams gima) | pace phde( gz giisps _ glizps ghnpa )
Abna Aan - fade ghee( gz gusps _ guwzguzsm)] (4.83)

Here all momenta are incoming by convention. For one-loop calculation one also needs the
Feynman rules for the ghosts resulting from the Fadeev-Popov Lagrangian (4.74))

Cp
he -=--ea: 0at ‘.KQSZQQJ Ak g fabcpu (4'84)
G PP +ie Py ’ A
C,

Here p; is the incoming anti-ghost momentum. For each closed ghost loop, the diagram

has to be multiplied by (—1).
The vertex functions can be obtained from the interaction Lagrangian using the definition (3.159). For
instance, the three gluon vertex is obtained from

i/d4$ (O1L1(x)lgh i gb2) = (2m)*o"( sz WVpn b2t €, (p1)€pia (P2) €y (P3) (4.85)

There are six possibilities to contract the fields with the external states. One example looks like

195 1" Gougve (0° AT () Alk, () A% ()| 9B g1 g2°)
~ (ig5) F*° GppGuo (—1D]) g1 gH2F g €1y (P1)€py (P2) s (p3)  (4.86)
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where we dropped the exponentials leading to the delta function. Adding the other contributions gives
the vertex function
Vgp;gugug = gs [fabcpibzgugul + facbpzlizagugul
4 fbacpglguzus + fbcapg?»gmuz + fcabpglguzm + fcbapgzgmm} (4.87)

= _gsfabc [gmm (p1 — p2)H® + g"2H3 (py — p3)"t + gHeH (pg —Pl)M}

where the antisymmetry of the structure constants has been used in the last step.
In the four-gluon vertex there are 4 x 3 x 2 x 1 = 24 possible contractions. A typical contribution is

2 I ————t—
-9s clmn popn 4 v o :
= T G gus AT (@) AT, (2) AL (2) A7 (2) 198 937 92 97°)

2
= —igffabedeegMHSgH2u4€m (P1)€us (P2)€ps (P3)ens (pa)  (4.88)

Adding all contributions gives the four-point vertex

‘/;;219132#3#4 = —igg [fabefcde (gM1H3gM2H4 _ guzuzgmm) + facefbde (guwzguz;m _ guzusgmmx) ( )
4.89
+ fadefbce (gul uzgug/m _ gu4u2g/i3u1)

where the factor of 1/4 has canceled against the twenty-four possible contractions, leaving six different

structures in the vertex.

4.4 Evaluation of colour factors

An additional complication of calculation in QCD compared to QED is the presence of
the SU(3) generators T and the structure constant f%°¢ in the Feynman rules. Since the
colour quantum number is not observed, one sums over final-state colour and averages over
initial-state colour, analogously to the treatment of spin for unpolarized cross sections.
These sums lead to the appearance of colour factors in QCD calculations, that we will
define here. We will initially consider the group SU(N,) and set the number of colours
N, — 3 in the end.

Casimir operators
The operator T*T* commutes with all generators:
(T*T*), T = T[T, T" + [T, T"|T* = if** (T*T° + T°T*) = 0 (4.90)

since the structure constants are antisymmetric. An operator that commutes with all
generators is called a Casimir operator. It can be shown that a Casimir operator is
proportional to the unit matrix in an irreducible representation,

(TWaeBay — Cp1 (4.91)
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where usually the number Ck is called the quadratic Casimir of the representation
R.
Comparing to the definition of the index of a representation (4.92)),

tr(THETREP) = Tre,,. (4.92)
one has the relation
tr(T*ReTBa) = Op dim(R) = Tr dim(G) (4.93)

This can be used to compute the quadratic Casimir of the fundamental representation,
Cg = CFZ

1
CpN, = Tr dim(G) = 5(Nc2 —1) (4.94)
ie. N2_1 4
= __—_ 4,
Cr N, 3 (4.95)

For the adjoint representation one obtains
Ca=1Ty (4.96)
The explicit value is given by (= exercise)
Ca=N.=3 (4.97)

An alternative derivation follows from a general relation for quadratic Casimir operators that can be
obtained from the decomposition of the tensor product

ROR =Ry ®Ry---=» Ra (4.98)

and the expression (4.47) for the generator in the product representation:

TERSR) _ p(R) ¢ 1(R) | 1(R) g (R (4.99)
Therefore ) / ) ) )
tr[TESEDVTRSE)] — (Op + Cr) tr[1F) @ 18] 42 tr[TH) @ TEH)] (4.100)
dim(R)xdim(R’) tr[T(R)] tr[T<R’>]:0

since the generators are traceless. On the other hand the direct sum of representations on the right-hand
side of (4.98) has the generator

g NS VI
0 T@R) o .. (4.101)
0 0 .0

so that

tr[THESRITRERD] = 3™ tr T(Ra)? = > Cg,dim(R,) = (Cr + Cry)dim(R)dim(R') (4.102)
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This allows to compute the quadratic Casimir of a representation in the decomposition into irreducibles,
if all the others are known. The simplest example is the decomposition 3 ® 3 = 1 ® 8. Since the group
acts trivially on the singlet representation, the generators are vanishing and therefore C; = 0. This gives
for the quadratic Casimir of the adjoint, Cs = Cy:

2CF

Tn®) dim(3) dim(3) = 3 = N, (4.103)

A=

Colour Fierz identity

Strings of generators can be simplified using the colour Fierz identity (derived as home-
work):

. 1 . 1
Ta,ija,k’l — 5 <5Zl(5kj _ ﬁ5135k1> (4104)

Sometimes it is useful to represent this identity graphically'
' J k

% N/ 2N (4.105)
R \ VARth

[
These diagrams are similar to Feynman diagrams but only denote the SU(3) structure,

not the propagators, Dirac matrices and spinors.

As an application, we can simplify a string of three generators:
4 . 1 ,
arpbraNi bk a,ira,l - b,i

(T*1°T*); =1, T,'T; = —Q—NCTJ (4.106)

_1/5i 1 si
=1(5i6% L5141

where the tracelessness of the generators was used in the last step. This derivation can be
represented diagrammatically as

+ M . 1 | _ 1
2N, | ~ 2N,

4.5 Examples

4.5.1 Quark-antiquark potential

Electron-positron scattering in QED
e (p2) et (ky)
_ —i(ie)?
~ (p1— k)?

I~

7 (02" v(k2))(@(kr)y v (p1)) (4.107)
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It can be shown that in the non-relativistic limit this expression can be interpreted as
the quantum-mechanical amplitude for scattering in an attractive Coulomb potential in

momentum space (see e.g. [3]):
o2

V() =
|(ﬂ2
As the analogous case in QCD, consider the amplitude for quark-antiquark scattering;:

7 (p2) 7' (k2)

(4.108)

- %(@(pﬂTf’lv“v(kg))(ﬂ(kl)T;? v (pr) (4.109)

qi(p1) Qi (k1)

Comparing to the QED case, we see that in the non-relativistic limit there is a colour-
dependent quark-antiquark potential

2
a CL’L g
T s 4.110

_Clz

There are two possible colour states of g7 pair since 3 ® 3 = 1@ 8. In the singlet state,
the quark-antiquark wave-function is given by

|4d)s o< 05 |aid’) (4.111)

up to normalization. The potential for the singlet state is therefore obtained by contracting
the indices of the incoming quark-antiquark pair:

Ci.o! = (T°T*)}, = Crd}, (4.112)
The colour octet state of the quark-antiquark pair is of the form
laq)s o< T} |q:q”) (4.113)

This form of the state can be understood from the fact that a quark-antiquark pair in an
octet state can be produced from a gluon splitting g* — ¢;¢ where the quark gluon vertex
involves the generator T7"*. The potential for the octet state is obtained as

1
2N,

CLTH = (T'TT")}, = — ! (4.114)

Therefore the potential for a quark-antiquark pair in the representation R can be written

as
2

B () = W () (4.115)
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with

_%Nc R = 8 (repulsive) (4.116)
For the singlet representation the potential has the same sign as the electron-positron
potential in QED, i.e. it is attractive, while the potential for colour-octet states is repulsive.
This is consistent with the observation that only colour-singlet bound states are observed
in nature (although of course it is far from a proof).

For bound-states of bottom quarks and for the production of non-relativistic top quarks,
the above potential can be used for the (leading-order) computation of the bound-state

spectrum or the scattering amplitudes.
Formally one can introduce projectors on the colour singlet and octet states

R — {CF R =1 (attractive)

Wi _ 1o
Py = N 0k05

@i _ L algai (4.117)
P = T Ty T
—
=2
These are projectors normalized such that PR PE) — §pn, and satisfy
R L (4.118)

as can be seen using the colour-Fierz identity. Inserting this resolution of the identity, the potential can
be decomposed into the singlet and octet parts:

V(g =Y vB(gpH (4.119)
R

4.5.2 gq — gg: Gauge invariance and ghosts

The partonic scattering gqg — gg is analogous to the QED process qqg — 77y, but includes
an additional diagram because of the three-gluon vertex:

q g 4q g 4q g

q g q 9 q g
The t- and u-channel diagrams differ from the QED counterparts only by the colour ma-
trices:

q(p2) g(ka)  q(p2) 9(k2)
My = +
(4.120)
q(p1) g(k1)  q(p1) g(k1)

3 55 * i a,i /* *ra, [ 4 %
= (igs)"0(p2) | T} ¢ T+ 41T kaIg 75| u(p1)

151—}61—771
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The s-channel diagram reads

q(p2) g(k)
iM, =

q(p1) g(k1)

() (—ia, 1.121
(p2) (—1gs) T "+ u(pr )(p1+p2)>< (4.121)
s FCU(er - €5) (ky — Ra)! + €4™ (2ka + Ku) - €] — €/ (2ky + ko) - €3]]

=0(ps) (—igs) T}y “U(Pl)(lerpz) X
s - €5) (k1 — ko) + 2657 (ky - €) — 261" (ky - €3]]

Here we have used the transversality of polarization vectors ¢; - k; = 0, and momentum
conservation to simplify the three-gluon vertex.

Ward identity
As in QED (3.192), the amplitude must satisfy a Ward identity

M = PP Mu(p) = pMulp) =0, (4.122)

Following the discussion given for e~et — v+ (3.194)) one finds for the two quark-exchange
diagrams

IMipu k= (—igs)*0(p2)ids [—(TbT“E- +(T°T%); ] u(pr)
= —(—igs)*f T v(p2)d5u(pr)

The s-channel gluon exchange diagram gives

(4.123)

oo~ _ . (X} _1
Mo = 0(02) (<ig:) T3 ulpr) 55

g5 f 1= (k1 - &) (ky + ko) + 2¢5" (k2 - )]

: i +p2) (4.124)
= (—igs)*f™ T —wl—k-e*jL*u
(—igs)" [T v(p2) 2 _p2>( 1 €) +¢5] u(pr)

= (—igs)*f" T} 0(p2)d5u(p1)

= _iMH—u,uka
where momentum conservation and the Dirac equation was used. Therefore the Ward
identity is satisfied if all three diagrams are added up:

KMy, = 0. (4.125)
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e For the Ward identity to hold, it is necessary that the same coupling constant g,
appears in the quark-gluon and the triple-gluon vertex, and that the matrices 7 in
the quark-gluon vertex satisfy a Lie-algebra with the constants f%¢ in the three-gluon
vertex as structure constants.

Based on these observations, one can show that non-abelian gauge theories are the
only consistent, renormalizable, theories of self-interacting massless vector bosons.

e In the proof of the Ward identity it was necessary to use the Dirac equation for the
external quark lines and the transversality of the gluon polarization vector €.

e Since the second polarization vector had to be transverse, it is not possible to drop
the terms proportional to the momentum in the polarization sum of the gluons for
processes with more than one external gluon:

v v P A nfp” v
Y eyt = —g + R (4.126)
- p

Relation to ghost diagrams

We consider the “reduced” amplitude obtained by removing both of the gluon polarization
vectors:

M = ™ (kp)e” (ko) M, (4.127)
The only modification in the previous check of the Ward identity appears in the s-channel
gluon diagram where the term previously omitted because of ks - €2 = 0 has to be kept:

—i

IM k] = @(pz)<—igs)Tf’i7"U(p1)( (—gs Sk kay) (4.128)

p1+ p2)?

From the ghost Feynman rules one finds the matrix element for the (unphysical) “process”
qq — (k1) (ka):
i) (k)
’ i

iMe, &, = . = U(p2)(—igs) T}’ WMU(pl)m

a(pr) (k)

Therefore one finds that the violation of the WI for the reduced amplitude is proportional
to the ghost diagram:

(—gs fPKY)  (4.129)

Mkl = —kyy Mo, o, (4.130)

This identity can be derived from the BRST invariance of the gauge-fixed Lagrangian
mentioned above. Similarly one finds

Mkl = =k, Me, z,, (4.131)
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Using the relation to ghost diagrams, the sum over gluon polarizations can be simplified
according to

~ * ok ~ o, x ~ v k?,jno—l—’n,ykg S,
D M G a0 MU = M (=) (—gw+ : 2 )MP»

Mg (kg . n)
Y v Y L VL 2y oy Ly Y
pv Cho Chy (k2 . n) (/{22 . n) k2
— AV AqF B * . ~ *
= MMM, = Moo MG, o = Moy o MG, o

(4.132)
Therefore, instead of replacing ), e\eX* = —g¢"” as in QED, one either needs to keep
the full polarization sum (3.101)) or add additional ghost diagrams. The third alternative,
advertised already in Section and developed in Part [[T] is to compute amplitudes for
a given gluon helicity and sum the results over the different helicity combinations.
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Chapter 5

Applications of the Parton model

In this chapter we will first discuss three classic applications of the parton model:

e ¢ et — hadrons

et
X
o
e DIS:e” P — e + X,
e e
X
P
e Drell-Yan: PP — (¢t + X.
P
X
g_
P ot

These processes are closely related: they are induced by the electromagnetic interaction at
leading order, the diagrams are related by crossing, a sum is performed over the unidentified
hadronic final states. The processes differ by the presence of one or two identified hadrons

in the initial state for DIS and DY.

As an example for partonic scattering processes induced by QCD at leading order, we

subsequently discuss dijet production, in particular quark-antiquark scattering.

73
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5.1 e e — Hadrons

As discussed in Section the process e”e™ — Hadrons is an important test of QCD and
allows to infer the number of quark colours by measuring the so-called R-ratio o(ete™ —
Hadrons)/o(ete™ — ptpu~). We here give a field-theoretic derivation of an expression for
the total cross section that forms the basis for an analysis in QCD and justifies the naive
treatment given in Section [2.3]

5.1.1 Electromagnetic quark current

The interaction Lagrangian of quarks with the electromagnetic field can be written as:
Ling = —€ Apjy (5.1)

with the electromagnetic current of the quark fields (); with charges g;:
=S 60 Qi = | =Dy D+ 20U + .. (5.2)
4 - 3 3

For expectation values involving quark states, the expectation value of the current is
evaluated simply, e.g. at leading order

(u(kr)u(ke)|gq (2)|0) = %(U(kﬁl)v”v(/@z)) ellbrrhe)e (5:3)

Expectation values with hadronic states X, (X (px)|j¥(x)|0) cannot be evaluated in per-
turbation theory.
Acting on the current with the translation operator,

e Tj(0)e = jh () (5.4)
one has the identity

(X (px) 175 (@)Y (py)) = €77 (X (px) |4 (0)[Y (py) (5.5)

5.1.2 Total cross section

At leading order in QED, but all orders in the strong interactions, the matrix element to
produce a particular hadronic final state X in e"e™ collisions can be written as

e (p2)

—ighv

iM = x = (—ie)* (X|jg.u(0)]0) Z e (Oa@2) 1 (pr). (5.6)
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In the full standard model of particle physics, there is also a Z-boson exchange diagram,
which will be neglected here. After the same steps as for e”e™ — p~put one finds for the
spin-averaged squared matrix element

4
_ e . . v
(Me-erosxl? = 15 (0lqu (0)[X (kx)) (X (kx)]70(0)10) trp2y"P17"] (5.7)
=4LKv
with the so-called “leptonic tensor”
LM = pipy + php{ — (p1- p2)g™” (5.8)

The lepton tensor is transverse,

gL =p3(q-p1) + PV (g p2) = (01 p2)g” = (pr-p2) (P +P5 =) =0 (5.9)

where ¢ = p; + po, and using p? = p3 for massless electrons.
The cross-section summed over all hadronic final states gives

1 7 —_—
S [ @375+ ) e P

(5.10)
et o
= g5 V'l
with the so-called hadronic tensor
Wi = Z/diﬁx(%)%‘l(q — kx) (0174, (0)| X (kx)) (X (kx)]Jq,.(0)[0) . (5.11)
X

We have separated the delta function from the phase-space integral by defining dgx =
dox (2m)*0*(p1 + p2 — kx).
Writing

2m)*0*(q — kx) = /d%e‘ix'(q_k’f) (5.12)

and using
€ {0153 (0) X (kx)) = (0l (2) | X (kx)) (5.13)

the hadronic tensor can be written as

Wi (q) = / dtpe ey / A (01 ()| X (x ) (X (hix) g (0)]0)
x (5.14)

_ / d4e% (0], ()70 (0)]0) |

where the completeness relation of the hadronic states

> [ dox[x) (x] =1 (5.15)
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was used. The expression ([5.14]) is the basis for a computation of the cross-section for
e~et — hadrons in QCD. One can argue that for ¢ — oo the expectation value of the
currents is dominated by the region x — 0 where perturbation theory in QCD is reliable.
Note that the dependence on the hadronic states |X) only drops out in the inclusive cross
section e~ et — hadrons where one sums over all hadronic final states.

Current conservation d,j* = 0 implies that the hadronic tensor satisfies

4V (q) =0, (5.16)

Since it can only depend on ¢, it must have the structure

W (q) = W(g*)(¢"¢" — ¢""q°). (5.17)
The cross section becomes
64 2\ 2 Ny
o= W@ )g (—9" L)
253
(5.18)
B 8m2a’? W(s)
s
since
Lh=2-g)p1-p) =—¢" = s (5.19)

Recall that the the R-ratio has been introduced in ((10.112)

o(ete” — Hadrons)

R = )
of(ete” — ptpm)

(5.20)

Here we normalize by the leading-order cross-section for ete™ — u*p~ for m, — 0 (3.171)) ﬂ

Ao

o'(ete” = ptp) = 5 (5.21)
s
One therefore gets an expression of the R-ratio to all orders in the strong interactions:
2 —ig-xz ” .
R(¢%) = 67W (¢*) = 2 d*ze ™" (0]74(2)jq,.(0)]0) (5.22)

For a perturbative evaluation, one can introduce a complete set of partonic final
states

{lz)} = {l9@) . 19q9) , laagg)  l9qaq) , - - - } (5.23)
2m i . .
R(¢*) = 67W (%) = _? d*ze Z/d@z <0\jé‘($)]$) (2]4,,(0)]0) (5.24)
At leading order only the first term |x) = |¢g) contributes and one recovers the “naive

quark model” prediction discussed in Section [2.3

!Sometimes the normalization is performed with respect to the full ete™ — pu*pu~ cross section. The
use of the LO cross section here corresponds to the PDG convention.
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5.2 DIS

We are interested in the “inclusive” cross section for the process
ep—e X
where X denotes the complete hadronic final state.

e (k) e (k)

X(p')
P(p)

As sketched in Section [2.2] in the parton model the parton i carries a momentum fraction
&; of the proton momentum p:

it = &pt. (5.25)
In the naive parton model, the cross section for deep-inelastic electron-proton scattering

in the Bjorken limit
2

@Q* — o0  with 2= @ fixed (5.26)
p-q
is written as a incoherent sum over “partonic cross sections” convoluted with parton dis-
tribution functions f;(&)

(e p— e X) = /0 4 Y 1O o a — e a) (5.27)

where the sum is over the quark flavours i. We here give a more detailed discussion of
DIS in the naive parton model and then perform a general field-theoretical analysis which
forms the basis of the treatmet of DIS in QCD. We will parametrize the cross section in
terms of momentum transfer ()? and the dimensionless variables x and y:
Q° p-(k—F)
Q* = —(k—K)? r= y=r—— 5.28
( ) 2(p- q) (k- p) (5.28)

DIS cross section in the naive parton model

We first discuss the partonic cross section for quark-electron scattering in order to obtain
the parton-model prediction for the cross section ((5.27)).

e (k) e (K)

q(ps) q(p;)
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The calculation for e"q — e~ ¢ is analogous to e~ — e'u~. The differential cross section

can be written as ) s
doe,  2macq;

Q= o Lt -] (5.29)
The Bjorken variable z is related to the momentum fraction of the quark by
Q’ (k- k)
20p-q9) " (pi-q) ¢ (530
SO we can write iy o2y
Oeq Targ; 2
= 1+ (1- o0(x—=&). 5.31
0= gr =g (5.31)
The parton-model prediction for the double-differential DIS cross section is therefore
do.p 2ra’q? )
— y M4+ (1— , 5.32
G~ L) TG L - (532

where the relation of y to Q? is given by

(-a) _(pioa) _2i-a) _ @ (5.33)

YT kp) T ko) ; zs

Details of the calculation:

e Spin averaged matrix element in the limit me, mg — 0

o2
A = Sl + g+ mg ] 0l + )+ o)
_ Betq?

Q4

(K" - pi) (k- pi) + (k- p) (pi - &)

(5.34)

864q§

(k- p)(pi - k')
(k- p)?

(1-y)?

where momentum conservation has been used in the form (k — p})? = (p; — k')*.

e “Partonic” cross-section: R
dbeq

1
dpdcosf — 25 8(2m)2
a?

(5.35)

where the “partonic centre of mass energy”
§=(pi+k)?=2p; k) =us (5.36)
was introduced. In the centre-of-mass frame

Q= —(k—K)? =2k k = 2E*(1 — cosf) = 2(1 — cos6) (5.37)
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Field-theoretic treatment

We now derive a general parametrization of the DIS cross section, which holds to all orders
in the strong interactions and which allows to compute radiative corrections to the parton-
model result. In analogy to e"e™ — hadrons, the matrix element for the production of a
particular final state X can be written as

iM = (—ie)* (X|jg,u(0)| P(p)) ]ﬂ—w(ﬂal(/ﬂ’)%wl(/f))- (5.38)

Squared and spin-averaged matrix element

4
(& . . v
M|? = 10t (P (D) g (0)|X (px)) (X (Px)|7gu(0)[ P (p)) tr[ky" k' 7"] (5.39)
4Lmv
where the Lepton tensor is now given by

LM = KEY + KR — (k- K )g™. (5.40)

The DIS cross section is obtained by summing over all hadronic final states

1 ~ d3K 4 / 2
da=2—szxjd¢x (W) 2m)5(p+ k — kK — kx)|M] o
1 a3k (2m)et i |
T 25 ((27)3(2140)) Q* L Wi
Here the hadronic tensor has been introduced:
W (q,p) Z ddx (P(p)]dgu(0)1X (kx)) (X (kx)|jeu(0)| P(p)) (2m)*6* (p + q — kx)
ac ey / 46 (P(0)] g (@)|X (hx)} (X (k) s O P(p)
- % e (P(p) g (2)jas O P(2))
(5.42)

As in the case of e”e™ — hadrons, current conservation implies that the hadronic tensor
must satisfy ¢, W*"(q, p) = 0. Further, for the unpolarized case discussed here, the hadronic
tensor is symmetric, W*(q,p) = W"*(q,p), as the leptonic tensor. It can be shown (=
homework) that the hadronic tensor is determined by two coefficient functions F} s:

Wla,p) = P ( guu+Q“q ) = £ (pu_qﬂ(p-q)> (p,,_qu(p&Q)). (5.43)

q? P-q) ¢

The so-called structure functions F; can depend on the Lorentz invariants ¢*> = —Q?,
p> = m% and ¢ - p = rQ?. Suppressing the proton mass, they therefore depend on two
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parameters, F} /2(93,@2). The double-differential cross section expressed in terms of the
structure function is found to be

do.p  2ma 1
d@Qdz  Q* =z

Comparing to the parton model result ([5.32)) relates the structure functions to the parton
distribution functions:

Fi(z, @) =2 ) q fi(x), (r,Q%) = Zqz filw (5.45)

[z Fi(2, Q) + Fa(z, Q%) (1 — y)] . (5.44)

The relation
Fy(z, Q%) = 22F(z, Q%) (5.46)

is called the Callen-Gross relation. It results from the spin 1/2 nature of the quarks,
since the parton-model result was obtained under this assumption. It can be shown
that for a scalar parton F} = 0. Instead of comparing to the cross section in the naive
parton model , the Callen-Gross relation and the independence of the structure
functions of Q? at leading order (Bjorken scaling) can be obtained using an analysis of the
hadronic tensor and evaluating the operator product j¥(x)j¥(0) in the limit z — 0
for free quarks. This framework also allows the computation of radiative corrections in full
QCD. Taking these corrections into account, Bjorken scaling and the Callen-Gross relation
receive calculable higher-order corrections. In particular, the PDFs have to be taken as
scale dependent, f;(x,Q?).

Derivation of the cross section
The double-differential cross section with respect to £/ = &/ % and cos# can be written as
do 1 et B
— = ——— L"W,,. 5.47
dE’dcosf  2sQ*4rw " (5:47)

In the proton rest frame,

2 EE'(1-cos
02 = 2(k - k') = 2EE'(1 — cosh), x= 2(3 5= mP((lE COES,)). (5.48)

Using these expressions, the Jacobian is calculated as

2 2rEE 2
0Q% ) | _2wEE 2w p, (5.49)
I(E’,cosb) E-E y
since in the rest frame ( ) B_E
p-q -
= = . 5.50
(k-p) E (5:50)
The double-differential cross section with respect to the Lorentz invariants « and Q2 is found to be:
d 1e* 1
Yy, (5.51)

dQ2dz ~ 2sQ*8rx
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Evaluating the cross section now in the infinite momentum frame, m2, m% — 0, the contraction of the

leptonic and hadronic tensors is calculated as

(p-k)(p- /f’)F2

0% (r-q) (5.52)
= m [xy2F1 + F(1-y)].

L, W = *Q2F1 +

We finally obtain the expression for the double-differential cross section

do ~ 2ral

O = of 5 R T RI-y). (5.53)

5.3 The Drell-Yan process

A classic example for a scattering process in proton-proton or proton-antiproton collisions
is the process of di-lepton production,

P(p1)P(p2) — € (k)0 (ka) + X (kx) (5.54)

Similarly to e”e™ — hadrons, the matrix element can be written in terms of an expectation
value of the electromagnetic current:

P
X
M = = (100, (), (k) e (X ) i (0P 1) P ()
P A

(5.55)
Following the derivation of the cross sections in the previous examples one can write the
differential cross-section in the form

1 d3k. 4t
- v iy ,
v 2s i£[2 ((27)3(27%0)) g Wi (5.56)

where the hadronic and leptonic tensors are now given by

W= [ dtae 0002 (P Plpa) o o) (0P Plp))
LM = Kiky + koK — (ky - ) g™

(5.57)

In the centre-of-mass frame of the lepton pair, one can compute the integral of the leptonic
tensor over the relative angle between the leptons:

4
/d¢12d cos Oy LM = %(—(fgw +¢"q"). (5.58)

Because of current conservation, only the term proportional to g*” contributes to the
contraction of the hadronic tensor.
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This gives the cross section with respect to the invariant mass of the lepton pair Q? =
(kl + k2)2 as
do  1a?4r

s V@n (5.59)
with 0
r== (5.60)
and 1
WIQ ) = o [ 4'08(a = Q016" ) (" W) (5.61)

Starting from this expression it has been shown, that in the limit s — oo, 7 = const.
the hadronic tensor factorizes in a convolution of the PDFs f;(z) and hard-scattering
coefficient functions H;;:

/Z%fz 11 /%f](IQ)Hij(T/xlx%Qz) (5.62)

The PDFs are universal, i.e. the same functions as those appearing in DIS. The formula
for the cross section can be written in the form

do do;; (00— + X
dQ? :/dxldx2fi<l’1)fj($2) il 10? ) (5.63)
with the partonic cross section
dAZ" EJFE* X 1 4
Syl + %) 22 WHz-j(T/xm?QZ) (5.64)

d@? 5Q° 3
with the partonic centre-of-mass energy § = x1x9s. This factorization of the cross
section can be represented graphically as

P

g—i—
f_

P

At leading order, only initial-state quarks contribute, and lepton pair is produced at
a fixed invariant mass Q> = 5. The total partonic cross section is identical to that of
e et — ppt, up to the quark charge g, and a factor of 1/N, because of the average of
the initial-state quark colours:

A6, (¢re)  4maPql 1 . dma’q; 11
qq( ) — qq —(5(8 _ QQ) — qq __(5(1'11;2 — T) (565)

d@? 3% N. 3> N.s
From comparison to the general expression for the partonic cross section ( one gets
the leading-order expression of the hard coefficient,

1
Hy = ﬁ7'5(x1x2 —7) (5.66)

C
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5.4 Dijet cross sections

There are four classes of partonic processes contributing to “dijet” production at hadron
colliders,

pp — jj, (5.67)
qq — qq
q q q q
+ (5.68)
q q q q
qq — qq
q q q q
+ (5.69)
q q q q

qq — gg and crossed processes qg — qq, 49 — q9, 99 — qg

q g (g g (g g
Mjﬁi:% 570
q g9  q g9  q g
99 — g9
g g g g g g 9 g
X K
g g g g g g g g

(5.71)

The leading-order prediction for dijet production is then obtained by convoluting the
partonic cross section with the PDFs and summing over all initial- and final-state partons

do(pp — jj) = / dayday Y filxr) fi(22)d6(ij — ki) (5.72)

i?j7k7l
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where iaja ka le {qza i, g}

In practice one also needs a precise definition of a “jet” since two partons can become
soft or collinear to each other so that they have to be combined into the same jet.

The computation of these cross sections for all channels using the Feynman rules and
the textbook methods (squaring the amplitude, computing all interference terms using
completeness relations) is “straightforward but tedious”. We will only discuss the quark-
antiquark subprocesses here in order to illustrate new features of QCD compared to QED.
The computation of all cross sections will be much simpler using the spinor-helicity method
discussed in Part [l

5.4.1 Four-quark processes

The first of the two diagrams in can only occur if the flavour of the incoming
(outgoing) quark and antiquark are the same, the second one only if the incoming and
outgoing quark (antiquark) have the same flavour. Therfore the matrix element can be
written in the form

Qo Q’Y Ga qW
Mals = ) = >'m< += I (5.73)
QB @y Q5 (j’Y

= a,B(S”/éMs - 5a7665Mt

The relative minus sign in the t-channel diagram arises from the exchange of an external
fermion line.

The only difference of the s and t-channel matrix element compared to the QED matrix
elements for e“et™ — p~pt and e~ ™ — e pT is given by the colour matrices:

i i i a.j —i —i2 ai
M = (=iga) 208 () T3 0 () o (0 () T i (1)

= TP T M, (5.74)
M = (=igs)* (032 (92) T3, > Y00 (K2)) (p1 — k1)? + i€ (@l (ka) T3 *wiyn, (p1)
= T2 T M, (5.75)

12

—i

Assuming n, light flavours are not distinguished in the experiment (usually n, = 4 or
ny = 5) the squared matrix element gives

|M0Aﬁ’2 = Z |M(Qa66 — qWCjé>|2 = 5aﬂné|M5|2 + |Mt’2 — 26QBR6M:M1§ (576)

V.6

The initial-state flavours have to be kept fixed because every quark flavour has a different
PDF.
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Since the colour quantum number cannot be observed, the matrix elements are averaged
over initial-state colours and summed over final-state colour, in analogy to the treatment of
spin for unpolarized cross sections in (3.173)). The square of the s-channel matrix element

gives
> IMP

colour,spins

11
N. N,
1

|M|? =

I,

. (5.77)
= DTN GPT) ' D IMP

spins

Using the fact that the generators are hermitian, (TJ‘”)* = Tia’j the colour factor simplifies

N2 -1
4
The same colour factor appears in the squared ¢t-channel matrix element. For equal quark
flavours, there is also the interference term:

1

MM, = NﬂZZ”T““Tf”Tb” > MM, (5.79)

TEPTENTINTER = (tr T°T")? = TS alar =

(5.78)

spins

The colour factor for this contribution can be evaluated using (4.106]) and (4.92))

1 N2 2
tr[TT°TT") = 5N tr[T°T] = -3 N fl N3 (5.80)

The spin-averaged squared “colour-stripped” matrix elements MVS /¢ are given by the
same expressions as the QED matrix elements for e"e™ — p~p™ and e p™ — e pt

in (3.180) and (3.187)), up to the replacement of the coupling constants, e — gs:

=~ 4gi 29 2 | o
M| = 2 2[(p1 - k1)(p2 - k2) + (p1 - ko) (k1 - p2)] = 2 (" +u”) (5.81)
5.81
4q° 2g%
MP = =221 po) (k1 - o) + (pr - k) (k- p2)] = 2 (7 4+ )
The squared interference term gives:
—_ 94 4U2
MM, = 4_;15 tr[f1 b2y Foy”] = —QQSE (5.82)
Using the identities
WA =497 A = =297 (5.83)
the computation of the Dirac trace simplifies to
tr{f1vubr by K2y = =2 tr[f1vupi K2y Pe] = —8(p1 - ka) tr[f1pe] (5.84)

= —32(p1 - ko) (k1 - p2) = —8u°
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The complete result is therefore

R N2 -1 (s2+u? 2 + u? 2 u?
_ 4-%c
Mol =20t T e (S55) - 25| 6

The partonic cross section can be written as

do 2 do 1 1 |M‘2_227Ta§ 52+u2+5 " 2 + u? _gu_Q
di ~ sdcosf  §28(27) 9 & 12 | 52 3 st

where ¢ = (p; — kg)? = 2EE'(1 — cosf) = (1 — cos6).
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Chapter 6

Spinor-helicity methods

Alternative to the computation of spin-averaged amplitudes with trace techniques: com-
pute amplitudes for fixed helicities and perform sum over helicities explicitly. Especially
useful for massless amplitudes where many helicity combinations vanish. For analytical
calculations: simplifications if properties of light-like momenta are used. For this the four-
vector formalism is not optimal on-shell condition not manifest. Instead: express kinemat-
ical information in terms of two-component Weyl spinors. Instead of scalar products of
four-momenta, we will express the amplitudes in terms of the spinor products in (|3.84])

(pk) = ur(p)ur(k) = ul (p)us (k) [pk] = Gr(p)ur(k) = ul (p)u_(k) (6.1)

In order to exploit this method, we first need to introduce some notations.

6.1 Two-component spinors

6.1.1 Weyl Spinors

Let us discuss some properties of the spinors of massless spin 1/2 particles introduced
in Section Helicity eigenstates for massless Dirac fermions are given in terms of
two-component spinors:

untp) = (1) wt=(, 1) (6.2

u4 are solutions to the Weyl equations:
puctuy(p) =0, pud*u—(p) =0 (6.3)

Lorentz Transformations

The left-and right-handed spinors transform under Lorentz transformations in the two
in-equivalent fundamental spinor representations with the transformation rules

D©2) . u_ — Apu_, DGO uy — Apuy (6.4)

39
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where the transformations are given in terms of the angles y; and rapidities v; as
i i
Ap =exp (—5(6— iﬁ)&’) ) AR =exp (—5(@'4— 117)5) (6.5)

The representations of the Lorentz transformations Ag; are complex 2 x 2 matrices
with det AR,L = 1, i.e. AR,L € SL(Q,C)

General representations of Lorentz transformations are labeled by two half-integer values j;/5. The
Lorentz transformations in the representation DU172) are given as the matrices

AG232) — exp (=i(@ + i) T ) exp (-i(@ - i) 75 (6.6)
where the generators satisfy the same commutation relations as the angular momentum operators:
(T8, TJ] = i€7% Tk 5 . (6.7)
Right- and left-handed Weyl spinors transform in the two fundamental representations

e DGO Right-chiral fundamental representation

1y, @ :
Generators: Tl(z)’ = %, T = 0. (6.8)
o D(0:2); Left-chiral fundamental representation
Generators: T =0, T2(2)’ = %. (6.9)

6.1.2 Index notation

The relations between the left- and right-handed spinor representations can be encoded in
an index notation so that the transformation properties from a spinor expression are made
manifest by the types of indices. By convention, the components of left-handed spinors
are denoted by upper dotted indices, the indices of right-handed spinors by undotted lower
indices:

ut(p) > pa u_(p) < p* (6.10)

Here we also use the convention to use the same symbol p for the momentum and the
spinor solutions of the Weyl equations for this momentum. These spinors are sometimes
called momentum spinors.

Raising and lowering indices

Since the Lorentz transformations Az r are elements of SL(2,C), it is possible to form
Lorentz invariants using the two-dimensional antisymmetric symbol ¢,

eABpAk:B — det(Ag) 5ABpAk:B , 5ABpAkB — det(Ayp) 5ABpAk:B
——

=1 =1
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Therefore the epsilon-symbol plays a similar role as the metric tensor in the Minkowski-
product of four-vectors. For the components of the two-dimensional antisymmetric tensor
we use the conventions

Ve 0 1
e =g p=c == ( 10 ) (6.11)

Raising and lowering of the indices of two-component Weyl spinors is then defined using
the antisymmetric tensor as follows,

pt = e4Bpg, pp = pAeAB (6.12)

Note that
(67 )ap = —caB =¢cBa (6.13)

so the inverse operations are defined by

BA _

ps = (e ")pap® =pean, pr=pye™) By, (6.14)

In the conventions used here, dotted and undotted indices are raised and lowered in the
same way. Note that indices are always contracted from “north-west” to “south-east”.

Spinor products

For the Lorentz-invariant spinor products we use the following conventions:
(pk) = p*ka = ppkac™®, (6.15)
[pk] = pik* = pPeg ikt (6.16)
In the conventions used here, undotted indices in the spinor product are contracted from
“north-east” to “south-west” while the dotted indices are contracted from “south-east”
to “north-west”. These conventions are such that the spinor products defined here are

identical to the ones defined in (3.84)) where we did not distinguish upper/lower and dotted
indices. The antisymmetry of the spinor products impliesﬂ

pAka = —pak? pAk:A = —pAkA (6.17)

Explicit expressions

From the solutions to the Weyl equations discussed in Section [3.2.2] we obtain the explicit
solutions for the various spinors:

1 pl _ 1p2 N 1 pO B p3
V) = T - 1
pba (po — p3) (po — p3 p (po — pg) _pl + 1p2 (6 8)

1 P+ ip2> A 1 ( 0 — pd )
- = = - 6.19
. (P° —p?) (po -p’ b D =)\~ +ip?) (6.19)

'The rules given here apply for products of spinors whose entries are ordinary complex numbers. For
spinor-valued fermion fields, the additional anti-commutation rules for fermionic operators have to be taken
into account.
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Conjugate spinors
The Lorentz transformations in the two fundamental representations are related by complex
conjugation:

6710'18 — _0_1*7

= AL = exp (%(gﬁ—iﬁ)&*) = exp (—%e_l(gﬁ—iﬁ)ﬁe) —eAe. (6.20)

This implies the equivalence of the conjugate left (right) fundamental representation with
the right (left) representation:

complex

(D39)" ~ DOD, ie DU L, o)
Construction of left (right) spinors from right (left) spinors:
u, € DR (eu}) — eAjul = Ap(eul), le. eu € D2),

u_ € DO : (e7'ur) = eSS = Ap(eut),  ie. (e 7'ut) e DGO

(6.21)

For momenta with real components, complex conjugation of spinors corresponds to dot-
ting /undotting, as can be seen from the explicit formulas:

Ph=Pi (") =p" (6.22)

The relation of spinors in the various representations ([6.21)) reads in the index notation:
A AB

! —1p ’ B_ B (6.23)

pa= (e )app” =p epa

One sees that the relations among the different representations are “built in” the definitions
of raising and lowering indices.
For the spinor products one has the relations for real momentas:

(pk)* = pAk; = [kp] (6.24)

Dirac spinors

The components of a general Dirac spinor 1 carry indices as follows:

= (?j) , (6.25)

Conjugate spinor:

b=y’ = (€4 x,) (6.26)
The spinor product of two Dirac spinors breaks up into a sum of the two Weyl-spinor
products

D1ty = Elxou + X468 = (E1x) + [016)] (6.27)
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Schouten Identity

There is no totally antisymmetric tensor of rank three in two dimensions. This implies the
Schouten identity:

Contracting this expression with three spinors pg, ko and qp gives the identity

p* (kq) + k* (qp) + ¢* (pk) = 0. (6.29)
Writing this in the form
A 4 {ap) 4 (kp)
pr=k +4q , 6.30
(qk) (kq) (6.30)

one sees that any spinor can be decomposed in terms of two other spinors, which is the
consequence of the two-dimensionality of the spinor space. Similar identities hold for dotted
indices. Contracting with a fourth spinor gives the identities

(np) (kq) + (nk) (qp) + (nq) (pk) =0,  [np][kq] + [nk] [gp] + [ng] [pk] =0.  (6.31)

Braket notation

In the literature on helicity amplitudes also a braket notation for the spinors is often used:

pa ¢ |pt) = [p) pt & =) =1pl, (6.32)
pi < (p+] = p| p* < (p—| = (p| (6.33)
The spinor products are in the various equivalent notations written as
(pk) = (p — |k+) = p"ka (6.34)
[kp] = (k + [p—) = kp" (6.35)

6.2 Momenta and spinors

6.2.1 Pauli matrices

From the expression for the Dirac matrices in the chiral representation one can infer the
index structure of the Pauli matrices:

0 .
’Y”I(U%BA AB) (6.36)

Pauli Matrices are “Clebsch-Gordan coefficients” relating spinor to vector transforma-
tions:

ALo"Ap = A*0” AL GrAL = A*,5". (6.37)
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The Pauli matrices allow to construct 4-vectors from products of Weyl spinors:
ul (p)oru, (k) = pio" APy = [py* k) | (6.38)
uL ()5 u_ (k) = Pk = (o] K] (6:39)

Here by a slight abuse of notation the gamma matrix is used in the braket notation instead
of the sigma matrices. The other combinations of spinors vanish:

(pl"[k) = 0 = [p|"[K]

Raising and lowering indices

Rules for raising or lowering indices of Pauli matrices are defined consistent with the rules
for lowering spinor indices:

no_ _wBC .. ~mAB _ _AC_BD- |
The property of the Pauli matrices e !o’e = —o™ implies
poo_ omwBC o _(FM Y SH
o, =0 epi ecp=(0',) =0", (6.41)
-1y .. _
e Y (UZD)T

where the hermiticity of the Pauli matrices was used. Similarly one finds

AB _ giBA (6.42)

5—1“‘7

Dirac algebra
The Dirac algebra {y*,~7"} = 2¢"” leads to the identities

— [ v,BC —v wBC _ C _uv wAB = . v,AB = — A v
o' 50 + 0% 50 =265 g, o6, pe+ 070, e =204 (6.43)

Fierz identities

The Fierz Identity of Pauli matrices discussed in the homework reads in the index conven-
tions introduced in this section:

0" ABG op = 20408 (6.44)
Raising or lowering indices leads to the identities
0" Gupp = 2€apCip 5 0MGEE = 2eAPAD (6.45)
The Fierz identity allows to invert the mapping of spinors to vectors in ([6.39))
A= A A A
(pl"|klo, pp = (070" k") 0, pp = 2(p"ean) (k"c i) = 2Bk
" k) 577 = (P40 ka) 000 = 2(p 1) (kae?) = 2p"k7
Contracting these identities with two more spinors we obtain the relations

(| V" [k] {g| vull] = 2 (pq) [IK] , [l k) [a|v, 1) = 2 [pq] (1K) (6.47)

(6.46)
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6.2.2 Four-momenta
Factorization of momenta into spinors
The contraction of a four-momentum p* with the Pauli-matrices defines the matrices

O,MAB = AB

Pu P Pully = Pap (6.48)

The completeness relation of the Dirac spinors

> wmne == (,0 ") (6.49)

oH
A=L/R H

implies the relations for the Weyl spinors:

ui(p) ul(p) = 5"y, u_(p)ul (p) = o"p, (6.50)
In the index notation, these identities become
Pap = DPAPp p*P = p'p® (6.51)

Because of this factorization one sometimes loosely refers to the momentum spinors as the
“square roots” of the four-momentum.
In the braket notation, the identities (6.50)) can be written as

7"pu = lp+) (p+| = |p) [p| ot'p = |p—=) {p—| = Ipl {p| (6.52)
The factorization can be interpreted as a decomposition of the matrices

0 3 1y :.2 0 3 1_:2

p’ —p —p- +ip _ p’+p> p-—ip
ot = . , ot = : 6.53
Pu (p1 —ip? P04 p? ) Pu (pl ip?2  p0 — p3> ( )

into eigenvectors. Note that
det(p o) = det(p,c") = p*> =0 (6.54)

so that one eigenvalue vanishes and only one eigenvector exists.

Constructing momenta from spinors

The inverse identity that allows to construct the four-momentum from the spinors follows
from the normalization of the Dirac spinors,

g r(P)Y uL/r(p) = 2p". (6.55)
In the index notation, this becomes

AB

pio**Fpp = 2p" pia’, o = 2p" (6.56)
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Scaling

Note that the spinors associated to a momentum p* are not completely fixed since the

relations (6.51)) and (6.56]) are invariant under a rescaling
pt — 2pt, ph ot (6.57)

For real momenta, the condition (p?)* = pA reduces the complex number z to a phase,
z = €i?,
Since the transformation (6.57)) leaves the momentum invariant, it is an element of the

little group of the momentum discussed in [3.1.2

6.2.3 Gluon polarization vectors

The usefulness of the spinor notation for amplitudes in QCD comes from the fact that
gluon polarization vectors can be expressed in terms of Weyl spinors.

The polarization vectors are only determined up to gauge transformations e — e +
akt. In the spinor-helicity formalism this is reflected by introducing arbitrary so-called
reference spinors |¢) and |g]. The polarization vectors can then be defined as

e (k.g) = (kg = I gy — gy = IR 5

V2 (qk) ' V2 [kq]

The polarization vectors can be also given in spinor components as

€ aplk.q) = ﬂq{;z}; € gk q) = ﬁkﬁiﬁ (6.59)

These are correct expressions for polarization vectors since they satisfy the properties (=
homework):

e Transversality:

kuet(k, q) = 0 = quel(k, q) (6.60)
e Normalization:
ex(k,q) - ex(k,q) = = (6.61)
e Completeness relation:
k*q” + gHk”

> hlk,q)es (k,q) = —g" +

A=+ (k-q)

e Gauge transformations: a change of the reference spinors corresponds to a shift of
the polarization vector of the form € — € + ak:

(k) = & () = VIS (6.62)
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Note that the polarization vectors transform under the scaling of the momentum
spinors (6.57) as
e — 2% e — e} (6.63)

The consideration of such “little group scalings” will allow to constrain the possible inter-
action vertices of massless particles.

6.2.4 Rules for calculations with Weyl spinors
Properties of spinor products

e Relation of Minkowski product and spinor products: Contracting (6.55)) with a second
light-like four-momentum allows to express Minkowski products of light-like four
momenta in terms of spinor products:

2(p-k) = [plk|p) = pik""*"pp = [pk] (kp) (6.64)
Alternatively, this identity can be derived from the Dirac algebra (6.43)).

e Symmetry of matrix element of Pauli matrices (= homework):

(p+ W k+) = (k — [v"]p—) (6.65)

Generalizations:
(P At gE) = (g F [y ™ ) (6.66)
(pE [y .. A" gF) = — (g [V ... A" pF) (6.67)

e For real momenta, complex conjugation gives

(p+ kR = 0107 kp)* = (4 (07F) k) = (p — 4" [k—) (6.68)

—gAB

Momentum conservation

Consider a scattering process with momentum conservation p; + p, = k1 + ... k,. If all
particles are massless, momentum conservation implies the identity

{ap1) [p10] + (apz) [p2b] = Z (aki) [kib] (6.69)

for arbitrary spinors (a—| and |b—). Choosing these spinors in terms of external momenta,
one can obtain simpler identities, e.g.

0= {(p1 — k1 + -+ Fulp2—) = Z (p1ki) [Kipa) (6.70)

7
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Here it was used that

because of the Weyl equation. In particular, for a four-particle scattering process one finds
simple identities such as

(prka) [kaps] = — (pika) [Fapo] (6.72)

External states

For the application of the spinor-helicity method to the calculation of scattering amplitudes
we collect here the appropriate external spinors or polarization vectors.
Incoming particles:

quarks : qr(p) : ur(p) — pA — |p—) = |p|
qr(p) : ur(p) = pa — [p+) = |p) (6.73)
antiquarks : qr(p) : vr(p) — pi — (p+| = [p|
ar(p) : vLlp) = p* = (p—| = (p| (6.74)
qoms - o (q] k]
gluons : 9-(p) : €£(p, q) V2 (ah)
[a]7* |k)
9+(p) : €L (p.q) = A (6.75)
Outgoing particles:
quarks : qo(k) ap(k) = k4 — (k—| = (k|
qr(k) : ar(k) = ki — (k+| = [k] (6.76)
antiquarks : qr(k) : vr(k) — ka — |k+) = |k)
qr(k) s v (k) = k% = k=) = |K] (6.77)
, . gl k)
gluons : g-(p) : €27 (p, q) = N
_ {al"A] (6.78)

One sees that the conventions are such that for outgoing states the momentum spinors
with angular brackets correspond to left-handed states and spinors with square brackets
correspond to right-handed states while for incoming states the relation is reversed.

6.3 Examples

As first examples for the application of the spinor-helicity method, we consider the process
e~et — g7 in QED, and the process with an additional gluon, e"e™ — ¢qg.
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6.3.1 e e —qq
The matrix element is given by
—igh
(p1 + p2)? +ie
—igh
(p1 + p2)? +ie

01 702

iM(e, ey, = a1 a72) = (—ie)* (a7 73 174..(0)]0) (02, (P2)7wur (P1))

(1_)>\2 (pQ)’VVuM (pl))'
(6.79)

The only non-vanishing helicity combinations are those where different helicities enter the
same vertex. As a first example consider

= (—1€)*Qq(tio, k1), (k2))

-.L +R ie)2(ur (k k m
IM( o) _>qk1qk2) ( 16) (UL( 1)'7;LUL( 2))(p1+p2)2+i€

(UL (p2)y"ur(p1))

= (=ie)? (k| wlkz]m (pal 7 Ip] (6.80)
2 (kapo) [piks] _ . » (k1ps)®
<p1p2> [P2p1] <p1p2> <7€2/€1>

where the matrix elements of the Dirac matrices have been combined using the Fierz

identity (6.47)),

(k1] vl k2] (p2| ¥*|p1] = 2 (k1p2) [p1k2] (6.81)
and where we have used momentum conservation in the form
[P1p2] (p2k1) = [p1ka] (kak1) (6.82)
The squared amplitude can be computed using identities such as
(k1pa) (k1pa)™ = (k1pa) [p2ki1] = 2(p2 - k1) (6.83)
This gives the expression
(Mes el — g gfh)? = 4e* o %225{21)% S 4e4z—§ (6.84)

where the Mandelstam variable u = (py — k;)? = 2(p2 - k1) was used.
The amplitude for the second helicity combination is obtained by exchanging the final-
state helicities:

) _ . —i
1M<€p1L A Qk1Qk2) = (—16)2[741’% |K2) —)2 (p2] " |p1]

(p1 + p2
2 [k1p1] (paka) _ 9i2 (paka)?
(p1p2) [P2p1] (p1p2) (k2k1)

(6.85)

using

[p1p2] (p2k2) = [prka] (k1K) (6.86)
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The squared amplitude gives

< ka)? t2
(p2 - k) — 4e'— (6.87)
(p1 - p2) (k1 - k) 8

The amplitudes with all helicities flipped are obtained by turning angular brackets
into square brackets, so the squared amplitudes are the same. Summing over final-state
helicities and averaging over initial-state helicities gives

|M( ok +R—>Qk1Qk2)| = 4¢?

p1

1 _ _
—Z|M|2 1 2’/\4( IL +R—>Qk1Qk2)|2+2|M( 1L +R_>Qk;1Qk2)|2)

spins
\ (6.88)

e
= 2?(U2 + t2)

Therefore we reproduce the result (5.81]) obtained using the usual approach to compute

the spin-averaged matrix element.

6.3.2 e et —qqg

As a first example for the application of the spinor-helicity method to external gauge
bosons, we add a real emitted gluon in the final state to the process e"et — ¢g. Using
the notation introduced in the discussion of e~et — hadrons in Section [5.1] the matrix
element for the process e”e™ — ¢gg can be expressed in terms of the leptonic spinor chain
for the subprocess e”e* — v and the expectation value of the quark current j¥:

2 o1 =02 O 01 =0 _igMV —
IMH (e, e — gl qizgn) = (—ie)® (g7 7297 . (0)]0) m(vxz@ﬁ%um (p1))-
(6.89)
At tree level, the expectation value of the quark current is
q(ks) q(k2)
(@1 T 91y 11a.u(0)]0) = 7(q) WQ g(ks) + (9 g(k3)
q(k1) q(ky) (6.90)

=(—igs) Mqu
_ . i(f1+H3) 0 ik +Hs)
oy 0 |15, ) e B e B )] )

= Qus 13" J* (a7 472672
Considering as an example the helicity combination ¢¥%g~g*, the quark current becomes:

¢y (ks)(Fr + f3)y" N V(Ko + K3)¢7 (ks)

I aRabgt) = [k [ } k) (6.91)



6.3. EXAMPLES 101

Inserting the explicit form of the polarization vector we can use the Fierz identities to write

\ (0 o (g Mks] V2 0 ks {(q|
¢+<k3,q>—(0# 0>\/§<qk3>_<qks> <|q>[ks| 0 ) (6:92)

Therefore the matrix element of the current can be written as

V2 {[klkz] (q] (K1 + K3)y™ [k2) . k1|7 K2 | Ks] <qk2>}
(qk3> </€1k3> [k3k1] <k2k3> [k3/€2]
_ V2 {<CI\ K+ Ks)y* [k2) | [Raly* [Ko) (qu)}

(qks) (ksky) (ksksa)

At this point we can simplify the calculation by making a choice for the arbitrary reference
spinor |g). Setting |¢) = |k2) eliminates the second term and one gets

JH(ar Qe 9r) =
(6.93)

(Kol (J1 + K3)v" |Ka)
V2 (koks) (kzki)

The complete amplitude can be simplified using momentum conservation and the Fierz
identity:

TG Ty 98,) = (6.94)

M6y e = afaloit) = (—ie) R TR iap O10) s (0 a0 1)
20 g T (Ka| (P1 + P2) v |K2) "
qus \/_<p1p2> [pﬂ?l] <k2k3> <k3k1> <p2| K |p1]
_ i air 2 (ka| p2|p1] (paka)
Qg \/_(p1p2> [Dap1] (kaks) (kski)
2 (paks)?
(p1p2) (kaks) (kskq)

=ie quSTa /2

(6.95)
Note the similarity of this result to the corresponding amplitude without the additional
gluon ((6.85)).
For the amplitude with a negative helicity gluon one can choose |¢] = |k;] and one
obtains

(k1| (1 + P2)vulki]
<p1p2> [pzpl] [k2k3] [k3k1
20) o T 2[k1[p1 [p2) [p1Ki]
- qus \/_<p1p2> [p2p1] [k2k‘3] [/f3k1]
2 [p1k1]2
[plpz] [k2k3] [k:}kl]

iM(e + R_, qqukzgk3) 162quSTZ’i1\/§

p1

] (p2|7"1p1]

(6.96)

= ie? qust‘?il \/5
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Chapter 7

Colour decomposition

Before we apply the spinor-helicity method to genuine QCD process, it is useful to discuss
the colour structure of QCD amplitudes in more detail.

QCD Feynman rules are a combination of kinematic factors and the colour structures

a abc abe fcde
e, e, fee e
Idea of colour decomposition: separate colour structure from kinematic structure.

Colour decompositions are not unique, for a discussion of different possibilities see
Section 6 of [10].

Here we use the approach to express all colour structures in terms of generators T
using

[ = —2itr[[T, T|T° (7.1)
The resulting traces can be combined using colour Fierz identity (4.104))

a,i a 1 ) 1 )
T ’jT ’kl = 5 <(5 l(;kj — Fc(s j5k1> (72)

In the following the momenta of all gluons will be considered to be outgoing to treat
all gluons on the same footing, physical amplitudes with initial state gluons can be
obtained by crossing.

103
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7.1 Examples

7.1.1  qq— gg

The three diagrams contributing to the process q¢ — gg have the colour structures:

J b J b 4(p2) g(k2)
iM = + +
(7.3)
i @ i @ q(m) g9(k1)
(TbTa)é (TaTb)é- fabchc,i

The three-gluon vertex can be split into a colour-part and a kinematic part (note that all
momenta here are outgoing):

VELHES (1) 1y p3) = gs f*° [9“”‘2 (p1 — p2)!® + g"*#3(pa — p3)!** + g"** (ps — p1)*?|  (7.4)

/

-~

=VH1H283 (p1,p2,p3)

The colour-structure of the s-channel diagram can be simplified using the Lie Algebra:
f“bCY}F’iV“l“QM(k:h k2, q) = (i) [TaaTb]é'VMMM(kh k2, q) (7.5)
= i(TbTa)§VM1M2M3(k17 k?v Q) + i(TaTb)§VN2M1N3 (k27 kla q) .

= Two colour structures contribute to amplitude:
M(qiml(jj,pz - ga,k1gb,k’2) :gz(TbTa)z‘M(QMQW - gk’1gk’2)
+ g?(TaTb);M(Qqupz — Gk Gky) (7.6)

with so-called partial amplitudes M. In this example, we have the following properties
of the partial amplitudes:

e Only two diagrams contribute to the partial amplitudes:

D2 ko D2 ko

P1 kq b1 ky

e Fixed ordering of external legs (the u-channel diagram with exchanged ordering of
the gluons does not contribute) = “colour ordered” amplitudes.

e The two partial amplitudes are related by exchanging ki <> ks.

e The two colour structures are linearly independent =- the partial amplitudes are
individually gauge invariant.
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7.1.2 gg— gg

There are four diagrams with three different colour structures for the four-gluon amplitude:

b c b c b c b c
iM = M + % + :% + i?%
a d a d a d a d (7.7)
fadefbce

fabefcde fadefbce facefbde facefbde
fadefbce

Using the Fierz identity the colour structures can be written as
Fabe pede — (972 t[[T%, TV 7] tx[[T°, T T¢]
— (=207, T (7, T T (7.5)
= —2tr[[T, T"[T¢, T%]
The colour-suppressed 1/N, terms vanish since
tr[[T°, T°)] ~ f**tr T = 0. (7.9)

Treating the remaining three diagrams in the same way results in six independent colour
structures of the form
T(abed) = Tr (T*T°T°T?) (7.10)

that are not related by cyclic permutations:
T(abed), T(acdb), T(abdc), T(adcb), T(adbc), T(acbd) (7.11)
The amplitude can therefore be decomposed into 6 partial amplitudes:

Mo Gakrs Gorkas Gerkss Gaks) =292 Tt (TTPTT) M (s s Grss Giegs Gr)
+ non-cyclic permutations (7.12)

The factor 2 is extracted by convention. It can be seen that only three diagrams contribute
to each partial amplitude, where the external gluons are in a fixed order:

ko ks ko ks ko ks
iM(gk17gk27.gk3agk4) = + + (713)

k1 ks Ky ky Ky ka
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7.2 Colour ordered Feynman rules

The colour ordered diagrams can be computed directly using modified “colour-less” Feyn-
man rules. We first write the three and four-gluon vertices in a form where each term
corresponds to a fixed ordering and then give the appropriate Feynman rules.

7.2.1 Colour ordered vertices

Three gluon vertex

VEES (1, pa, p3) =gs fore VS (1)) Dy, p3)
~—

=—2i tr[[Te,T?)Tc]

= — 29,1 (x[T“T T IV 1245 (py, pa, p3) + tr[T T T IVH#342 (py, ps, ps))
(7.14)
= two terms with fixed order of gluons.

Four gluon vertex

e — 9ig? [T, T[T, T (g g — ghavs g
+ tr[[T, TC][ H( M2 ghalta _ ghais g
+ tr[[T, Td][ Te]](g"#2 ghsms — gﬂ4uggu3ul)]
= 2193 tr[TaTchTd] ( H1p3 u2#4 _ g#wagmm) _ (gmmgugm o g,u4;L2g/.L3/.Ll)]

+ non-cyclic colour structures

— 2192 tr[T“TbTCTd](29“1“3g”2“4 — ghH2 ghana _ gm#:agmm) N
(7.15)
= 6 colour structures with fixed ordering as discussed above for the amplitude.

7.2.2 Colour ordered multi-gluon amplitudes

The colour structure found for the four-point amplitudes generalizes to amplitudes with a
quark anti-quark pair and an arbitrary number of gluons:

Mn(q%h q2,j7 93,94, -+ gn) =

9272 Z (Tao'(3) ,..Taa(n> ); Mn (q_17 QQ7 90(3), ceey go—(n)) y (716)
0€S7L72(3,...,n)

where the M,, are n-point color ordered partial amplitudes and the sum is over all permu-
tations of the external gluon legs. Here all particles are treated as outgoing, therefore the
role of upper and lower indices for quark and antiquark is reversed.
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In the pure gluonic case tree level amplitudes with n external gluons may be written
in the form

Mn(gh g2, - gn) = 92_2 Z 2Tr (Taa(l)mTaa(n)) Mn (ga(l)a ) ga(n)) ) (717)

where the sum is over all non-cyclic permutations of the external gluon legs, i,e. o € S,,/Z,.
The partial amplitudes in these decompositions are computed from Feynman diagrams with
a fixed ordering of the external gluons using the Feynman rules

q
A — iyt (7.18)
q
AHM3
k
ks Ak 1 [gu1u2(k1 _ /{32)“3 + gM2H3(k2 _ kS)Ml + gM3M1 (]fg _ kl)m] (719)
’ T
Ar2
AH3 AH4
:i<2gu1usgu2u4 _ g#1u29u3u4 _ gu2,u3gu1,u4> (720)
Ar2 AH1

Some remarks on the derivation of the decompositions ([7.16)) and ([7.17)):

The colour structures in the decompositions ((7.16)) and (7.17) arise by combining
the colour-ordered three-and four gluon vertices because the Fierz identities (4.104])

imply

be[ AT tx[ BT*] = %tr[AB] ~ 5y trlA] (3] (7.21)
(AT*B)'; tr[CT*] = %(AC’B)ij - 2]1\[ (AB)'; tr[C] (7.22)

The colour suppressed term drops out in a contraction with a structure constant:

tr[ATC) £ oc tr[AT) tr[[T*, T*|T¢] = %tr[[T“,T”]A] - tr[A] tr[[T, T)] (7.23)

2N,
Therefore, the 1/N, term drops out for purely gluonic amplitudes and amplitudes
with one quark pair where every internal gluon line must connect to at least one
purely gluonic vertex.
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e A factor of 2 cancels whenever the colour structures of two vertices are combined

with the identities (7.21]). For purely gluonic amplitudes, the remaining factor of 2
is included by convention in the definition of the partial amplitudes.

For amplitudes with two quark pairs the color structure is more complicated since also contributions
suppressed by the number of colors N have to be taken into account. For two different quark flavors @

and ¢ the decomposition can be written as

n—2 N

An+4(Qﬁ7QpaqE7qkagla"'gn) = ngZ Z Z

i=0 0€S1,i 0€Siti,n
X (T“a(z),..T“a(i))iﬁjk (T“”“*l)...T“U‘”’)jm An(Qpy 91y s+ Gis Qe Tos Git 15 -+ Gns Q)

1 a [ [ a ~ _
_ N (T o2 T v(z))iﬁip (T o(i+l) | T (n) )jgjk Bn(Qp,gl, s Giy Qp; Qis Gi+1y-+-3 9n, qk)] (724)

In the cases ¢ = 0 and ¢ = n one of the strings of generators reduces to a Kronecker delta. For amplitudes
with two pairs of identical quark flavors one has to subtract the right hand side after exchanging @, <> qx.



Chapter 8

Born amplitudes

8.1 General considerations

Simplifying notation
e Consider amplitudes where all particles are outgoing with momenta k;.

e Denote spinors for momentum k; by |it).

Relations among partial amplitudes

The number of helicity amplitudes that have to be computed can be reduced by using
relations among different partial amplitudes. Some examples for such relations for the
purely gluonic amplitudes are

e Cyclicity:
My (91, s Gn) = M (Gns 915 o5 Gn1) (8.1)

This follows from the cyclicity of the traces in the colour decomposition ([7.17))

e Reflection identity

Mn (91, EEES) gn) = (_1)nMn (gn7 Gn—15 -+ 91) . (82)

This follows from the fact that the colour-ordered three- and four-point vertices have
the same properties.

e Parity:
My (9" s g07) = (=1 My (917 927™) (8.3)
The sign arises from the explicit factors of i in the colour ordered Feynman rules.
(Recall that the Feynman rules compute iM, so one overall factor of i is removed).
For real momenta, the complex conjugation is simply implemented using the identity
for spinor products

(pk)™ = [kp] (8.4)
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8.1.1 Choice of reference spinors

Calculations of scattering amplitudes with gluons can be simplified by choosing the arbi-
trary reference spinors |¢£) in the polarization vectors

s (g K] . [q]* |k)
(kyq) =~ (k,q) VZlkd] (8.5)

€ €

V2 (gk) -
appropriately. Recall that gauge invariance implies that

e different reference spinors |¢;£) can be used for different gluons 4

e the same choice of the |¢;&) has to be used in all diagrams contributing to a helicity
amplitude

e different choices of the |¢;£) can be used for different helicity amplitudes.

For polarization vectors with different momenta and reference spinors one obtains the
scalar products

* . 6* _ <CI1(]2> [21]
€+(k1a ql) +(k27 QQ) <q11> <q22> (86)
* e _ <q12> [Q21]
ey (b1, q) - € (k2, go) (o) 2] (8.7)
67(k17Q1> . 67(k27q2) = [1q1 [2(]2] (8.8)

From these expressions one observes that many scalar products of polarization vectors can
be eliminated by a clever choice of the reference spinors:

e Scalar products of polarization vectors with the same helicity vanish if the same
reference spinors are used for gluons with the same helicity.

e Scalar products of polarization vectors with opposite helicity vanish if the momentum
spinor of gluon 1 is used as the reference spinor of gluon 2 (or vice versa).
Three-gluon vertex

Consider the contraction of the gluon vertex with two external polarization vectors:
o

—(k1+k
() oo @) = k) + 26 (ks - €r) — 26k - €2) (8.9)
ko .
1

€2

Using the above expressions for the scalar product of two polarization vectors and the fact
that ¢ - €(k,q) = 0 we see that
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e for two neighboring gluons with opposite helicities, the three-gluon vertex vanishes if
the momentum spinor of gluon 1 is used as the reference spinor of gluon 2 and vice
versa.

Quark-gluon vertex

Contracting the quark-gluon vertex with one spinor of an outgoing antiquark and a gluon
polarization vector gives the combinations:

., dr,
+ . . <(]21> - . <21>
g —iv2[2] 2 g — 1x/§|qg]w (8.10)
a, 0@,
. . [21] —. : [q21]
g —iV2]q) ) g —iV2)2) T

From these results we observe

e For a neighbouring quark and gluon with opposite helicities, the quark gluon vertex
vanishes if the gluon reference spinor is chosen as the momentum spinor of the quark.

8.2 2-quark 2-gluon amplitude

Two diagrams contribute to the colour-ordered gggg amplitude:

2 3 2 3
M(q1, 42, 93, 94) = + (8.12)

1 4 1 4

The only non-vanishing helicity amplitudes are those with one positive helicity quark (or
antiquark) and gluon and one negative helicity quark (or antiquark) and gluon. This can
be seen as follows:

e The quarks must have opposite helicities because of the coupling through a vector
current. (The second diagram involves the spinor product (@gy*vy), the second one
the spinor chain (u2y"(f1+k4)7"v1) which both vanish for spinors with equal helicity).

e For two gluons with equal positive (negative) helicity the amplitude vanishes accord-
ing to the observations from Section as can be seen by choosing both reference
spinors as the momentum spinor of the negative (positive) helicity quark.
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We will first compute the amplitude M (G, , ¢, 95,95 ). From the arguments of Sec-
tion we see that the s-channel gluon exchange diagram vanishes if we chose the

reference spinors as |g3) = |4) and |g4] = |3]. The polarization vectors then read:
" {4]7"]3] . Bh*"14)
et (ks, e (ky, 8.13
(ks q3) = \/5<43> (K1, q4) = \/5[43] ( )
For this choice of reference spinors, the amplitude is given just by the ¢-channel diagram:
N fa +
(a0 o 00) = PRI ot 1)
2i3
5 (23] (4] (F2 + F3) 3] (41)
~ 3 (32) (43) (43 _
_, (42)[23)(41)
(32) (43) [43]
L, ()
(12) (23) (34)
In the last step we have used momentum conservation in the form
(12) [23] = — (14) [43]. (8.15)
The amplitude with reversed helicities of the quarks is computed in the same way:
o . (K2 + Ks)
M(vaqQ 79;794) = 13 <2|¢/3 (/{324-]{33) ¢4’ ]
2i
= - (24) [3](2 + k) [4) [31]
23] (32) (13) (43 o 16)
20 [32] (24 31 '
[23] (32) (43) [43]
o T(12) (23) (34)
where we have used also
[31] (12) = — [34] (42) (8.17)
8.3 4 gluon amplitude
Three diagrams contribute to the colour-ordered 4-gluon amplitude:
kQ k'3 ]{72 kg kQ k3
lM(gk1 y Jkay Jks s gk’4) = + + (818)

ky ky Fy ky Ky ka
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The number of independent helicity amplitudes to be calculated is reduced by some con-
siderations:

e The amplitude where all gluons have the same helicity vanish. This can be seen
by choosing the same reference spinor for all gluons so that all scalar products of
polarization vectors vanish.

e The amplitude where only one gluon has a different helicity than the others vanish
as well. This can be seen by choosing the reference spinors of all the equal-helicity
gluons in terms of the momentum spinor of the remaining gluon, so all the scalar
products of polarization vectors vanish.

e Therefore one only needs to calculate amplitudes with two positive and two neg-
ative helicities. Using the properties of the partial amplitudes discussed in Sec-
tion one only needs to calculate two helicity amplitudes, e.g. M(g~, 97,9, g")
and M(g~,9%,97.9") -

We begin with the amplitude M (g, _, g, , g,;z, g,z) The calculation is simplified by a suitable
choice of the reference spinors:

e Following the discussion in Section we use one reference spinor |g| for gluons 1
and 2 and one reference spinor |q) for gluons 3 and 4. Then the scalar products of
polarization vectors with the same helicity vanish:

—x%

(et =e e =0 (8.19)

e Choosing |g) = |1) and |q] = |4] also
€ 5;/1 =0 e €, =0 (8.20)

As discussed in [8.1.1], for this choice the three-gluon vertex involving gluons 1 and 4
vanishes.

e The only non-vanishing scalar product of polarization vectors is given by

ey (12)[43]
(" €57) = (13) 24] (8.21)

e The diagram with the four-point vertex vanishes since it involves the scalar products

20er e ) (e e ) — (7 e ) (3" ef) — (6" e ) (e - €) (8.22)

where all the terms vanish.
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For the above choice of reference spinors only the first diagram contributes to the amplitude
and one obtains

iM (g5, 9ry» i 91) = (1) [265*’“(k2 e ") = 2¢; H(ky - 65*)]

x&[%”(k@ €57) — 2e37 (ks - ef )]

(k1 + k2)?
ks ) )
2(ky - ko)

o i Kb B (4] (12) [43]

(12)[21]  [4]  (14) (13)[24] (8.23)
Ly 1 [421021) (13)[34] (12) [43

(12) [21]  [14] (14)  (13) [24]

43® (12)
~ TR gy

(12)”

7 (23) 34y a1
Here momentum conservation was used in the forms
[43] (32) = — [41] (12) (8.24)
and (k3 + k4)? = (k1 + ko)? so that

[34] (43) = [12] (21) (8.25)

As a second independent helicity amplitude we can take M (g,jl, Ghy» g;;, 9x,)- Choosing
the reference spinors as

1) = lgs) = [4) |g2] = |qa] = |1] (8.26)
again all scalar products of polarization vectors vanish apart from

x| ey (42) [13]
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Furthermore the three-gluon vertex involving gluons 1 and 4 is again zero so only the
s-channel diagram contributes. We get

U ) ) ()

M (git s 9 9050 90,) =

2(ky - k)

_ o b Ry (4 RS [4) (42) [13]

(12) [21]  (41) [41]  (43)[21]

i (42) [21] [13] (34) (42) [13]
U2y 1] 41y [41]  (43)[21] (8.28)

o 137 (24
T (12) (a1
= 2 (24)°

(12) (23) (34) (41)
8.4 Properties of Multi-leg amplitudes

8.4.1 Maximally-helicity violating amplitudes

In 1986 Parke and Taylor conjectured a very simple form for some helicity amplitudes
with an arbitrary numbers of gluons [15], which is a simple generalization of the four-point
results obtained so far. Amplitudes where all gluons or all but one gluon have the same
helicity vanish (= homework):

M, (gf,...,...qg5)=0 Mn(gf,...,gj_,...gz)zo (8.29)

The gluonic amplitudes where all but two gluons have the same helicity are called “maxi-
mally helicity violating” (MHV) amplitudes. For those, Parke and Taylor conjectured the
formula:

(ig)*

(12) (23) ...(nl)
where all the gluons not shown explicitly have positive helicity. The corresponding am-
plitudes with two positive helicities and an arbitrary number of negative helicity gluons is
obtained by complex conjugation.

The MHV amplitudes with a quark-antiquark pair and an arbitrary number of gluons
are related in a simple way to the all-gluon amplitudes:

(8.30)

Mn(gf,...,gi_,...,gj._,...g;“):2”/2_1

_ _ 2) _ _
MGy 2935+ 95 -5 9n) = ——gljiMn(gl (9359552 Gn) (8:31)

(12) (23 ... (n1)

This relation can be derived e.g. by embedding Yang-Mills theory in a supersymmetric
theory, see [17] for a review.
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The MHV amplitudes cover all helicity amplitudes contributing to four- and five-point
amplitudes. Especially for the five-point case this result is a drastic simplification compared
to the computation using textbook methods. Starting from six points, so-called “next-to
MHV” amplitudes with three opposite-helicity gluons arise. The use of the simple form
of the MHV amplitudes for the computation of more complicated amplitudes has been
limited until a new recursive construction of amplitudes was found in 2004, which uses
on-shell amplitudes as input. This is discussed in Chapter [9

8.4.2 Little-group scaling
Recall that the momentum spinors associated to a light-like momentum p* are only deter-
mined up to a scaling

pt — zpt, pA — z_lpA (8.33)

Under this scaling the polarization spinors and vectors of outgoing quarks and gluons
behave as

k) = 271 k+) k=) = z|k—) , (8.34)
et — 22 et — et (8.35)

Since a helicity amplitude is a function of the momenta of the external particles, which are
invariant under the scaling of the spinors, and the polarization vectors we have

Mo (2, @52, .. pn) — 272t yp (o g2 pin) (8.36)

One sees that the MHV amplitudes satisfy this identity.
The identity can also be written in terms of the “helicity operators”

1 0 i O
hi=~ | k=~ — ki*— | . 8.37
Since the source of the helicity dependence comes from the external wave-functions alone,
we have the identities

RMa (631,632, .. 63) = —NMa(62, 607, ... &) (8.38)

for each leg individually.

8.4.3 Soft and collinear limits
Soft limit

For the limit where one of the momenta k; of the positive helicity gluons in an MHV
amplitude becomes very small, k; — Ak;, A — 0 we have

_ _ —2 o(0)+ - _
M,(gf,...9; ,...g;L,...gj )= A 25’1(7)1,l’l+1Mn(gfL,...gi ,...gf’l,g;fﬂ,...gjl.(..) |
8.39
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with (i)
o+ _
S5 T G (&40
This relation is actually true for all tree amplitudes, not just MHV amplitudes as can
be shown either from a Feynman diagram argument or using the recursive constructions
discussed in subsequent chapters. For a soft negative-helicity gluon the MHV amplitudes
vanish. In general the relation is

— — 0)— — —
M, (g1, .. Gy o) = A 251(,)171,l+1Mn<9fr7---9i ,...gltl,glil,...gjl...) (8.41)
with i
gO- _ 8.42
TN &4

Collinear limit

Two particles ¢ and j are said to become collinear (denoted as ¢ || j) if their momenta
become proportional, k; o< k;. The momenta of the two collinear particles can be parame-
terized as

k? k?
ki = 2P" + kY 2z(P-n)n kY =(1-2) K 2(1_2)(13.”)71 (8.43)
with P2=n?=0,(n-P)#0and k; -n =4k, - P =0. We have
> G
ki+ ki) =2k - kj) = ————— 8.44
(bt )7 = 20 k) = (840

In the collinear limit &3 — 0 one gets k; + k; — P with P? = 0.
In the helicity method, the collinear limit can be formulated as the limit

|kix) — 2z |PE) \k;£) = /(1 —2)|Px) (8.45)

Note that
k%

(kikj) ~ [kjki] ~ -9

(8.46)
so the limit k; — 0 can not be taken in the spinor products involving both collinear
momenta.

From the MHV amplitudes we observe

_ _ 12 1 _ _
Mn(gf,g;..,gi yee 595 s Gn) = Z(l—Z)<12>Mn_1(g;.”’gi yee s 95 7--'97—1F)
(8.47)
_ _ (i—1)||i (1—2)? B B
Mn(gf,...,gi,...,gj,...grf) > = Mn,l(gf...,gp,...,gj,...g;)

z(1—2){((e — 1)1)
(8.48)
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2
i||(+1) z
)

- My (g7 Gpse s Gy G
T sy g G g)
(8.49)

Mn(gf,...,g;,...,gj,...g

+y Al

It can be shown that the collinear limit of general tree amplitudes is given by the
factorization

Ait1 ill(i+1)

My(.. g, g0 ) ZSplit_/\ z, 90 ,gzﬁl)Mn,l(...,glﬁ,...) (8.51)
A

The following results for the splitting functions read off from the MHV amplitudes turn
out to be correct for all Born amplitudes

1

Split_(z, g, g,) = 8.52
plit_(z,9;", 9 1) iG] (8:52)
_ B 1—2)?
Split, (2,95, g..,) = ( 8.54
plit, (2,9, 9i11) (1= 2) i+ 1) ( )
2
. _ z
Spht—l—(zagi 79;—1) = (855)

2(1—2) (i(i + 1))

The splitting amplitudes for opposite helicities can be obtained by complex conjugation.
In contrast to the soft limit, the splitting functions depend on the spin of the collinear
particles. The corresponding splitting functions for amplitudes involving quarks can be
obtained analogously from the MHV amplitudes.

8.5 Berends-Giele recursion relations

The Parke-Taylor formula for the MHV amplitudes was proven by Berends and
Giele [16] using a recursive construction. This involves matrix elements with one off-shell
leg where the polarization vector or spinor of the corresponding particle is stripped off.
The relation of these off-shell matrix elements to the scattering amplitudes is

Mn(gh ooy Gn— lagn) =¢€ (k )M#(glv "'7gn—1’/g\kn)|k%:0 (856)

where the hat denotes the off-shell particle.
The one-particle off-shell matrix elements satisfy a recursion relation which can be

represented graphically as
Jtk % J+k+l gjé
=n+1 =n+2
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The corresponding equation reads

—i

—— M,
k‘%,]

n—1
M#(gl, vees On—1, /g\kn) = Z ngp(_kl,ﬁ _kj,na kn) j,V(gla ceey gj—la /g\—klﬂj)
j=2

] R
2 Majrrp(95, -oos Gn-1, 9-k;.0)
]7”

n—2 n—1 i
uvpo ~
+ E E V4 L2 Mj,l/(glv""gj—lvg—h,j)
J=2 k=j 1,5
—i

~ —1 ~
2 Mk—j+1,p(gj7"'7gk—1'g—kj,k)kTMn—k-FLp(gka"'7gn—lag—kk,n) (8.57)
J:k Jin

Here we have defined -
-

kij = Z k; (8.58)
I=i

and the vertex functions are those of the colour-ordered Feynman rules given in Sec-
tion [7.2.2] The recursion starts with the two-point amplitudes, which are given by the
gluon polarization vector multiplied by the inverse propagator:

My (gi, G-i) = ikle(ks, q)". (8.59)

For the MHV amplitudes, the structure of the recursion relation simplifies since one
can show that the quartic vertex does not contribute. By induction it can be shown that
the off-shell matrix element with only positive-helicity gluons is given by

(g Frnl9)
{q1) (12) ... {(n = 2)(n = 1)) {(n — 1)g)
For the corresponding off-shell matrix element with one negative-helicity gluon one can

also obtain a closed expression that can be used to proof the formula for the MHV ampli-
tude [17].

M, (97 901, G ) = 2" 72 (—ikt,) (8.60)
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Chapter 9

On-shell recursion relations

A few years ago, Britto,Cachazo and Feng (BCF) [12] discovered a method to construct on-
shell tree-amplitudes in a recursive fashion using only on-shell amplitudes with fewer legs as
input. Originally these relations were found from the cancellation of infrared singularities
in one-loop amplitudes in maximally supersymmetric Yang-Mills theory, but later proven
by Britto,Cachazo, Feng and Witten (BCFW) in [13] using only complex analysis and
factorization properties of scattering amplitudes. This allowed to extend the method also
to other theories including theories with massive particles and also gravity. The on-shell
recursion relations are by now discussed in textbooks [I] and are reviewed in several lecture
notes and reviews including [8] 10} 9}, [11].

9.1 BCFW recursion relation

9.1.1 Statement of the on-shell recursion relations

In order to formulate the on-shell recursion relations, we consider a tree-level scattering
amplitude in QCD with n external particles and pick out two momenta of the external
particles, k; and k;. The recursion relation then expresses the n-particle on-shell tree-
amplitude in terms of of two on-shell sub-amplitudes with fewer external particles, with
the special momenta k; and k; deformed in a particular way to be explained below (denoted
by a prime):
, i / .
Mo (1,2,...n) = Y iM(r,. i s =k ) iM (ks 41, g r=1) (9.1)

T8 )
P(Zhj) 70 T7S

where

The sum in (9.1) is over all partitions the external particles into two sets P(i,j) =
{(ry....(s—1)),(s,...r—1)} so that momentum #k; is in the first set and k; in the second
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one, and over the helicity ¢ of the intermediate particle.

ks
kisdy - K’
- > K,
r,s k‘r

For colour-ordered amplitudes, also only ordered partitions contribute. In the sub-
amplitudes on the right hand side the two external momenta k; and k; are shifted by a
light-like vector 7:

ki=ki+zn , K=k —zm (9.3)

that is orthogonal to both special momenta, (1 - k;) = (- k;) = 0. The vector n must
be complex since these conditions cannot be satisfied three real four-vectors, apart from
special kinematical points (for lightlike k;/;). In this way, also the shifted momenta are
on-shell, k;? = kf/ ; = 0 Note that momentum conservation is still satisfied by the shifted
momenta, k; + kj = k; + k;j. In each of the terms in the sum in the constant z takes
a different value, determined such that the internal momenta k;,s = k, s + zn are on-shell:

2
kr, s

krs rs 2:0:> rs — T 57 _
o 2001 ST

(9.4)
Then, as promised, all external momenta of the subamplitudes on the right-hand side
of are on-shell, albeit with some of the momenta turned complex. The choice of the
special momenta k;/; has to satisfy to certain restrictions on the helicities of the particles
1 and 7, as will become clear in the proof presented below, but are otherwise arbitrary.
Choosing different momenta for the shifts therefore can result in different, equivalent rep-
resentations of an amplitude.

The on-shell recursion relation can be viewed as a way to construct a tree-level ampli-
tude entirely from it’s multi-particle poles. In general, at a multi-particle pole k? ,.—M?* = 0,
a scattering amplitude in an arbitrary QFT factorizes into two subamplitudes [5] [1]

2 2 ]
M (ko k) = S M (R, R T MO R, e)(95)
)\ 8

This expression is reminiscent of the terms in the on-shell recursion, however here the
momenta are not shifted into the complex plane. Nevertheless, the factorization (9.5)) is
an important ingredient in the proof of the recursion relation given below.

9.1.2 Implementing the shift

Most applications of the on-shell recursion relations have been within the spinor helicity
formalism. In this notation, a general solution to the shift vector for lightlike k; and k; is
given by

7 = Sl 1) (9.6
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Therefore the shift can be described entirely in terms of spinors:
i) '] = 1]
17) 7] = 15] = =li]

)+ 21i). 01

|i
= 17)

since
= Sl i) = K+ 2
/ 1., . (98)
ki =SU ) =k ==
If the shifted particles are gluons, their polarization vectors can simply be defined using

the shifted spinors :

Y <Q‘ ’Yﬂm 6_* A [q,% |Zl>
N T AT
+*( /) _ <Q| 7#"7,] —% /) [Q|P)/M ’j>

mT V2 gi) ”(‘j:ﬂ[j’q]'

For massless quarks, the shift of external spinors is given directly by (9.7)).

(9.9)

9.1.3 Proof of the recursion relation

In the proof of the on-shell recursion relation given by Britto,Cachazo, Feng and Wit-
ten (BCFW) in [I3] one defines a continuation M (z) of scattering amplitudes by perform-
ing the shift for aribtrary complex values of z. The physical amplitude is then given
by the value M(0). The BCFW argument can be used to show that the on-shell recursion
relations hold for tree-amplitudes in any QFT, provided the amplitudes vanish for shifts
with large z:

lim M,(z) =0 (9.10)

Z—00

As discussed below this condition is satisfied in gauge theories with matter with some
restriction on the helicity of the shifted legs. It turns out that the condition is even
satisfied in gravity. The large z behaviour of gauge and gravity theories in any space-time
dimensions is investigated in [18].

The next step in the proof is to note that (due to the properties of Feynman rules)
the analytically continued tree-amplitudes M (z) are analytic functions of z that only have
simple poles in z. This is since the only poles of an amplitudeﬂ can arise from propa-
gators. Since the shift vector is lightlike, the propagator of an internal massless line with
momentum K = K, + zn has a single pole at

K2

K?=0 =z, =——¢ 9.11

! Assuming the external states do not give rise to additional poles in z. The shifted gluon polarization
vectors do have poles that, however, are gauge dependent and therefore drop out of the amplitude.
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If the relation (9.10) is satisfied, the function M (z)/z vanishes when integrated over a
circle with |z| — co. On the other hand, this integral is given by the sum of the residues
at the poles z, and the residue at z = 0, which gives the physical amplitude:
1 M, M,
oL M) ()
z

27 z

= M,(0) + Z Res,,

poles zo

(9.12)

The last step to derive the recursion formula is now to compute the residue of the amplitude
at the poles z,. Using the factorization (9.5, the amplitude at the pole z,.; factorizes
according to

lim M, (2) = DMy K k) +21zk _niM(—k;j,kSH,...k;,...)
A 7,8 T8
= —- fz S M (k.. K. ..k;fs)k%iM(—k;j,ksﬂ, LK)
since
Zrs 1 k?,s

- — 9.13
2= zrs  2)2s— 1 2z (ks -m) + K2, (9:13)

Poles in z can only occur if particles ¢ and j are on different sides of the propagator since
the shift vector drops out by momentum conservation if both shifted legs are on the same
side. By convention, particle ¢ has been assigned to the “left” subamplitude.

Inserting the factorized amplitude into the complex integral gives the physical ampli-
tude M(0) expressed as a sum over the poles

Mn . T ~rs
M,(0) = — Z Res,,, Z(Z) =— ZZIE? : ZZ M, (z)
poles zq Poles e
’ 1 ’_
=y ZM(kT,...k;,...krfs)kTM(—kr;,kS“,...k;,...)
Poles A T8

which is the on-shell recursion relation. It should be clear, that the recursion is valid in
all theories where scattering amplitudes vanish for z — oo. Proving an on-shell recursion
for a given theory is therefore reduced to verifying . The same argument given here
also goes through for massive particles.

Behaviour of amplitudes for z — oo

We here give results on the large-z behaviour of scattering amplitudes in various theories.
The detailed investigation of this topic is beyond the scope of this introduction. For the
case of Yang-Mills theory we will discuss a simple scaling argument that was used in [13]
to proof the validity of the recursion relation for the case where particle ¢ is a gluon
with positive helicity and particle j is a gluon with negative helicity. For other helicity
combinations more sophisticated arguments are required. A general analysis for Yang-Mills
and Gravity theories based on the background field method was then given in [18]
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¢* theory The four-point function in ¢* theory is obviously is given by a single diagram
without any propagator and therefore goes to a constant for z — oco. In higher-point
amplitudes there will always be diagrams where particles 2 and j meet at the same vertex
so that these diagrams have no z dependence and we have in general

Mya(z) — const, (9.14)

so that on-shell recursion is not possible and ¢* theory is not constructable from two-line
shifts.

Yang-Mills theory We discuss a simple power-counting argument for Yang-Mills theory
and then quote results from the literature that allow to improve the bounds further.

e The sources for z-dependence of the amplitude are: momentum-dependent triple
gluon vertices, external polarization vectors and z-dependent propagators.

e The contributions with the maximal positive power of z come from Feynman diagrams
where gluons ¢ and j are connected by a string of cubic vertices, which each potentially
contribute a factor z while each propagator (in Feynman gauge) contributes a factor

—1
z27.

Diagrams with n gluon propagators separating legs 7 and j therefore scale like

M(z) ~ npropagators x (n + 1) vertices x€; X €; ~ z X € X €; (9.15)
ZY” zml

From the shifted polarization vectors one finds the asymptotic behaviour under a
shift with z — oo:
eh(kl) ~ =, sg(k’-) ~

(2

Z’

1 (9.16)
e:(k’;) ~ Z, 5;(%) ~

For the various helicity combinations of the shifted gluons we therefore obtain the following

estimates:

() M(2) ~ % (9.17)
(1%, j5) : M(2) ~ z (9.18)
(i7,77): M(z) ~ 2° (9.19)

The power-counting argument shows that the (i*,j7) shift leads to a valid recursion rela-
tion. More detailed analyses allow to show that the power-counting overestimates the true
behaviour for the equal-helicity case and the amplitudes fall off as 27! as well in this case.
The results can be summarized as

e allowed shifts: (i*,77), (it,5%), (i7,57)
e forbidden shifts: (i—, ;7).
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Quark amplitudes Adding quarks to pure Yang-Mills leads to some modifications:

e For massless quarks the external spinors are given by so the behaviour at large
z 1S
(9.20)

e z-dependent quark propagators scale like 2"
e the quark-gluon vertex scales like z°
This leads to the following modifications:

e Replacing a pair of external non-shifted lines along the flow of z through the diagram
in by external quarks replaces (say) m gluon propagators by quark propagators
and m+1 triple gluon vertices by quark-gluon vertices, therefore improving the scaling
estimate by a factor of 271

e If one of the shifted legs is replaced by a quark, the behaviour of the polarization
spinors is worse that that for gluons by a factor z, however this is canceled by an
improvement z~" from the vertex. Therefore also the shifts (g;7, ¢;) and (¢;", g; ) are
allowed.

e If two quark lines are shifted, the shift (q;", qj_) is allowed, unless both quarks belong
to the same fermion line since in this case the diagram scales like 2°.

e A more detailed analysis allows to show that also the combinations (g;*, g;°), (9", ¢}")
and (g;", q;") are allowed [19].

9.2 Applications

9.2.1 Building blocks: three-point amplitudes

Since the on-shell recursion allows to construct four-point functions from products of three-
point functions, five-point functions from four- and three-point functions and so on, ulti-
mately all the amplitudes can be derived from the three point functions alone. For pure
Yang-Mills, the non-vanishing three-point amplitudes are given by

[21)°
[32]13]°

(23)°

M;(g,95.95) = ﬁim-

(9.21)

For real momenta, the three point amplitudes vanish for external on-shell momenta since
e.g. 0=Fk2 = (k1 +ke)? = (12) [21] and [21] ~ (21)" imply that all the spinor brakets vanish
and there are more brakets in the numerator than in the denominator. For the on-shell
recursion relation we need the three-point vertices evaluated with the shifted spinors (9.7))
in which case the amplitudes can be non-vanishing.
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The application of the on-shell recursion relations is simplified by the following obser-
vation:

e the three-point vertex Mz(g*, ¢g", g7) vanishes if it involves the gluon j.

e the three-point vertex Mz(g~, ¢, g") vanishes if it involves the gluon i.

This can seen by the following argument. We discuss the case of leg j explicitly, the result
for leg ¢ can be seen analogously. Consider the anti-MHV type three-point functions with
particle j and two positive helicity gluons:
. ki : _ k]
Ms(g,, 95, 9") ~ [— Ms(g:", giF ~ 9.22
3(9] » 9K > 9 ) []/k] [lj,] 3(gj 1y 9k 5 9 ) [k’l] [l]q ( )
We assume the kinematics to be such that for undeformed momenta 2(k; - ki) = (jk) [kj] #
0. For the deformed kinematics we have instead 0 = k7 = 2(k} - kx) = (jk) [kj']. Since
(jk) # 0 by assumption this means that [£j'] = 0 so that the second vertex above vanishes.
With a similar argument one finds that [[j'] = 0. But this implies] that

5] oc [k oc |i] (9.23)

so that all the scalar products vanish. As a consequence, also the first vertex above is zero.
For the MHV-type three-point vertices with leg j we have

Ms(g;t, g 97) ~ % Ms(g;, g 917) ~ % (9.24)

since |j') = |7). These vertices are not modified by the shift and therefore are nonvanishing.

Derivation of three-gluon amplitude We give the explicit derivation of one of the three-point
functions. The usual three-gluon vertex function is

V3, (1,02, —(P1 +p2)) = 1[9uA (22 + 1)y — 92u(2P1 + D2)v + Guw (D1 — D2) 2] (9.25)

The contraction with one negative-helicity polarization vector and two positive-helicity polarization vectors
with the same reference spinor is

Ve (o1, )t (D2, @)er (ps) = V2 ) (@2 Bl [<Q| Y12] (g| p2]1] — (g| Y 1] <q|751|2}] [q7x |3)
_ i[21]
= 730 @) Ba {(‘ZH/\IZ] (q2) + (q| 1] <q1>} lalva 13)
- vai 2 (9.26)
=V g g (@22 (a0 1)

=(ql¥1,219]=—(q3)[34]

IV ALELC Y N 1
=V VB i

where momentum conservation has been used in the last step, e.g. (¢3) [32] = — (¢1) [12].

2 Tt is a property of the vector space of the two-dimensional spinors that two spinors with [ij] = 0 are
proportional, as can be seen e.g. from the Schouten identity: |i] [jk] + |4] [ki] = O.
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9.2.2 4-point amplitudes from recursion

As a first example for the application of on-shell recursion, consider the 4-gluon amplitude
M(9{, 95,95 ,95). We perform a shift with 4 = 1 and j = 4 which leads to a valid
recursion according to the discussion in Section [0.1.3] Since we consider colour-ordered
amplitudes and legs one and four have to be in different sub-amplitudes, there is only one
topology contributing to the recursion:

. — — . / _ 1 . _ /_
iMi(97 92595 91) = 1Ms(90", 92,97y )5 iMa(gy 95 947) (9.27)
2 k2, ,

The sum over the internal helicities has collapsed since there is no three-point vertex with
only positive helicity gluons. The left three-point vertex is

prff s I

M /+ x B / — 2
WMs(o" 92920, ¢1%%%D%¢hﬂ [ 2] 1K, )

(9.28)

Here it was used that only the spinors |1) are shifted in and we use spinor conventions
where |—(K)4) =i |K=). The right three-point vertex is

(34)°
(F1,93) (4K1 o)
where it was used that only |4] is shifted. There is now a standard trick to be used to

simplify the spinor products involving k7 ,. This is based on the observation that the shift
drops out if

Ms (g, 95 ,95) = V2i (9.29)

Ko =t 2 = Fuz + (1] (4] + 14) [1) (9.30)

is sandwiched between |1] or [4). Therefore multiplying and dividing by appropriate spinor
products one can write

(A ,) [k, B] = (Ak1 o) [F121] (k1) [F12B] (Al f12[1] (4] F1,2| B] (9.31)

(4k1 o) [k121] (4] f1.211]

Applying this trick to the spinor products in the denominator and using identities such as
(4| F12|1] = (42) [21] gives the amplitude in the simple form

, o ey 21]° 1f 0 4)° 34)°
”m@“%”“%):“ﬂwﬁ)MmmﬁﬁhgmgKrL3Mhﬂ§@wmm
21)° 1 (34)°
(41) [12] [12] (21) [12] (23)
(34)°
(12) (23) (41)

= 2i (9.32)
= 2i

in agreement with the previous Feynman-diagram calculation.
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9.2.3 MHYV amplitudes

The Parke-Taylor formula for the MHV amplitudes (8.30)) can now be proven easily by
induction using the on-shell recursion relations [12]. Without loss of generality we can
always consider gluon n to have negative helicity. Similar to the four-point example we use
the shift (9.7)) for (i,j) = (1,n). Several contributions to the recursion vanish since there
are no amplitudes with only one negative leg, apart from the three-point functions. The
two potentially non-vanishing contributions are therefore
— — / — 1 _ ’_
Mgy 955 90) =M3(91+792+,g,k112)kTMn—1(g$12,~~-gl v On )
S :
/ _ _ i
+ Mn—l(gl+; ey e ,97—1__27 g_kll,n—2)k2—

1,n—2

M3 (g;gtan ) gy—l_—la g;z_)

(9.33)
Here we consider the case where [ # 2 and [ # n — 1. The three point-vertex in the second
line vanishes for the reasons discussed in Section [9.2.1. The only contribution is thus given
by

’

_ _ ’ ’_ 1 ’ _ _
Mgty g7 9n) = Mg(gf,gi,g_km)kTMnfl(gkL,-~-gl oGy )
1,2

_ jon/2-1 [21]° 1 (In)*

[F102] [1h1 5] (12) [21] (K7 93) (34) ... ((n — 1)n) (k] o)
— jon/2-1 [12]2 (ln>4

(12) (n| k2 [2][1]K2[3) (34) ... {(n — 1)n)
_ j9n/2-1 <l”>4

(12) (23) ... (n1)

so that the MHV formula is proven by induction.
For more examples and tricks on the application of the on-shell recursion relations see
e.g. the original paper [12] and the lecture notes [9].
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Part I1I
NLO calculations in QCD
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Chapter 10

NLO methods: the example
ete” — Hadrons

10.1 NLO contributions to ee~ — Hadrons

Recall the expression for the R-ratio as an expectation value of electromagnetic quark

currents:
o(ete” — Hadrons)

o%ete — ptpu)

R(q%) =

= 22T [ e (0]8(2) (0 [0) (10.1)
q
_ —j—j taee Y / A, (0]54(x) ) (7 (0)[0)

The sum is over a complete set of partonic final states

{l2)} = {la@) . ladg) . 19q99) . laqaq) . - - - } (10.2)

The LO prediction results from taking the only ¢q states into account, which amounts to
using the LO cross section

2
J4ra

0(6+6_ — QQ) = Nch 3

(10.3)

summed over quark flavours, in the numerator of the R-ratio.
The first contribution to the QCD corrections to the R-ratio is given by the O(«y)
corrections that arise from one-loop corrections e~ e™ — ¢,

+ + (10.4)
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and the tree contribution of the ¢gg term in the sum over partonic final states,

>~\€e + >~\<§ (10.5)

10.2 Regularization and renormalization

The one-loop corrections to e”et — ¢ in ((10.4)) involve the one-loop subdiagrams
k1

dlq a(k)y"(d = F)v" (e + P (ks)
(2m)* (k2 + q)? +ie)(¢? + ie) (k1 — ¢)* + ie)

¢ =()%(=ieQ,)(ig,)*Cr /

ks (10.6)

d'q  a(k)y"(d = k) kv o (ks)
(2m)2 (k1 — @) +i€)(g? + i) (kT + ie)

—()*(—ieQ,)(ig:)*Cr / (10.7)

We will next discuss conceptual and technical issues arising in the computation of such
loop integrals before returning to the example of e~et — Hadrons.
UV divergences

Since the integration runs over all of momentum space, the loop integrals also receive

contributions from ¢ — oco. Introducing a cutoff A, the integrals (10.6)) and (10.7) behave

schematically as
AR
N/ d4q$ ~ log A (10.8)
b g
N/ d4qg ~ A (10.9)

Therefore these integrals diverge in the limit A — oo.
In order to make sense out of these integrals one introduces the steps of regularization
and renormalization.
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10.2.1 Regularization

The theory is regularized by modifying it introducing regulator so that all loop integrals
are defined and can be calculated. Examples for regulators are

e An explicit momentum cutoff, k£ < A
e Lattice regulator: space-time is discretized

e Pauli-Villars regularization: propagators are replaced by

i i i

P2 —m?2 _>p2—m2 _p2—M2
with a large regulator mass M.

e Subtraction: introduce a unique prescription to subtract the divergent parts of the
integrand

e Dimensional regularization: change the dimension from 4 to d # 4 so that the inte-
grals converge.

The drawback of the cutoff and lattice prescriptions is that they break Lorentz invariance,
Pauli-Villars regularization has been used in QED but breaks gauge invariance in QCD.
Subtraction prescriptions have been used in renormalizability proofs but are tedious for
practical calculations.

Dimensional regularization

For most practical calculations in perturbation theory, dimensional regularization is
used. The loop integral measure is changed to

dq sq [ di
/(27)4—>M /<2ﬂ)d (10.10)

where p is an arbitrary constant with dimension of mass so that the dimension of integrals
is not changed.

In order to discuss the limit d — 4 we write
d=4—2¢ (10.11)

and consider loop integrals as analytic functions in . (Here it is hoped that no confusion
arises with the ie prescription of the Feynman propagators).
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10.2.2 Renormalization

The values of the parameters of a QFT (masses, coupling constants) have to be extracted
from a set of observables ;. The parameters in the original Lagrangian of the theory will
from now on be called bare parameters and denoted as gy, mg etc. In the regularized
theory, the relations expressing an observable O computed in terms of the bare parameters
depends on the regularization parameters, in case of dimensional regularization on the scale

4 and the dimension d:

The idea of renormalization is to introduce renormalized fields, masses and coupling con-
stants ®,., m,., g, so that the expressions of observables in terms of renormalized quantities
is independent of the regularization. QFTs where this is possible are called renormaliz-
able.

The bare quantities are related to the renormalized ones by introducing renormal-

ization constants Z:
Oy = /25D,

Jdo = Zggr (1013)
mo = LM,

The renormalization constants are functions of the renormalized parameters of the theory
and the regularization parameters:

Z = Z(gr, My, i1, d) (10.14)

The Lagrangian of the theory in terms of the renormalized quantities is obtained by in-

serting the relations (10.13)):
L(®o, go, mo) = L(Zy*®r, Zygr, Zr) (10.15)
For the evaluation in perturbation theory, the renormalization constants are written as
Z =147 (10.16)
where 07 is of order g,. The Lagrangian becomes then
L(Dy, go, mo) = L(Py, gr,my) + 0L(Dy, gy M, (5Z$/2, 024,02Z,) (10.17)

The first term is the original Lagrangian with all fields and parameters replaced by the
renormalized quantities. The second term §L is called the counterterm Lagrangian.
As example consider a fermion interacting with a vector boson with the Lagrangian

L (1o, Ao, go, mo) = o (i — mo) 1o + gotbo Aotbo (10.18)

where for simplicity we do not show the kinetic Lagrangian for the vector boson. Inserting
the renormalization transformation, the Lagrangian becomes

E(wo, AO> 9o, mO) = L‘(%, AT‘? 9r, mr) + 5Z¢&r1@wr - 577”“;7«% + 59@4&% (1019)
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with the mass counterterm
om=m,(ZyZm —1) =m,(6Zy +0Zp +...) (10.20)

and the coupling counterterm
1
89 = 9:(ZyZyZ)* —1) = g.(6Zy + 6 Z, + S0Za+.) = 9102 (10.21)

The terms in the counterterm Lagrangian are treated perturbatively as additional interac-
tions with the Feynman rules

X 102y — 0m = 1624 (p — my) — 1m0 2o, (10.22)

p

t =190 Zyyay" (10.23)

Mass dimensions in dimensional regularization

Note that in dimensional regularization the action is defined as
S = /dd:pc (10.24)

In the conventions where hc = 1 the action is dimensionless, so the Lagrangian has mass
dimension d = 4 — 2¢. This implies that the mass dimension of the quark and gluon fields
is
d—1 3
W= =5

dEZ 2 (10.25)
A= 5" =1+¢

Since the interaction term ~ go1)oAgo has dimension d, the bare coupling constant is not
dimensionless in d dimensions:

d—2 d—4
2

[90] = d — ((d—1)+— =———=c¢ (10.26)

We absorb this mass dimension by defining the dimensionless, renormalized coupling g as

g=w"g=pn"2;" 9 (10.27)

This definition is consistent with the fact that each loop integral appears with a factor g2
so that every loop diagram involves the combination

d d
2 —= = | —= 10.28

in agreement with our previous discussion in eq. (10.10]).
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10.3 Omne-Loop integrals

Instead of attacking directly the computation of one-loop integrals such as ((10.6|) we will
consider so-called scalar one-loop integrals where the numerator structure is trivial.
Scalar two- and three-point integrals are defined as

2mp)t—d 1
By (p? = <—/dd 10.29
0(p 7m17m2) i7T2 q(qQ_m%)((q_i_p)Q _m%)’ ( )
2mp)t—d 1
Co(k2, k2, k2, my, ma, m :(_—/dd ,
(k3 Ko g, ma, ma ma) = = & D (gt R —md) (@ P+ Ea)f — D)
(10.30)

where all momenta are incoming and momentum conservation holds, i.e. p; + ps + p3 =0
ete.

The prefactor in the scalar integrals has been extracted by convention, the relation to
the loop-integral measure is

(2mp)*

im?

d
2 4-a 4%

diq = (—i)(4m)u 2n) (10.31)

10.3.1 Example calculation: scalar two-point function
We discuss some standard tricks in the computation of one-loop integrals for the example

of a two-point function with massless propagators.

Feynman parameters The first step is to combine the two propagators at the cost of
introducing another integral using the identity

1 ! 1
= dx : 10.32
ay1as /0 (ray + (1 — x)ay)? ( )
This results in the expression
i dq 1
—— Boy(k*,0,0) = 4—d/ : :
(a0 O I | i (g i) (1 07 1 i) o
:u4d/ d /1d:1: L .
@2m)?Jo (4 (1 —2)[k* +2(k - g)] +1€)?
The parameter z is called a Feynman parameter.
Shift of loop momentum In the next step, a variable transformation
g=0—(1—-2)k (10.34)

is used to eliminate the ¢ - k¥ mixing term:

i ate [t 1
—— By(K? = 4d/—/ d . 10.
(47)2 o(K,0,0) = p (2m)? J, v (02 + (1 — x)k? + i€)? (10:35)
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Wick rotation To evaluate the ¢ integral, one deforms the integration in the complex
plane so that the ¢° integral runs from —ico < (° < ioo. This is possible under the
assumption k% < 0 since the poles in £°,

° = i\/Z? — (1 — 2)k? — e, (10.36)

lie in the right-lower and left-upper half-planes. Redefining ¢° — i¢%, the Minkowski scalar

product becomes an euclidean product ¢* = — (%) — (2. The resulting integral can then
be written in d-dimensional spherical coordinates:

1
/ Ay = / dQyq / dlpldt = 3 / dQq / de2, (624272 (10.37)

with the d-dimensional unit sphere

2mrd/?
/de - 57 (10.38)

Integral over the loop momentum Performing the Wick rotation and introducing
spherical coordinates, the integral over the loop momentum is reduced to a one-dimensional
integral:

i ) o diy ! ) 1
Gz Dol 0,0) =in /(%)d/o R R S TR L
o4 /2 2 (@J)(d_mﬂ
= ot | = e o
i(2)2-d/2 _ 1
- ) (471-1—)‘4(52 d/z)(—k‘Q —iE)d/2_2/0 dr (2(1 —x))d/Q—Q

Here the /g integral has been performed using the formula

/ Ay, () (A+ %) = (A)T(a+DI(1 - a) (10.40)
0
with the Gamma function -
['(z) = / e dt (10.41)
0
For non-negative integers,
I'(n+1)=n! (10.42)

A useful property of the Gamma function is

F(z+1) =2I'(2) (10.43)
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Feynman parameter integral The remaining integral over the Feynman parameter
can be performed using the integral representation of the Beta function

' [(o)T'(5)
dez* (1 —2)’! = B(a, f) = ——L= 10.44
[ arara -0yt = Bl = 52 (10.44)
Using this expression finally gives the result for the scalar two-loop function
2 . d/2—2 2
I'—-d/2)r'd/2 -1

Bo(k?,0,0) = (4r)*~* (——k tle) 2oz

K Ld-2) (10.45)

K2 +ie\ TT(e)(1 —¢)?
G

The complex continuation from k? < 0 to positive values is defined by the ie prescription.
In the last step, the number of the dimensions has been set to d = 4 — 2¢.

Expansion in ¢ The Gamma function has poles for x = 0,—1,—2,.... The pole in
the two-point function for ¢ — 0 reflects the original UV singularity in the unregularized
integral. The d-dimensional result can be expanded around d = 4 using the series expansion
of the Gamma function

1 1 2
D) == —yp+=(1%+> )2+ 0@ (10.46)
x 2 6
with the Euler-Mascheroni constant
(1]
Vg = g&; (E - lnn) —0.57721 ..., (10.47)
and the expansion
AT =" A =1 prlnA+.... (10.48)
For the two-point function, one obtains the result
1 k% +i
Bo(k2,0,0) = {— . <—1og ( tle) - 2) — g+ log(47r)1 +O(e) (10.49)
£ 0

Since the log(4m) — g terms are usually absorbed in the renormalization condition, one
often extracts a prefactor, for instance

(Am)T(1+¢) =1+ c(log(dm) —vE) + . .. (10.50)
so that
Bo(k2,0,0) = [w - (log (%) - 2>] +0(e) (10.51)

For k2 > 0 the ie prescription implies that the logarithm is interpreted as

—k% —ie k2
log (—) — log (—) —ir 10.52
e e ( )
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10.3.2 Omne-loop scalar functions
Useful formulae

The above steps can be performed for any scalar one-loop integral. Feynman parameters
can be introduced with the general formula:

1 1

1—5" o

1 — L'(m) /dxlel_l.../ dz,xmn 1 d lel)
(mn> 0 0

a...am  T(my)...T T (a4 Tpan)™
(10.53)
with m = ), m,. After shifting the loop momentum, the loop integral can be performed
with the formula

/ ddg (62)0[ _ (_)aJr,B 1 (MQ)a76+d/2F(a + d/Z)F(B - = d/2> (1054)

(2m)® (€2 — M?)? (4m)?/ I'(d/2)T(B)
Note that this formula is valid for the loop momentum ¢ in Minkowski space.

Results for all the one-loop scalar integrals are available in the literature and imple-
mented in computer libraries. For one-loop integrals, after expansion around d = 4, the
result of the Feynman-parameter integration can be written in terms of logarithms and
dilogarithms, which are defined as

Lig(z) = — /Ox dz In(1 —2) (10.55)

z

One and three-point functions

We give here two more results that arise in the calculation of e“e®™ — hadrons. The
simplest loop function is the scalar one-point integral
)i-d

Ao(m) = @L/ddq((ﬁ;

im? —m?2)

— —(47)°T(e — 1)m? (ml; ig) N (10.56)

= (47)°T(e 4 1)m? F —1In (ZL—;) +1+ 0(5)}

€

For m = 0 this integral is defined to be zero, which corresponds to taking the limit m — 0
in the regularized integral before expanding in € and assuming € < 0.

As another example, the scalar one-loop integral with vanishing internal masses and
one off-shell leg is given by

Co(k?,0,0,0,0) = (47)°T(1 + &) > (—k* — ig)flfle(—s)F(l —€)

e I'(1-2¢)
= (4m) (1 +e)p*(—k* —ie) ' ¢ (—é + %) (10.57)

. 11 1 k? 1, o[ Kk 2
= (4m) F(l—l—e)ﬁ [5_2 — glog (_E + §log (—?) — g}
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Note that the scalar one-loop integral behaves for large loop momentum as

|
/ d*q— (10.58)
q

so it is UV finite. The 5% singularity in the result is instead related to a so-called infrared
singularity that will be discussed below.

10.3.3 Self-energy and vertex functions
Quark self energy

We discuss the steps involved in calculating loop diagrams for the example of the quark
self energy

() = =R 20t / A% i+ (10.59)

(2m)? ((k + q)* +1€)(¢* + ie)

The steps appearing here are the simplest example for methods used in general in one loop
calculations. We will only consider Feynman gauge, £ = 1, which has been used already in
the above expression. The quantity g is the dimensionless renormalized coupling defined

as in (10.27)).

d-dimensional Dirac algebra In dimensional regularization, also the Dirac and Tensor
algebra is performed in d-dimensions. The trace of the metric tensor in d dimensions is

g =d. (10.60)

This definition leads e.g. to the identities

VY = g = d, (10.61)
VA = (2 = d)V, (10.62)
VP, = Agh + (d — 4)yHP (10.63)
APy, = =277 AP (4 — d)yH P (10.64)

The unit matrix in the space of Dirac spinors can be taken to satisfy
tr[1] = 4, (10.65)

so that the equations for traces of Dirac matrices remain valid.
Using the identity (10.62) the integral appearing in the self-energy (10.7) becomes

LA d’% V' (d+ F)n S S 2 2
0 T g T OB 00+ Byl .
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Here the vector integral

)4—d

(2mp q"

\=rR) d
im? /d T =mD(g+p?—md) (10.67)

B*(p*,m1,ma) =
was introduced.

Tensor reduction Instead of computing vector integrals (and analogous tensor inte-
grals with insertions of several loop momenta in the numerator) directly, a useful strategy
is to express them as linear combination of scalar integrals. This can be done for all one-
loop integrals and is known as tensor reduction or Passarino-Veltman reduction. For
the two-point vector integral we note that Lorentz invariance implies that it can be written
in the form

B*(p?,my, my) = p"B1(p?*, m1, my) (10.68)

with the vector coefficient B;. This expression can be solved for the vector coefficient:

1 (2mp)* 1 / P q
B (p? = —p,B*(p* = d?
1(p 7m17m2) pgpu (p 7m17m2) 171_2 Q(QQ _m%>( q+p)2 _m%)
(10.69)
The basic idea of tensor reduction is to use the identity
1
(p-a) =5 [((g+p)* =m3) = (¢ =m7) = (p° + m] — m3)] (10.70)

to eliminate the scalar product in the numerator and to cancel one of the propagators.
This allows to express the vector integral in terms of scalar one and two-point integrals

1
Bi(p®,my, ms) = L [—(p* +mi —m3)Bo(p®, m1, my) + Ag(my) — Ag(mz)]  (10.71)
For the massless case, we obtain the result needed for the quark self energy:

1
B*(k*,0,0) = —ék“Bo(kQ,O,O) (10.72)

Result for the self energy Inserting the result of the vector integral, the self energy
becomes

2
1
D(k?) = 5 Cr2(1 = 2)5 Bo(K?,0,0)

47)2
EX ) X e (10.73)
with
92
T

Note that as for the scalar one-point function, by definition we have ¥(0) = 0 in dimensional
regularization.
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Vertex function

The vertex function appearing in the corrections to e”e™ — ¢q is given by
ka1

o 0. dlq _a(k)y"(d — k) ki o(ks)
= 1 i [ G e g 107

k2

After a somewhat tedious calculation using the Dirac equation for the spinors, the
vertex corrections can be written in terms of the scalar two and three-point functions

I+ = (—iqu)(a(kl)wv(kQ))Z‘—;CF[(d — 7)By(k?,0,0) — 2k*Cy(k*,0,0,0,0,0)]

= (ieQq) @k )y (k2) 2= i (4)FT(1 4 2) (— k2; ie) B L% +2484 %2] |

(10.76)

10.3.4 Renormalization constants of QCD

We here give the results for renormalization constants of QCD. We discuss the case of the
quark field renormalization in some detail and introduce the modified minimal subtraction
renormalization condition. The results for the remaining renormalization constants are
quoted from the literature (e.g. [, [7, 22]). We only consider Feynman gauge, £ = 1.

Quark field renormalization

The renormalized quark self energy is given by the sum of the loop diagram and the
counterterm to the propagator

Ew,r(/{iz) = — 999-% — +

X = Sy (k) + 024k (10.77)

The renormalization constant Z, is chosen such that the renormalized self energy is
finite in the limit ¢ — 0. This requirement fixes the singular part, but a possible finite
part of 7, is not fixed. This requires to introduce some renormalization condition.
Some possible renormalization conditions are

e Minimal subtraction (MS): only subtract the singular piece:

1
§ZMS) Qs 2 10.78
4 47 Fs ( )
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e Modified minimal subtraction (MS): subtract also the universal log(4m) — vg terms:

o s, (1
5z = ~oCr (g + log(4m) — VE) (10.79)

=A.

e Momentum subtraction (MOM): impose the condition X, (—p3) = 0 with some arbi-
trary momentum scale p:

s 1 0
5Z$AOM)(MO) _ _Z_T('CF {g - <1Og <%) — 1) — g + log(47r)} (10.80)

e On-shell renormalization: for massive fermions the renormalized self energy has the
structure

(k) =k Sy (k) + m,Ss(k?) + §Zy(F — m,) — mp6Z,, (10.81)
In this scheme the mass renormalization constant is determined from the condition
2 (k) u(k)|j2mmz = 0 (10.82)

ie.

6 2y = Yy (m?) + Xg(m?) (10.83)
The field renormalization constant can be determined from the condition that the
propagator has residue one which implies

1
— 2 (k) u(k)|j2—mz = 0 (10.84)
The on-shell scheme is often used in QED and the electroweak sector of the Standard

Model. In QCD it may be used for the top quark, but it is not useful for the light
quarks, which cannot be observed freely.

The usual choice in QCD is the (MS) scheme. In this scheme the renormalized quark self
energy is

5, (k2) = —%Cpk (log (_M—]Z?) - 1) (10.85)

Gluon field renormalization

For the gluon field renormalization, a fermionic one-loop diagram, two gluon diagrams, a
ghost diagram and a counterterm diagram need to be calculated:

EA,r(k2)me+¢€Z§m+oﬁw+wj:j®+m (10.86)
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We here just quote the result of the counterterm in the (MS) scheme

s 4 5
§zMS) _ % (Zp N 200 ) AL 10.87
A Ar \37F T34 ( )

where Ny is the number of quark flavours.

Coupling constant renormalization

The renormalization constant for the strong coupling constant, 7, , can be obtained from

the NLO corrections to the quark-gluon vertex

ER

Aqqg,r‘ = + +5qu’g (10-88)

with .
0 Zgqg = 0Ly + 024, + 552’4 (10.89)

As mentioned above, the vertex integrals contain both ultraviolet singularities from large
loop momenta, but also so-called infrared singularities. These arise for massless particles in
the loop whose momentum can become very small (so-called soft singularities) or collinear
to a massless external particle. Extracting the UV divergence of the one-loop vertex
function (e.g. by introducing quark masses to regularize collinear singularities and setting
external momenta to zero) one finds in the MS scheme

028 =

Qg
q4q9 - E

(Ca+Cr)A. (10.90)

Using the results for the field renormalization constants 07, and Z4 allows to obtain the
coupling constant renormalization:

a2 11
570 — Z‘—W (§TFNf - EC’A) A. (10.91)

There are several diagrams contributing to the three-gluon vertex:

®
+ + TR v:mmsv + 07y
K

(10.92)
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Our previous results allow to calculate the counterterm for this vertex in terms of the
coupling-constant renormalization and the gluon field renormalization:

3 4 2
0Zgs = 024, + 552,4 = — (gTFNf — §CA) A, (10.93)
It is a non-trivial result of gauge invariance and the renormalizability of QCD that the
counterterm determined from the previously calculated renormalization constants cancels
the UV divergences of the one-loop diagrams contributing to the vertex. The same holds
true for the four-gluon vertex.

10.4 NLO corrections to ete~ — Hadrons

We can now return to the calculation of the NLO corrections to ee~ — Hadrons which
consist of the the virtual corrections to ete™ — ¢q and the real-correction process
ete™ — qqg . Both pieces contain infrared singularities that cancel when both
contributions are added up.

10.4.1 Virtual corrections

The vertex corrections have been calculated in ((10.76) and can be written as

Ay M = Mydy (10.94)
with the virtual correction factor
Qg Q*+ie\ °[2 3 2
oy = —— 4m) (1 — — 4+ - - — 10.
SR A= R E W W IR

where M, is the LO matrix element and Q) = p; + ps.

There are no corrections from the self-energy diagrams and the quark-field renormaliza-
tion. This can be seen most easily by working with bare quark fields (where no quark-field
renormalization is performed) and using that the self-energies for external on-shell parti-
cles vanish. Alternatively, one performs the field renormalization which results in a vertex
counterterm 6Z,,, = 0Zy. Using the LSZ formalism (see e.g. [I]), the external legs are
amputated and replaced by the square root of the residue of the propagator. For massless
quarks the unrenormalized self-energy vanishes, so the square root of the residue of the
renormalized propagator is given by 1 — %5Z¢. This precisely cancels the vertex countert-
erm.

The virtual corrections to the cross section are then given by

Agro(e”et — hadrons) = aéE)QRe(SV (10.96)

Since the real corrections below are calculated in d dimensions to regularize infrared diver-
gences, here for consistency the leading order cross section in d dimensions, a((f) appears,
but the explicit expression is not needed.
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The real part of the virtual corrections can be taken using the relation

. —& 2
l (_QQ + 16) _ l _ 1 (] ng_Q —{—17T> + (logg—j —|—i7r> (10.97)

g2 12 e? ¢
Therefore , ) , ,
1 e © 1 o
Re— (—Q nge) = - (Q—Q) - (10.98)
€ 0 e \p 2
We therefore get the result for the virtual correction factor
2 3 4 2
2Redy = ——CFF(l +e) (Q ) { ARy i] (10.99)
2 € € 3

10.4.2 Real corrections and IR singularities

We have computed the helicity amplitudes for e"e™ — g7 and e~ e™ — ¢gg for some helicity
combinations in Section [6.3] The four point amplitude is

2
iM(e, Pett — gl qp) = 2162%
= QiGQM (10.100)
[p1p2] [k1ko]
The real-emission amplitudes for the two different gluon polarizations are
2
iM(e, et — gl gl gl ) =12 Qg T V2 <p1p2>2 éﬁ;:;; o (10.101)
iM(e, et — gl gl gr) = 1€2Qqugs T V2 2[piha] (10.102)

[P1p2] [Koks] [k3ki ]

The amplitudes for different fermion polarizations are obtained by exchanging the spinors
in the numerator.

The colour-summed square of the real-emission helicity amplitudes, summed /averaged
over helicities, gives

1

1L Ml el = andion)l’
colors, hel.
’ 10.1
(4NQze?) (ko - p2)* + (k1 - p1)* + (k2 - p1)? + (k1 - p2)? (10.103)
— 2 °va (292CF) 2 P2 1P 2 P1 1 P2
(p1+p2)? " 77 (K2 - k3) (k1 - k3)

The real-emission cross section can be written in terms of the energy fractions

2k; - Q
T; = Q2

(10.104)
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with @ = p1 + p2 = k1 + k2 + k3 = k1 3. The energy fractions satisty
Using identities such as

Q* — 2k - Q k%,&; — 2ky - (k2 + k3) ~ 2ko ks

(I—21) = o = o == (10.106)
one finds that the matrix element squared is proportional to
1
IMJ? ~ (10.107)

(1 —xzq)(1 — x9)
One sees that the matrix element becomes singular in the limits
collinear :(ky - k3) — 0, x9 — 1

soft :ks — 0, x3 — 0

For consistency with the treatment of the virtual corrections, dimensional regularization
is also used for the real corrections, i.e. the phase-space volume is modified to

i d—1
e (E ﬁ) (2m) 08 po = 3 k) (10.109)

Performing also the computation of the matrix element in d-dimensions one can show that
the d-dimensional phase-space integral over the phase-space of the gluons gives the real
corrections to the cross section as [7]

Ago(e”et — hadrons) = 076 (10.110)

with the real-correction factor

g 47r,u2)5 1 /1 /1 1 T2 4 23 — ex?
Op = —(C dz dz
= on ( Q2 ) T-2) o i (A —2)(1 =221 —a3))F (1 —21)(1 — a2)
3 19

Qg 4\ © 2 472
=—C (1 -+ -+ = - —
o F(Q?) (+€)L2+5+2 3}

(10.111)

10.4.3 NLO corrections to the R-ratio
At leading order the R-ration is given by

oo(eTe” — Hadrons) 9
Rio = = E N.Q 10.112
+O olete™ — putp) - e ( )
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where the sum is over all quarks with m, < Ecp/2.

Adding the real and virtual NLO corrections all 1/e poles drop out. After expanding
the NLO corrections in ¢ the limit d — 4 can be taken in the LO cross section. The result
: 30,0

Anto(ete™ — Hadrons) = o4 (65 + 2Redy) = oy ai L (10.113)

T T
A comparison of the measured R-ratio to the QCD prediction therefore allows to measure
the value of the strong coupling constant. There is, however, one more complication that
appears only if higher orders in QCD are considered and will be discussed in the next

section.

10.5 Renormalization group

In the NLO calculation of the R-ratio the logarithms of the form log (%) dropped out
completely in the sum of real and virtual corrections. This is an artifact which appears
because we calculated the QCD corrections to a QED observable, where the renormalization
of the QCD coupling did not play a role. In general, since the R-ratio is a dimensionless

observable one expects a series expansion in ay of the form
R=Ry (14 asm(t) +alra(t) +...) (10.114)

with the variable ¢ = g—; Since the scale p is arbitrary, the observable R must not depend
on it:

o, dR
H e
1
The functional dependence of functions r,, is constrained by this so-called renormalization-
group equation, which we will briefly discuss here following [6].

(10.115)

10.5.1 Running coupling

To evaluate the condition (|10.115]), one must take into account that the relation of the
renormalized dimensionless coupling oy to the bare coupling o, involves the scale p,
according to ((10.27)):

oy = ;f%ozw = ,u_%Zg_Qoz&o, (10.116)

Since a; is the bare, unrenormalized, coupling defined without reference to p, we have

dOés’O
dp

I (10.117)

This implies that the dimensionless coupling satisfies the differential equation

da prdz
2 dcs -
1 = —cas — 2 as = G, (10.118)
dp? Zg dp?
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which is called the renormalization-group equation for a,. This equation defines the
so-called beta function [(ay).
In the MS -scheme the renormalization constant Z4 depends on the scale p only through
a, so that
p?dz, 1 0Z, ,da, 1 0Z,
7gd_,u2 N Z@as H du? Z@as

B. (10.119)

At NLO in QCD, the coupling constant renormalization constant in the MS -scheme is

given by ((10.91))

as (2 11
Zy,=1+—=(ZTpN; — = A 10.12
g +47T(3Ff 60A> e (10.120)
so that
0z, 1 (2 11
=— | =TpN;y — —Cy | A 10.121
da,  (4m) (3 G A) ( )

The S-function can be computed perturbatively in g,:

1 0Z 200 (2
B = —eas — 20 g a (

1
2%~ 2% (2N~ Eoy) Al
Z, 00,0 = 5% T gy \31 N T A) b+

3 —~—
2 /711 4
S (_CA—— FNf)+...

»

—eas .. (10.122)
C4r \ 3 3

One sees that the 8 function is finite for ¢ — 0 and independent of 1 in the MS-scheme.
Defining the perturbative expansion of the beta function as

0 ag\"
Blas) = —as nz_: <E> Bn (10.123)
we see that
11 4
Bo= 5 Ca—5Trny. (10.124)

The coefficients 5, have been calculated up to n = 3 [14].
The leading-order equation for the running coupling a (i) can be solved in terms
of the value at a reference scale a,(j19) by a separation of variables:

das 250
dos _ _ 2P 10.12
a2 G (10.125)
1 1 2
= - _ Doy (“—2) (10.126)
as(p)  as(po) 4w 145
or
() % (#o) (10.127)

1+ —aig:o)ﬁo log (%)
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For the case of QCD we have Cy = N, =3, Tp = % so that
2
By =11 — gnf >0 (10.128)

which is positive since the number of quark flavours is less than 16. The solution (10.127))
implies that given a finite value of as(pg) at some reference scale i, the running coupling
diverges at some scale A < g where

27
A =exp (—) 10.129

Boas(po) ( )
The LO-solution to the running coupling is therefore also often written as

1
6 2
2 log (%)

The fact that the running coupling becomes smaller for larger scales ;1 in QCD is the famous
property called asymptotic freedom whose discovery led to the Nobel Prize for Gross,
Politzer and Wilzcek. However, at this point in our discussion the physical interpretation
of the dependence of the coupling on the supposedly arbitrary scale p is still quite obscure.

as(p) = (10.130)

10.5.2 Resummation-group for the R-ratio
The independence of the R-ratio on pu (10.115]) implies

o_ OB _( , OR aR)

— — 10.131
e P . (10.131)

since R depends on g both explicitly through the ratio ¢ = 8—22 and through ay. Inserting
the series ((10.114) and taking into account that 3 = O(a?) this equation implies the

differential equations for the functions r;(t):

0
uQa—r; =0 = r; =const. =q,
1L
0
MQ—TQQ + @Tl =0 =ry= —@al logt + as (10.132)
o 4T 4

with an integration constant as. Therefore the renormalization group analysis explains our

previous result that r = % is a constant and allows to predict that the expansion up to

NNLO has the form

R(s) = Ry {1 Lol 2 [—%log (%) + ag] + .. } (10.133)

T
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The coefficient of the logarithmic term at NNLO is therefore predicted by the NLO calcu-
lation, while the determination of the constant as requires an actual NNLO calculation.
For the choice 2 = s the NNLO prediction simplifies to

R(s) = Ry {1 + %(f> +a2(vs)ay + . .. } (10.134)

Using this relation, one can determine a,(+/s) from the measurement of the R-ratio. Note,
however, that the definition of o, depends on the renormalization scheme in higher or-
ders. The current world average for /s = My (including also measurements from other
processes) is [14]

as(Mz) = 0.1185 £ 0.0006. (10.135)

The fact that as(My) < 1 justifies a posteori the perturbative calculation of the R-ratio.

10.5.3 Resummation-group improvement

We can now turn to the physical interpretation of the running coupling constant. The
result (10.133]) allows in principle to predict R(s) at arbitrary energies, given ay(My) as
input. However, for energies very different from My, the logarithm can become very large

so that
OZS(Mz)

S

Therefore the expansion in agz(My) is not a reliable perturbative expansion for s > My,
or s < My since corrections from subsequent orders not yet computed can be just as
large as the computed ones. However, setting y?> = s and using the formula for the
running coupling (and its higher-order generalization) one sees that in this way the
dangerous logarithms are summed up to arbitrary order in the coupling a(Myz).
Therefore a more reliable prediction for the R-ratio at an arbitrary energy is given by the
expression in terms of the running coupling at the appropriate scale E| In this
way the knowledge of the dependence of the running coupling on the artificial scale u can
be used to improve the prediction for physical processes, and it is useful to introduce the
notion of an energy-dependent running coupling constant.

Because of the positive sign of f; the running coupling ag(/s) becomes larger for
increasing energy and grows for smaller energies. This is confirmed by experimental mea-
surements over several orders of magnitude of the energy scale, see Figure . At some
small scale the running coupling grows large so the perturbative expansion breaks down
for small energies. This behaviour at small scales is qualitatively in agreement with the
confinement of quarks and gluons in hadrons at small energies.

LOther choices of the scale have been proposed to further improve the behaviour of the perturbative
expansion, see e.g section 3.4.6 of [7].
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Figure 10.1: Measurements of the strong couplings at different scales, taken from [14].



Appendix A

BRST symmetry and Slavnov-Taylor
identities

A.1 Gauge fixing and ghost Lagrangian

Recall that the quantization of non-abelian gauge theories requires the introduction of
a gauge fixing term and Fadeev-Popov ghost fields. For a covariant gauge fixing, the
gauge fixing Lagrangian and the Fadeev-Popov Lagrangian are given by (4.73) and (4.74)),
resepctively:

1 a
Lop = —2—5((%%1 "2, (A1)
Lpp = (aucﬂ)pgijicb — (") (00 + g5 [ A ) (A.2)

The ghost fields are anticommuting scalars. This implies that
(* )T = et = —@ it (A.3)
The Lagrangian is hermitian for the assignment

o ot = ¢ (A.4)

= ¢

It is not consistent with a hermitian interaction term with the gauge boson to take the
antighost as the conjugate of the ghost. The antighost could be made hermitian by a
redefinition ¢ — i¢ but we will keep the form of the Lagrangian given above.

The gauge-fixing Lagrangian can be rewritten in terms of the so-called Nakanishi-
Lautrup auxiliary fields B, as

Lo = B f* + g(B“)2 (A.5)
as can be seen using the equation of motion for the auxiliary fields
oL
0= =¢B° “ A6
5ga — B+ f (A.6)
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A.2 BRST transformations

A.2.1 Definition of the BRST transformation

The gauge-fixed QCD Lagrangian including the Fadeev-Popov Lagrangian is invariant
under a global transformation parametrized by a Grassmann-valued parameter . This
transformation was discovered by Becchi, Rouet, Stora, and Tyutin (BRST). We write the
transformations of a general field ¥ as

AgVU = 0550 (A7)

The transformations of the physical fields are obtained from the infinitesimal gauge trans-
formations by replacing the parameters w® by the product of the ghost fields and the
Grassmann number 6:

oA}, = 0, + gsf“bcchi (A.8)
IpQ(z) = —igsc*(2)T"Q(x) 9)
The transformations of the ghost fields and the auxiliary fields are taken as
opct = %gsf“bccbcc (A.10)
dpc” = B* (A.11)
SpB* =0 (A.12)

A.2.2 BRST charge
We introduce the generator of BRST transformations g, the so-called BRST charge:

The BRST charge can be constructed explicitly using the Noether theorem [2I]. The BRST
transformations of bosonic fields are generated by commutators with the BRST charge, the
transformations of fermionic fields by anticommutators:

(Qp, D]s = —i0p® (A.14)

With the above definition of the conjugations of the ghost and anti-ghost fields, the BRST
charge is hermitian:

(@n, A" = (0" + g f " A7) = [A”, Qs (A.15)

{Qs,Q} = —g.Q'T"" = g."Q'T* = {Q', Qs} (A.16)

{Qp, e} =iB* = {e"!, Qp} (A.17)

(A.18)

1 1
{QB,Ca}T — §gsfabccccb _ _Egsfabccbcc _ {CGLT’ QB}
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The BRST transformation of products of fields is defined as

Ag(\pl .o \Ifn) - [IQQB, \Ijl e ‘I/n}
= 0(0p0,) ... U, +...0(—1)% T, ... (55,)... T, (A.19)

where s; counts the number of fermionic fields before ¥,;. The last line defines the action
of dg on products of fields.
Note that we have

S5 (W1 Wy) = 6 [(0p01) Wy + (—1)5 U (65 05)]
= (630 )Wy — (=1)*(6g01)(65Ws) + (—1)% (6501 (0 Wy) + Uy (05 W5)  (A.20)
= (6 01) Uy + Uy (65 W,)

A.2.3 Properties
The BRST transformation has the following properties:

1. it leaves the Lagrangian invariant
2. it is nilpotent, i.e. for any field one has
S0 =0 (A.21)

Because of (A.20) this implies automatically that 63 F = 0 for any functional F' of
the fields.

3. The sum of the gauge-fixing and ghost Lagrangians can be written as

Lot + Lyp = 0 F (A.22)
with
F=e(+ 5B (A.23)
For the choice of the gauge fixing function f* = 9, A*" this is easily seen:
dpF = B*(0,, A" + %B“) — %0, (0" + go f*ech Ao (A.24)

For a general gauge fixing functional one uses

0 [A(2)]

af Al — 4 b _ pqabp b
pfA] = /d y 5(y) Oc” = M*0c (A.25)
so that
opF = B*(f*+ gB“) — E@M®S (A.26)

The BRST invariance of the Lagrangian follows from the two other properties and the fact
that the classical QCD Lagrangian is invariant by construction.
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Proof of nilpotency

It remains to be shown that the BRST transformation is nilpotent.

The nilpotency is obvious for the antighost and the auxiliary field (in fact, this is the
motivation for introducing the auxiliary field, since the nilpotency holds only after use of
the equations of motion if the formulation without auxiliary fields is used).

For the quark field we have

05Q = —igs ((0pc")T*Q — "T*05Q)
: 1 C faoc a : C C
= —1g§<§cbc faeTeQ + i LTT Q) (A.27)
%CbCC[Tb,Tc]
=0
For the gluon field, the repeated application of the BRS transformation gives
S AL = 0,05¢" + go [ (05" A — g PO AL,

9s 1 rabe c abc rbde d e Ac abe ¢ cde . (A28)
:E[fbau(cbc)‘i‘gsfbfbd e AM_beCb(aMC +gsfdchu)]

This vanishes as can be seen separately for the derivative terms and the terms with the
gauge fields, using the anticommuting nature of the ghosts
£ (0u(Pc?) = 2¢°0,¢%) = £ (9u(") — P (9,uc) — (0,”) ) =0 (A.29)
fabCfbdecdceAZ o 2fab0fcdecbchZ — AZ (fabc]tbdecdce + 2fabefedccdcb)
— AZCdCe (fabCfbde T 2faebfbdc)
— AZCdCe (fabCfbde i faebfbdc o fadbfbec) =0 (ABO)
In the last line the Jacobi identity
fbcdfade + fabdfcde + fcadfbde =0. (A31)

was used. Since the term ~ cA in the transformation law of the gauge field is the same
as for a matter field in the adjoint representation, the cancellations in this case work in
the same way as for the quark term, up to replacing the generators in the fundamental by
those in the adjoint representation.

The last step is the proof of nilpotency for the transformation of the ghost fields:

1
6Lt = §gsf“bc [(égcb)cc — cb((;BCC)}
= LRI [ — fed ] (452)

1
— §g§fab0fbdecccdce =0

Since the product of three ghost fields does not change sign under cyclic permutations, this
expression vanishes as a result of the Jacobi identity.
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A.3 BRST symmetry and states in a gauge theory

The vector space of states of a gauge theory contains four modes of the gauge field and
the ghosts and antighosts, whereas the classification of states using the representations of
the Poincaré group shows that only two transverse polarizations of the vector fields should
appear. The BRST symmetry allows to define “physical” states consistently and allows to
show that the unphysical states decouple.

A.3.1 Physical states
The nilpotency of the BRST transformation implies also

Qs =0 (A.33)
This can be seen by computing the double commutator, for instance for a bosonic field,

0 =030 = {iQs, [iQs, ®]} = —(Q3® — QpPQs + QpPQs + Q) = —[QF, @] (A.34)

This implies Q% = 0. Note that the BRST transformation changes the ghost number by
one, so that Q% must have ghost number two. This excludes the possibility that Q% o 1.

Because of the nilpotency of @), states that are obtained by applying () to another
arbitrary state (so called ‘BRS exact states’) have vanishing norm:

) =@sln):  (Wbl) =0 Vin) (A.35)

States that are annihilated by the BRS charge are called ‘BRS closed’. They are orthogonal
to the exact states:

(V) = (nl@sl) =0 V) =Csln) , Qslo) =0 (A.36)

Therefore we can decompose the Hilbert space into orthogonal subspaces. Because of the
nilpotency of (g, a closed state stays closed if one adds an arbitrary exact state.

One can show (see e.g. [21]) that provided the BRS closed states have positive norm,
it is consistent to define the physical states of the theory as closed states modulo exact

states:
(B |wphy5> =0
|¢phy8> ~ |wphy5> + Qg [n)

In mathematical terms, this is the cohomology of the operator Q).

(A.37)

A.3.2 Asymptotic fields

Consider the asymptotic in/out states that satisfy the free equations of motion.
They admit the same mode decomposition as the free fields, i.e. for the gauge field
(suppressing colour indices)

- > / sryiggn (PP P @) (A8

A==,,L,S
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and the ghost fields

d3p —1ipx 1pT
c(x) = / 2ry (c(P)e ™" + ' (P)e™) |0y (A.39)
é(x) = /(2:)—32921)0 (e(p)e ™ — &' (p)e™) o (A.40)

The sum over the polarization vectors is over the two transverse polarizations with po-
larization vectors e. and two additional “longitudinal” and “scalar” polarizations given

by

w1 _ g L (17
= (1) =» 4 = 5 (1) (A1)
The polarization vectors are normalized as
(D) - €(p)) = —Onv, AN = & (A42)
(es(p) -er(p)) =1 (A.43)
(esyn(p) - €s/r(p)) =0 (A.44)

The BRST transformations of asymptotic fields in Feynman gauge (¢ = 1) are obtained
by the limit g; — 0:

[iQp, A% (2)] = 0, () (A.45)
{iQp, " ()} =0 (A.46)
{iQp, " (2)} = B(x) = —0,A“"(x) (A.47)
[i@s, B*(z)] =0 (A.48)

Inserting the mode decomposition and comparing coefficients, one finds the transformations
of the creation operators

[Qs. ak (7)) = [Qs, ak(p)] = 0 (A.49)
Qe al,(7)] = ¢*(p) (A.50)
{Qp.c'(P)} =0 (A.51)
{Qe.@(p)} = —al(p) (A.52)
[Qe, al(z)] =0 (A.53)

Since the vacuum satisfies @ |0) = 0 the states obtained by acting with the creation
operator on the vacuum are classified as follows:

e BRST exact (zero-norm) states:
c) = Qg lg, L) (A.54)

9. S) = —@x c) (A.55)
(A.56)
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e BRST closed but not exact states:

|9, £) (A.57)

e physical states: equivalence classes of closed modulo exact states:
|9, %) ~ g, £) + a [g,5) (A.58)

The physical Hilbert space Hpnys is usually defined as the equivalence class of the
BRST-closed modulo exact states with ghost number zero. One can show [21] that
because of the scalar products (A.43)) and (A.44]) the annihilation and creation oper-

ators of the unphysical modes satisfy the commutation relation

[as(k), af, ()] = 8°(k — ) (A.59)

This implies that the S-matrix element for the state |g, S) is obtained by Feynman
diagrams calculated with the polarization vector e :

(... A"ak]0) — (... |0) ¥ (A.60)

Therefore the equivalence of the states (A.58)) implies the equivalence of the polar-
ization vectors
ey ~ ey +ael =€l + apt, (A.61)

i.e. the usual invariance under gauge transformations.

A.4 Consequences of BRST invariance

The BRST invariance is essential for the proofs of unitarity, gauge independence and
renormalizability of gauge theories. To illustrate this, we briefly sketch how it can be used
to show the gauge independence of S-matrix elements and to derive the Slavnov-Taylor
identities.

A.4.1 Gauge independence

We have seen above that the gauge fixed Lagrangian has the form

L=Ly+ 0gF (A.62)
with
F=c"(f"+ gB“) (A.63)

Consider a variation of the gauge-fixing functional

JUA] = fUlA] + Afe[A] (A.64)
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which implies the variation of the gauge fixing Lagrangian
0L = ép(c*0f) = {iQp, c*Af*[A]}. (A.65)

One can show that the change of a matrix element under the variation of the gauge fixing
term is given by

Gotaltinad o = Gl = [ 4 (G L) i)

—; / A4 (Gpys] {iQ, 2(2) A FULA@)]Hhphys)
=0,

(A.66)

which vanishes because of the definition of the physical states. For a more careful discussion
including the LSZ reduction and renormalization see |21, 22].

A.4.2 Slavnov Taylor identities

We can derive the general Slavnov Taylor Identities of the theory by sandwiching the
commutator (or anticommutator) of an arbitrary products of fields with the BRS-charge
between physical fields:

O = <¢phys| THIQBa \111‘112 o \I]n]i]|wphys>
= Z(_)s(i) <¢phy8‘ T[\Dl .05 .. \I’n]‘wphy8> (A-67)

As example consider identity obtained from the matrix element

(01 (2) A ()] Q, Q) e (A.68)
The STT implies
0 = (0](6se"(2)) A" (4)|Q, Q) — (0 (x)65. AR (4)[Q, Q) (A.69)
- (0] B2(x) A ()]Q. Q) = (0/c(1)(Buc® + g f™PANWQ. Q) (AT0)
——dyAa

At tree-level the bilinear term in the transformation of the gluon field does not contribute
and one has the relation

Oz (01 A5, (1) A" ()| Q, Q) = 8y, (0] ()¢ (1)|QQ) (A.71)
Performing the L.SZ reduction on the photon and ghost fields one obtains the identity ({4.130))

Mkl = =k Mo, o, (A.72)

found previously by an explicit calculation. Note that the ghost propagator connects anti-
ghost and ghost fields so the LSZ reduction of an antighost field gives a ghost amplitude.
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