Exercise 4.1 (2 points) Massive gauge-boson propagator in R_{ξ} gauge
The propagator $D_{\xi}^{\mu \nu}(x)$ of a massive gauge boson with mass M is defined by

$$
\left[g_{\mu \nu}\left(\partial^{2}+M^{2}\right)+\left(\frac{1}{\xi}-1\right) \partial_{\mu} \partial_{\nu}\right] D_{\xi}^{\nu \rho}(x)=\delta_{\mu}^{\rho} \delta(x)
$$

a) Calculate the Fourier-transformed $\tilde{D}_{\xi}^{\mu \nu}(q)$ of the propagator by inserting

$$
D_{\xi}^{\mu \nu}(x)=\int \frac{d^{4} q}{(2 \pi)^{4}} \exp \{i q x\} \tilde{D}_{\xi}^{\mu \nu}(q)
$$

into the differential equation given above. Make use of the decomposition of $\tilde{D}_{\xi}^{\mu \nu}(q)$ into transverse and longitudinal parts, $\tilde{D}_{T, \xi}(q)$ and $\tilde{D}_{L, \xi}(q)$, respectively, with

$$
\tilde{D}_{\xi}^{\mu \nu}(q)=\tilde{D}_{T, \xi}(q)\left(g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\tilde{D}_{L, \xi}(q) \frac{q^{\mu} q^{\nu}}{q^{2}}
$$

Determine $\tilde{D}_{\xi}^{\mu \nu}(q)$ in the limits $\xi \rightarrow 0, \xi \rightarrow 1$, and $\xi \rightarrow \infty$.
b) Given the generating functional

$$
Z_{0}\left[J_{\mu}\right]=\frac{1}{N} \int \mathcal{D} A^{\mu} \exp \left\{i \int d^{4} x\left[\mathcal{L}_{0}+J_{\mu} A^{\mu}\right]\right\}
$$

with

$$
Z_{0}[0]=1, \quad \mathcal{L}_{0}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} M^{2} A_{\mu} A^{\mu}-\frac{1}{2 \xi}(\partial A)^{2}
$$

show that

$$
Z_{0}\left[J_{\mu}\right]=\exp \left\{+\frac{1}{2} \int d^{4} x \int d^{4} x^{\prime} i J_{\mu}(x) i D_{\xi}^{\mu \nu}\left(x-x^{\prime}\right) i J_{\nu}\left(x^{\prime}\right)\right\}
$$

Exercise 4.2 (1 point) Two-point Green's function of the ϕ^{4} theory
The interaction part of the Lagrangian of a ϕ^{4} theory with a single, real scalar field ϕ is given as

$$
\mathcal{L}_{I}=-\frac{g}{4!} \phi^{4} .
$$

Starting from the generating functionals, calculate the Green's function $G^{\phi \phi}\left(x_{1}, x_{2}\right)$ and the connected Green's function $G_{\text {con }}^{\phi \phi}\left(x_{1}, x_{2}\right)$ up to order $\mathcal{O}(g)$ and draw diagrams representing the resulting terms.

Exercise 4.3 (1.5 points) Equation of motion for Green's functions
Consider a quantum field theory of a real scalar field $\phi(x)$ with the Lagrangian $\mathcal{L}(\phi)=$ $\mathcal{L}_{0}(\phi)+\mathcal{L}_{I}(\phi)$ where the free part is given by $\mathcal{L}_{0}(\phi)=-\frac{1}{2} \phi\left(\partial^{2}+m^{2}\right) \phi$ and the interaction part $\mathcal{L}_{I}(\phi)$ is not further specified.
a) Verify explicitly that the free generating functional

$$
Z_{0}[J]=\exp \left\{+\frac{1}{2} \int d^{4} x \int d^{4} x^{\prime} i J(x) i \Delta_{F}\left(x-x^{\prime}\right) i J\left(x^{\prime}\right)\right\}
$$

fulfills the following equation of motion

$$
\left[\frac{\delta \mathcal{L}_{0}}{\delta \phi}\left(\frac{\delta}{i \delta J(x)}\right)+J(x)\right] Z_{0}[J]=0
$$

b) Starting with this equation, derive the equations of motion for the free two- and fourpoint functions, $G_{0}^{\phi \phi}\left(x_{1}, x_{2}\right)$ and $G_{0}^{\phi \phi}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by taking the functional derivative.
c) By explicitly inserting the generating functional

$$
Z[J]=\exp \left\{i \int d^{4} y \mathcal{L}_{I}\left(\frac{\delta}{i \delta J(x)}\right)\right\} Z_{0}[J]
$$

show that in a theory with interactions the following equation of motions hold,

$$
\left[\frac{\delta \mathcal{L}}{\delta \phi}\left(\frac{\delta}{i \delta J(x)}\right)+J(x)\right] Z[J]=0
$$

Use (and prove) the commutator relation

$$
\left[\exp \left\{i \int d^{4} y \mathcal{L}_{I}\left(\frac{\delta}{i \delta J(x)}\right)\right\}, J(x)\right]=\frac{\delta \mathcal{L}_{I}}{\delta \phi}\left(\frac{\delta}{i \delta J(x)}\right) \exp \left\{i \int d^{4} y \mathcal{L}_{I}\left(\frac{\delta}{i \delta J(x)}\right)\right\}
$$

