Exercise 1.1 (1 point) Lie algebra of SU(3)

In the 3-dimensional defining representation the generators $T^a = \lambda^a/2$ of SU(3) are given by the Gell-Mann matrices λ^a (a = 1, ..., 8):

$$\begin{split} \lambda^{1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \\ \lambda^{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \\ \lambda^{3} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{split}$$

The matrices λ^a obey the relations

$$[\lambda^a, \lambda^b] = 2if^{abc}\lambda^c, \qquad \lambda^a = (\lambda^a)^{\dagger}, \qquad \operatorname{Sp}(\lambda^a) = 0, \qquad \operatorname{Sp}(\lambda^a\lambda^b) = 2\delta^{ab}$$

with f^{abc} being the structure constants of SU(3).

- a) Calculate the matrices $A = \sum_{a=1}^{3} (\lambda^{a})^{2}$ and $B = \sum_{a=1}^{8} (\lambda^{a})^{2}$. Are A and B Casimir operators?
- b) Explain why the anticommutator of λ^a can be written as $\{\lambda^a, \lambda^b\} = C\delta^{ab}\mathbf{1} + 2d^{abc}\lambda^c$ with the real constants C and d^{abc} . Determine C.
- c) Prove

$$\operatorname{Sp}(\lambda^{a}[\lambda^{b},\lambda^{c}]) = 4if^{bca}, \qquad \operatorname{Sp}(\lambda^{a}\{\lambda^{b},\lambda^{c}\}) = 4d^{bca}.$$

From these relations, deduce the complete antisymmetry of f^{abc} and the complete symmetry of d^{abc} with respect to the intechange of two of the indices a, b, c.

Exercise 1.2 (1 point) SU(2) gauge theory

Let the fields A^a_{μ} with a = 1, 2, 3 denote a triplet of gauge bosons of a Yang-Mills theory with gauge group SU(2). Formulate the transformation behaviour of the fields

$$A_{\mu}(x) = A^{3}_{\mu}(x), \qquad W^{\pm}_{\mu}(x) = \frac{1}{\sqrt{2}} [A^{1}_{\mu}(x) \mp i A^{2}_{\mu}(x)]$$

under the specific gauge transformation $U_3 = \exp\{-igT^3\omega^3(x)\}$. What is the meaning of the fields A_{μ} and W^{\pm}_{μ} if g and T^3 are identified with the elementary charge e and the operator \hat{Q} of the electromagnetic charge, respectively?

Exercise 1.3 (1 point) Electrodynamics of a scalar field

Given a complex scalar field ϕ characterizing a spin-0 boson with electric charge Qe and mass m, the free motion and the self-interaction of ϕ are described by

$$\mathcal{L}_{\phi}(\phi,\partial_{\mu}\phi) = (\partial_{\mu}\phi)^{*}(\partial^{\mu}\phi) - m^{2}\phi^{*}\phi - V(\phi^{*}\phi),$$

where the potential V is not further specified.

- a) Implement the electromagnetic interaction into this theory by applying minimal substitution analogous to the procedure in QED with fermions.
- b) \mathcal{L}_{ϕ} is invariant under the global phase transformation $\phi \to \phi' = \exp\{-iQe\omega\}\phi$. What is the conserved current j_{μ} corresponding to this symmetry? Does the current j_{μ} change its form if the photon field A_{μ} is switched on and off, respectively?