Exercise 1.1 (1 point) Lie algebra of $S U(3)$
In the 3-dimensional defining representation the generators $T^{a}=\lambda^{a} / 2$ of $\mathrm{SU}(3)$ are given by the Gell-Mann matrices $\lambda^{a}(a=1, \ldots, 8)$:

$$
\begin{array}{ll}
\lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \lambda^{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \\
\lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{array}
$$

The matrices λ^{a} obey the relations

$$
\left[\lambda^{a}, \lambda^{b}\right]=2 i f^{a b c} \lambda^{c}, \quad \lambda^{a}=\left(\lambda^{a}\right)^{\dagger}, \quad \operatorname{Sp}\left(\lambda^{a}\right)=0, \quad \operatorname{Sp}\left(\lambda^{a} \lambda^{b}\right)=2 \delta^{a b}
$$

with $f^{a b c}$ being the structure constants of $\mathrm{SU}(3)$.
a) Calculate the matrices $A=\sum_{a=1}^{3}\left(\lambda^{a}\right)^{2}$ and $B=\sum_{a=1}^{8}\left(\lambda^{a}\right)^{2}$. Are A and B Casimir operators?
b) Explain why the anticommutator of λ^{a} can be written as $\left\{\lambda^{a}, \lambda^{b}\right\}=C \delta^{a b} \mathbf{1}+2 d^{a b c} \lambda^{c}$ with the real constants C and $d^{a b c}$. Determine C.
c) Prove

$$
\operatorname{Sp}\left(\lambda^{a}\left[\lambda^{b}, \lambda^{c}\right]\right)=4 i f^{b c a}, \quad \operatorname{Sp}\left(\lambda^{a}\left\{\lambda^{b}, \lambda^{c}\right\}\right)=4 d^{b c a}
$$

From these relations, deduce the complete antisymmetry of $f^{a b c}$ and the complete symmetry of $d^{a b c}$ with respect to the intechange of two of the indices a, b, c.

Exercise 1.2 (1 point) $\quad S U(2)$ gauge theory
Let the fields A_{μ}^{a} with $a=1,2,3$ denote a triplet of gauge bosons of a Yang-Mills theory with gauge group $\mathrm{SU}(2)$. Formulate the transformation behaviour of the fields

$$
A_{\mu}(x)=A_{\mu}^{3}(x), \quad W_{\mu}^{ \pm}(x)=\frac{1}{\sqrt{2}}\left[A_{\mu}^{1}(x) \mp i A_{\mu}^{2}(x)\right]
$$

under the specific gauge transformation $U_{3}=\exp \left\{-i g T^{3} \omega^{3}(x)\right\}$. What is the meaning of the fields A_{μ} and $W_{\mu}^{ \pm}$if g and T^{3} are identified with the elementary charge e and the operator \hat{Q} of the electromagnetic charge, respectively?

Exercise 1.3 (1 point) Electrodynamics of a scalar field

Given a complex scalar field ϕ characterizing a spin-0 boson with electric charge $Q e$ and mass m, the free motion and the self-interaction of ϕ are described by

$$
\mathcal{L}_{\phi}\left(\phi, \partial_{\mu} \phi\right)=\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-m^{2} \phi^{*} \phi-V\left(\phi^{*} \phi\right),
$$

where the potential V is not further specified.
a) Implement the electromagnetic interaction into this theory by applying minimal substitution analogous to the procedure in QED with fermions.
b) \mathcal{L}_{ϕ} is invariant under the global phase transformation $\phi \rightarrow \phi^{\prime}=\exp \{-i Q e \omega\} \phi$. What is the conserved current j_{μ} corresponding to this symmetry? Does the current j_{μ} change its form if the photon field A_{μ} is switched on and off, respectively?

