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Exercise 7.1 Wick theorem for bosonic fields (2 points)

The purpose of this exercise is to prove Wick’s theorem for bosonic, real field operators
®; = ¢i(x;), which states that
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with the contractions representing propagators, ¢;¢; = (0|7{¢;¢;}/0). For n = 2 the
theorem was already proved in Exercise 6.2. We organise the general proof in two steps.
Without loss of generality we can assume that ¢, = z° is the smallest time variable, i.e.

T{¢1-- on} =T{d1- Pn-1}0n.

a) First prove the lemma
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To this end, split ¢, according to ¢, = ¢;7 + ¢, into their positive and negative
frequency parts ¢, i.e. ¢ involves only annihilation operators and ¢, only creation
operators. The contribution owing to ¢, is trivially obtained. For ¢,,, proceed via
induction in n.

b) Prove Wick’s theorem via induction in n using the result of a).

Please turn over!



Exercise 7.2 S-operator for two interacting scalar fields (1 point)

Consider a theory of a complex scalar field ¢ (particle ¢ and antiparticle @ and a real
scalar field @ (particle ®) with the Lagrangian density given by

£ = 5(0,8)(0"®) — 5 +(8,6)(06) — 616 + L,
where Ly = M\pT¢ ® . Expand the S-operator,
S =Texp (i/d4:1: Eint(:c)) ,
up to order A and use Wick’s theorem to express the result in terms of propagators and

normal-ordered products of fields. Note that the A" contribution can be written in the
form
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Represent the result diagrammatically using the following notation:

e Fxternal lines:
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