Exercises to Relativistic Quantum Field Theory — Sheet 7

Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 7.1 Wick theorem for bosonic fields (2 points)

The purpose of this exercise is to prove Wick's theorem for bosonic, real field operators $\phi_i \equiv \phi_i(x_i)$, which states that

$$T\{\phi_1 \cdots \phi_n\} = :\phi_1 \cdots \phi_n : + \sum_{\text{pairs } ij} :\phi_1 \cdots \phi_i \cdots \phi_j \cdots \phi_n : + \sum_{\text{double pairs } ij,kl} :\phi_1 \cdots \phi_i \cdots \phi_k \cdots \phi_j \cdots \phi_l \cdots \phi_n : + \dots$$

with the contractions representing propagators, $\phi_i \phi_j = \langle 0|T\{\phi_i \phi_j\}|0\rangle$. For n=2 the theorem was already proved in Exercise 6.2. We organise the general proof in two steps. Without loss of generality we can assume that $t_n = x_n^0$ is the smallest time variable, i.e. $T\{\phi_1 \cdots \phi_n\} = T\{\phi_1 \cdots \phi_{n-1}\}\phi_n$.

a) First prove the lemma

$$: \phi_1 \cdots \phi_{n-1} : \phi_n = : \phi_1 \cdots \phi_n : + \sum_{k=1}^{n-1} : \phi_1 \cdots \phi_k \cdots \phi_n : .$$

To this end, split ϕ_n according to $\phi_n = \phi_n^+ + \phi_n^-$ into their positive and negative frequency parts ϕ_n^\pm , i.e. ϕ_n^+ involves only annihilation operators and ϕ_n^- only creation operators. The contribution owing to ϕ_n^+ is trivially obtained. For ϕ_n^- , proceed via induction in n.

b) Prove Wick's theorem via induction in n using the result of a).

Please turn over!

Exercise 7.2 S-operator for two interacting scalar fields (1 point)

Consider a theory of a complex scalar field ϕ (particle ϕ and antiparticle $\bar{\phi}$) and a real scalar field Φ (particle Φ) with the Lagrangian density given by

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \Phi)(\partial^{\mu} \Phi) - \frac{1}{2} M^{2} \Phi^{2} + (\partial_{\mu} \phi^{\dagger})(\partial^{\mu} \phi) - m^{2} \phi^{\dagger} \phi + \mathcal{L}_{\text{int}},$$

where $\mathcal{L}_{\mathrm{int}} = \lambda \phi^{\dagger} \phi \, \Phi$. Expand the S-operator,

$$S = T \exp\left(i \int d^4x \, \mathcal{L}_{int}(x)\right),$$

up to order λ^2 and use Wick's theorem to express the result in terms of propagators and normal-ordered products of fields. Note that the λ^n contribution can be written in the form

$$\frac{1}{n!} \int \mathrm{d}^4 x_1 \dots d^4 x_n : \dots : .$$

Represent the result diagrammatically using the following notation:

• External lines:

$$\phi^{\dagger}(x) = \xrightarrow{x}, \qquad \phi(x) = \xrightarrow{x}, \qquad \Phi(x) = \cdots \xrightarrow{x}$$

• Internal lines:

$$\overrightarrow{\phi(x_1)}\overrightarrow{\phi}^{\dagger}(x_2) = \underbrace{x_1 \quad x_2}_{\bullet}, \qquad \overrightarrow{\Phi(x_1)}\overrightarrow{\Phi}(x_2) = \underbrace{x_1 \quad x_2}_{\bullet}.$$

• Vertices:

$$i\lambda =$$