Exercises to Relativistic Quantum Field Theory — Sheet 4 Prof. S. Dittmaier, Universität Freiburg, WS 2019/20

Exercise 4.1 Non-relativistic propagator (2 points)

In Exercise 3.1 the Green's function of Schrödinger's equation was introduced as the solution of the differential equation

$$\left(i\frac{\partial}{\partial t} + \frac{1}{2m}\Delta - V(\vec{x})\right)G(t,\vec{x};t',\vec{x}') = \delta(t-t')\delta^{(3)}(\vec{x}-\vec{x}').$$
(1)

a) Determine the Fourier transform of the Green's function G_0 of the free Schrödinger equation with $V(\vec{x}) = 0$, i.e. write G_0 in the form

$$G_0(t,\vec{x};t',\vec{x}') = \int \frac{\mathrm{d}\omega}{2\pi} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \,\mathrm{e}^{-\mathrm{i}\omega(t-t')} \mathrm{e}^{\mathrm{i}\vec{p}\cdot(\vec{x}-\vec{x}')} \tilde{G}_0(\omega,\vec{p}) \tag{2}$$

and determine the function $\tilde{G}_0(\omega, \vec{p})$. Why can the free Green's function only depend on t - t' and $\vec{x} - \vec{x}'$?

$$\begin{bmatrix} Result: \quad \tilde{G}(\omega, \vec{p}) = \left(\omega - \frac{\vec{p}^2}{2m}\right)^{-1}. \end{bmatrix}$$

b) Now perform the ω integration in (2) after shifting the pole in ω according to

$$G_0^{(\pm)}(t,\vec{x}) = \int \frac{d\omega}{2\pi} \int \frac{d^3p}{(2\pi)^3} e^{-i(\omega t - \vec{p} \cdot \vec{x})} \frac{1}{\omega - \frac{\vec{p}^2}{2m} \pm i\epsilon}.$$
 (3)

with an infinitesimal $\epsilon > 0$. Which signs of $\pm i\epsilon$ correspond to the retarded and advanced cases?

Hint: Prove first and then use $\theta(\pm \tau) = \frac{\mp 1}{2\pi i} \int_{-\infty}^{+\infty} d\omega \, \frac{e^{-i\omega\tau}}{\omega \pm i\epsilon}.$

c) Calculate $G_0^{(\pm)}(t, \vec{x})$ explicitly upon carrying out the integration over d^3p , starting from the result of b).

Hint: Use the auxiliary integral $\int_{-\infty}^{+\infty} dz \, e^{-a(z+b)^2} = \sqrt{\pi/a}$, where $a, b \in \mathbb{C}$, $a \neq 0$, $\operatorname{Re}(a) \geq 0$.

Please turn over!

Exercise 4.2 Electromagnetic interaction of charged scalars (2.5 points)

Generically the interaction of the electromagnetic field $(A^{\mu}) = (\phi, \vec{A})$ with charged fields is described by a Lagrangian of the form

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - j^{\mu}A_{\mu} + \mathcal{L}_0$$

where $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ is the electromagnetic field-strength tensor, $(j^{\mu}) = (\rho, \vec{j})$ the four-current density of the charges, and \mathcal{L}_0 the Lagrangian for the free propagation of the charges (and possibly other interactions among them), i.e. \mathcal{L}_0 does not depend on A^{μ} .

Comment: In relativistic field theory it is customary to use Lorentz-Heaviside units, which result from the SI units upon setting $\mu_0 = \varepsilon_0 = c = 1$.

- a) Express the electromagnetic field-strength tensor $F^{\mu\nu}$ and its dual $\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$ in terms of the electric field $\vec{E} = -\nabla \phi - \dot{\vec{A}}$ and the magnetic flux density $\vec{B} = \nabla \times \vec{A}$.
- b) Bring the homogeneous Maxwell equations $\partial_{\mu}\tilde{F}^{\mu\nu} = 0$ into their usual form in terms of \vec{E} and \vec{B} . Show that $\partial_{\mu}\tilde{F}^{\mu\nu} = 0$ follows from the definitions of $F^{\mu\nu}$ and $\tilde{F}^{\mu\nu}$.
- c) Derive the inhomogeneous Maxwell equations for the field strength in their covariant form $\partial_{\mu}F^{\mu\nu} = j^{\nu}$ from the Euler-Lagrange equations for A^{μ} and bring them into their usual form in terms of \vec{E} and \vec{B} . Verify current conservation $\partial_{\mu}j^{\mu} = 0$.
- d) Now consider a complex scalar field Φ to describe a spinless particle with electric charge q and mass m, as in Exercise 3.3b). The free propagation of Φ is described by

$$\mathcal{L}_0(\Phi, \partial \Phi) = (\partial \Phi)^* (\partial \Phi) - m^2 \Phi^* \Phi.$$

The electromagnetic interaction between Φ and A^{μ} is introduced by the "minimal substitution" $\partial^{\mu} \to D^{\mu} = \partial^{\mu} + iqA^{\mu}$ in \mathcal{L}_0 , resulting in

$$\mathcal{L}_{\Phi}(\Phi, \partial \Phi, A) = \mathcal{L}_{0}(\Phi, D\Phi) = \mathcal{L}_{0}(\Phi, \partial \Phi) - j_{\mu}A^{\mu}.$$

Derive the explicit form of the current density j^{μ} .

e) \mathcal{L}_{Φ} is invariant under the global transformation $\Phi \to \Phi' = \exp(-iq\omega)\Phi$, with ω denoting an arbitrary real number. Derive the Noether current corresponding to this symmetry and compare it with j^{μ} from above.