Exercise 15 Chiral superfield in superspace (6 points)

A chiral superfield $\Phi(x, \theta, \bar{\theta})$ has the following decomposition in superspace,

$$\Phi(x,\theta,\bar{\theta}) = \phi(x) - i(\theta\bar{\sigma}^{\mu}\bar{\theta})\partial_{\mu}\phi(x) - \frac{1}{4}(\theta\theta)(\bar{\theta}\bar{\theta})\partial^{2}\phi(x)
+ \sqrt{2}\theta\psi(x) - \frac{i}{\sqrt{2}}(\theta\theta)(\bar{\theta}\sigma^{\mu}\partial_{\mu}\psi(x)) - (\theta\theta)\mathcal{F}(x),$$
(1)

with component fields $\phi(x)$, $\psi_a(x)$, and $\mathcal{F}(x)$.

- a) Verify $\bar{\mathcal{D}}^{\dot{a}}\Phi(x,\theta,\bar{\theta})=0$, with covariant derivative $\bar{\mathcal{D}}^{\dot{a}}=i\left(\frac{\partial}{\partial\bar{\theta}_{\dot{a}}}-i\sigma^{\mu,\dot{a}b}\theta_{b}\partial_{\mu}\right)$.
- b) Calculate the SUSY variations $\delta f = -i(\alpha Q + \bar{\alpha}\bar{Q})f$ for the component fields $f = \phi, \psi, \mathcal{F}$ with

$$Q_a = i \left(\frac{\partial}{\partial \theta^a} + i \bar{\sigma}^{\mu}_{a\dot{b}} \bar{\theta}^{\dot{b}} \partial_{\mu} \right), \tag{2}$$

$$\bar{\mathcal{Q}}^{\dot{a}} = i \left(\frac{\partial}{\partial \bar{\theta}_{\dot{a}}} + i \sigma^{\mu, \dot{a}b} \theta_b \partial_\mu \right). \tag{3}$$

c) Show that the product of two chiral superfields is again a chiral superfield. Determine the component fields of $\Phi'' = \Phi \Phi'$ in terms of the component fields of the chiral superfields Φ and Φ' .

Please turn over!

Exercise 16 Integration in superspace (4 points)

Integration over Grassmann-valued coordinates θ_a and $\bar{\theta}^{\dot{a}}$ in superspace can be defined (together with linearity of the integral) in terms of the elementary integrals

$$\int d\theta_a \, 1 = 0, \qquad \int d\theta_a \, \theta^b = \delta_a^b, \qquad \int d^2\theta = \int d\theta_2 \int d\theta_1 = \frac{1}{2} \int d\theta^a \int d\theta_a, \tag{4}$$

$$\int d\bar{\theta}^{\dot{a}} 1 = 0, \qquad \int d\bar{\theta}^{\dot{a}} \,\bar{\theta}_{\dot{b}} = \delta^{\dot{a}}_{\dot{b}}, \qquad \int d^2\bar{\theta} = \int d\bar{\theta}^{\dot{1}} \int d\bar{\theta}^{\dot{2}} = \frac{1}{2} \int d\bar{\theta}_{\dot{a}} \int d\bar{\theta}^{\dot{a}}, \qquad (5)$$

$$\int d^4\theta = \int d^2\theta \int d^2\bar{\theta}.$$
 (6)

- a) Calculate $\int d^2\theta (\theta\theta)$, $\int d^2\bar{\theta} (\bar{\theta}\bar{\theta})$ and $\int d^4\theta (\theta\theta)(\bar{\theta}\bar{\theta})$.
- b) Show that the functions $\delta^{(2)}(\theta) = -\frac{1}{2}(\theta\theta)$ and $\delta^{(2)}(\bar{\theta}) = -\frac{1}{2}(\bar{\theta}\bar{\theta})$ act like " δ -functions" within the superspace integral, by integrating them together with an arbitrary superfield $S(x, \theta, \bar{\theta})$.
- c) For an arbitrary superfield $S(x, \theta, \bar{\theta})$ and a chiral superfield $\Phi(x, \theta, \bar{\theta})$ show

$$-\frac{1}{2} \int d^4x \int d^4\theta \, \mathcal{S}(x,\theta,\bar{\theta}) = \int d^4x \, \left[\mathcal{S}\right]_D, \tag{7}$$

$$\frac{1}{2} \int d^4x \int d^4\theta \, \delta^{(2)}(\bar{\theta}) \, \Phi(x,\theta,\bar{\theta}) = \int d^4x \, \left[\Phi\right]_{\mathcal{F}},\tag{8}$$

where $[...]_D$ and $[...]_{\mathcal{F}}$ denote the "D"- and " \mathcal{F} " terms of the superfields.

d) Give the action $S = \int d^4x \mathcal{L}$ of the Wess–Zumino-model in terms of the integral $\int d^4x \int d^4\theta$ [...].