Exercises to Relativistic Quantum Field Theory Sheet 1

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, SS14

Exercise 1.1 Some properties of Lorentz transformations (2 points)

Lorentz transformations, which transform a four-vector $a^{\mu}=\left(a^{0}, \vec{a}\right)$ to $a^{\mu}=\Lambda_{\nu}^{\mu} a^{\nu}$, comprise all 4×4 matrices Λ that leave the metric tensor $g^{\mu \nu}=\operatorname{diag}(+1,-1,-1,-1)$ invariant, i.e. $g^{\mu \nu}=\Lambda^{\mu}{ }_{\alpha} \Lambda^{\nu}{ }_{\beta} g^{\alpha \beta}$. In the following we consider the "proper orthochronous Lorentz group" L_{+}^{\uparrow} that comprises all such Λ with the two constraints that $\operatorname{det} \Lambda=+1$ and $\Lambda^{0}{ }_{0}>0$. The group L_{+}^{\uparrow} consists of all rotations in space and "boosts", which relate two frames of reference with a non-vanishing relative velocity.
a) A boost with relative velocity $\vec{v}=\left(v^{1}, v^{2}, v^{3}\right)$ is described by the Λ matrix of the form

$$
L\left(v^{1}, v^{2}, v^{3}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
\gamma & -v^{1} \gamma & -v^{2} \gamma & -v^{3} \gamma \\
-v^{1} \gamma & 1+\frac{v^{1} v^{1}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{1} v^{2}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{1} v^{3}}{\vec{v}^{2}}(\gamma-1) \\
-v^{2} \gamma & \frac{v^{2} v^{1}}{\vec{v}^{2}}(\gamma-1) & 1+\frac{v^{2} v^{2}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{2} v^{3}}{\vec{v}^{2}}(\gamma-1) \\
-v^{3} \gamma & \frac{v^{3} v^{1}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{3} v^{2}}{\vec{v}^{2}}(\gamma-1) & 1+\frac{v^{3} v^{3}}{\vec{v}^{2}}(\gamma-1)
\end{array}\right),
$$

where $\gamma=1 / \sqrt{1-\vec{v}^{2}}$. Calculate the boosted components $x^{\prime \mu}$ for the four-vectors $x_{\|}^{\mu}=\left(x^{0}, r \vec{e}\right)$ and $x_{\perp}^{\mu}=\left(x^{0}, r \vec{e}_{\perp}\right)$ whose directions in space are parallel and perpendicular to the direction $\vec{e}=\vec{v} /|\vec{v}|$ of the relative velocity, respectively, i.e. $\vec{e}_{\perp} \cdot \vec{e}=0$.
b) Show that the sign of the time-like component a^{0} of any non-space-like four-vector a^{μ} (i.e. $a^{2} \geq 0$) is invariant under all Lorentz transformations $\Lambda \in L_{+}^{\uparrow}$.
c) Calculate $W=L_{2}\left(0,-v^{2}, 0\right) L_{1}\left(-v^{1}, 0,0\right) L_{2}\left(0, v^{2}, 0\right) L_{1}\left(v^{1}, 0,0\right)$ for small velocities v^{k} and keep terms up to quadratic order in products of components v^{k}. What kind of transformation is described by W ?
d) Show that the totally antisymmetric tensor

$$
\epsilon^{\mu \nu \rho \sigma}=\left\{\begin{aligned}
+1 & \text { if }(\mu \nu \rho \sigma)=\text { even permutation of }(0123) \\
-1 & \text { if }(\mu \nu \rho \sigma)=\text { odd permutation of }(0123), \\
0 & \text { otherwise } .
\end{aligned}\right.
$$

is an invariant tensor under all $\Lambda \in L_{+}^{\uparrow}$, i.e. $\epsilon^{\prime \mu \nu \rho \sigma}=\Lambda^{\mu}{ }_{\alpha} \Lambda^{\nu}{ }_{\beta} \Lambda^{\rho}{ }_{\gamma} \Lambda^{\sigma}{ }_{\delta} \epsilon^{\alpha \beta \gamma \delta}$.
e) Show that $d^{\mu}=\epsilon^{\mu \nu \rho \sigma} a_{\nu} b_{\rho} c_{\sigma}$ transforms like a four-vector under $\Lambda \in L_{+}^{\uparrow}$ if a^{μ}, b^{μ}, and c^{μ} are four-vectors.

Exercise 1.2 Kinematics of a $1 \rightarrow 2$ particle decay (2 points)
A particle of mass M and four-momentum k^{μ} decays into two particles of masses m_{i} and four-momenta $p_{i}^{\mu}(i=1,2)$. The momenta obey their mass-shell conditions $k^{2}=M^{2}$ and $p_{i}^{2}=m_{i}^{2}$ and, in the centre-of-mass frame Σ, are given by

$$
k^{\mu}=(M, \mathbf{0}), \quad p_{i}^{\mu}=\left(E_{i},\left|\mathbf{p}_{i}\right| \cos \phi_{i} \sin \theta_{i},\left|\mathbf{p}_{i}\right| \sin \phi_{i} \sin \theta_{i},\left|\mathbf{p}_{i}\right| \cos \theta_{i}\right)
$$

a) What are the consequences of four-momentum conservation $k=p_{1}+p_{2}$ for the energies E_{i}, for the absolute values $\left|\mathbf{p}_{i}\right|$ of the three-momenta and for the angles θ_{i}, ϕ_{i} ?
b) Calculate E_{i} and $\left|\mathbf{p}_{i}\right|$ as function of the masses M and m_{i}.
c) The decaying particle is now considered in a frame Σ^{\prime} in which the particle has the velocity β along the x^{3} axis $(c=1)$. What is the relation between energies and angles in Σ^{\prime} with the respective quantities in Σ ?
d) For the special case $m_{1}=m_{2}=0$ (e.g. decay into two photons) determine the angle θ^{\prime} between the directions of flight of the decay products in Σ^{\prime} (i.e. the angle between \mathbf{p}_{1}^{\prime} and $\left.\mathbf{p}_{2}^{\prime}\right)$. What are the extremal values of θ^{\prime} ? In particular, discuss the cases $\beta=0$ and $\beta \rightarrow 1$.

