Exercises "Modern methods of Quantum Chromodynamics"

Problem 18 (4 Points) Scalar-gluon scattering
Consider a theory with a complex scalar field ϕ_{i} in the fundamental representation of $S U(3)$. The four-point born amplitudes with two scalars and two gluons admit the colour decomposition into colour-ordered partial amplitudes

$$
\mathcal{M}\left(\phi_{1}^{i, \dagger}, \phi_{j, 2}, g_{a, 3}, g_{b, 4}\right)=g_{s}^{2}\left(T^{b} T^{a}\right)_{j}^{i} M\left(\phi_{1}^{\dagger}, \phi_{2}, g_{3}, g_{4}\right)+g_{s}^{2}\left(T^{a} T^{b}\right)_{j}^{i} M\left(\phi_{1}^{\dagger}, \phi_{2}, g_{3}, g_{4}\right)
$$

Compute the partial amplitudes

$$
M\left(\phi_{1}^{\dagger}, \phi_{2}, g_{3}^{+}, g_{4}^{+}\right), \quad M\left(\phi_{1}^{\dagger}, \phi_{2}, g_{3}^{+}, g_{4}^{-}\right)
$$

The colour-ordered Feynman rules with outgoing momenta are given by

and the usual colour-ordered Feynman rules for QCD.

Problem 19 (2 Points) Amplitude relations
Colour-ordered gluon amplitudes satisfy the so-called dual Ward identity
$M_{n}\left(g_{1}, g_{2}, g_{3}, \ldots g_{n}\right)+M_{n}\left(g_{2}, g_{1}, g_{3}, \ldots g_{n}\right)+M_{n}\left(g_{2}, g_{3}, g_{1}, \ldots g_{n}\right)+\cdots+M_{n}\left(g_{2}, g_{3}, g_{1}, \ldots g_{1}, g_{n}\right)=0$
Check that this identity is satisfied for the case of maximally helicity-violating amplitudes

$$
M_{n}\left(g_{1}^{+}, \ldots, g_{i}^{-}, \ldots, g_{j}^{-}, \ldots g_{n}^{+}\right)=2^{n / 2-1} \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

Problem 19 (4 Points) Colour factors
Compute the following products of traces over $S U\left(N_{c}\right)$ generators

$$
\begin{aligned}
\operatorname{tr}\left[T^{a} T^{b}\right] \operatorname{tr}\left[T^{b} T^{a}\right] & =\frac{N_{c}^{2}-1}{4} \\
\operatorname{tr}\left[T^{a} T^{b} T^{c}\right] \operatorname{tr}\left[T^{c} T^{b} T^{a}\right] & =\frac{\left(N_{c}^{2}-1\right)\left(N_{c}^{2}-2\right)}{8 N_{c}} \\
\operatorname{tr}\left[T^{a} T^{b} T^{c}\right] \operatorname{tr}\left[T^{a} T^{b} T^{c}\right] & =-\frac{N_{c}^{2}-1}{4 N_{c}} \\
\operatorname{tr}\left[T^{a} T^{b} T^{c} T^{d}\right] \operatorname{tr}\left[T^{d} T^{c} T^{b} T^{a}\right] & =\frac{N_{c}^{6}-4 N_{c}^{4}+6 N_{c}^{2}-3}{16 N_{c}^{2}}
\end{aligned}
$$

Discuss the behaviour for $N_{c} \rightarrow \infty$.

Bonus question (1 bonus point)
Compute also

$$
\operatorname{tr}\left[T^{a} T^{b} T^{c} T^{d}\right] \operatorname{tr}\left[T^{a} T^{b} T^{c} T^{d}\right]
$$

Show first that

$$
\operatorname{tr}\left[T^{a} T^{b} T^{c} T^{a} T^{b} T^{c}\right]=\frac{N_{c}^{4}-1}{8 N_{c}^{2}}
$$

